
BCAR-201
Data Structure Using ‘C’

DR.BABASAHEB AMBEDKAR

OPEN UNIVERSITY

BCA
BACHELOR OF COMPUTER APPLICATION

DR. BABASAHEB AMBEDKAR OPEN UNIVERSITY
AHMEDABAD

DATA STRUCTURE USING C

Editorial Panel

Authors : Dr. Ketan D. Patel
Associate Professor,
Faculty of Computer Applications
Programme Coordinator (DCS–UG Programme)
Ganpat University

Dr. Kamesh Raval
Assistant Professor,
Somlalit Institute of Computer Application,
Ahmedabad.

Editor : Mr. Parimal Patel
I/C Director,
Khyati School of Computer Application,
Ahmedabad.

Language Editor : Dr. Jagdish Vinayakrao Anerao
Associate Professor,
Smt A. P. Patel Arts &
N. P. Patel Commerce College,
Ahmedabad.

ISBN 978-81-949223-9-1

Edition : 2020

Copyright © 2020 Knowledge Management and Research
Organisation.

All rights reserved. No part of this book may be reproduced,
transmitted or utilized in any form or by a means, electronic or
mechanical, including photocopying, recording or by any information
storage or retrieval system without written permission from us.

Acknowledgment

Every attempt has been made to trace the copyright holders of
material reproduced in this book. Should an infringement have
occurred, we apologize for the same and will be pleased to make
necessary correction/amendment in future edition of this book.

ROLE OF SELF–INSTRUCTIONAL MATERIAL
IN DISTANCE LEARNING

The need to plan effective instruction is imperative for a
successful distance teaching repertoire. This is due to the fact that
the instructional designer, the tutor, the author (s) and the
student are often separated by distance and may never meet in
person. This is an increasingly common scenario in distance
education instruction. As much as possible, teaching by distance
should stimulate the student's intellectual involvement and contain
all the necessary learning instructional activities that are capable
of guiding the student through the course objectives. Therefore,
the course / self–instructional material is completely equipped
with everything that the syllabus prescribes.

To ensure effective instruction, a number of instructional
design ideas are used and these help students to acquire knowledge,
intellectual skills, motor skills and necessary attitudinal changes.
In this respect, students' assessment and course evaluation are
incorporated in the text.

The nature of instructional activities used in distance
education self–instructional materials depends on the domain of
learning that they reinforce in the text, that is, the cognitive,
psychomotor and affective. These are further interpreted in the
acquisition of knowledge, intellectual skills and motor skills.
Students may be encouraged to gain, apply and communicate
(orally or in writing) the knowledge acquired. Intellectual–skills
objectives may be met by designing instructions that make use of
students' prior knowledge and experiences in the discourse as the
foundation on which newly acquired knowledge is built.

The provision of exercises in the form of assignments,
projects and tutorial feedback is necessary. Instructional activities
that teach motor skills need to be graphically demonstrated and
the correct practices provided during tutorials. Instructional
activities for inculcating change in attitude and behaviour should
create interest and demonstrate need and benefits gained by
adopting the required change. Information on the adoption and
procedures for practice of new attitudes may then be introduced.

Teaching and learning at a distance eliminate interactive
communication cues, such as pauses, intonation and gestures,
associated with the face–to–face method of teaching. This is

particularly so with the exclusive use of print media. Instructional
activities built into the instructional repertoire provide this missing
interaction between the student and the teacher. Therefore, the
use of instructional activities to affect better distance teaching is
not optional, but mandatory.

Our team of successful writers and authors has tried to
reduce this.

Divide and to bring this Self–Instructional Material as the
best teaching and communication tool. Instructional activities are
varied in order to assess the different facets of the domains of
learning.

Distance education teaching repertoire involves extensive use
of self–instructional materials, be they print or otherwise. These
materials are designed to achieve certain pre–determined learning
outcomes, namely goals and objectives that are contained in an
instructional plan. Since the teaching process is affected over a
distance, there is need to ensure that students actively participate
in their learning by performing specific tasks that help them to
understand the relevant concepts. Therefore, a set of exercises is
built into the teaching repertoire in order to link what students
and tutors do in the framework of the course outline. These could
be in the form of students' assignments, a research project or a
science practical exercise. Examples of instructional activities in
distance education are too numerous to list. Instructional activities,
when used in this context, help to motivate students, guide and
measure students' performance (continuous assessment)

PREFACE

We have put in lots of hard work to make this book as user–

friendly as possible, but we have not sacrificed quality. Experts

were involved in preparing the materials. However, concepts are

explained in easy language for you. We have included many tables

and examples for easy understanding.

We sincerely hope this book will help you in every way you

expect.

All the best for your studies from our team!

DATA STRUCTURE USING C
Contents

BLOCK 1 : DATA STRUCTURES AND ARRAYS

Unit 1 INTRODUCTION TO DATA STRUCTURES

Introduction, Data, Information, Data Structure,
Definition, Primitive and Non–Primitive Data Type, Types
of Data Structures, Data Structure Operations, Primitive
and Composite Data Structure, Time and Space
Complexity of Algorithms, Time Complexity, Space
Complexity

Unit 2 ARRAY

Introduction, Characteristics of an Array, Definition of
an Array, Declaration of Arrays, Initialization of Arrays,
Accessing Elements of an Array, Passing Array Elements
to a Function, Definition of Multidimensional Array,
Declaration of Two Dimensional Arrays, Initializing of
Two Dimensional Arrays, Accessing elements of Two
Dimensional Arrays, Sparse Arrays, Representation of
Sparse Arrays, Array Representation, Linked List
Representation

Unit 3 REPRESENTATIONS OF ARRAYS IN MEMORY

Introduction, Representations of One Dimensional Array
in Memory, Address Calculation for One Dimensional
Array, Representations of Two Dimensional Arrays in
Memory, Row Major Order Representation, Column
Major Order Representation, Address Calculation for
Two Dimensional Array

BLOCK 2 : STACK, QUEUES AND LINK–LIST

Unit 4 Link–List

Introduction, Dynamic Memory Allocation Functions,
Malloc () Function, Calloc () Function, Free () Function,
Linked–Lists, Node Structure, Link–List Representation,
Defining Structure Node, Difference in Array and Link–
List Data Structures, Link–List Implementation,
Declaration of Node and First Pointer, Creating a Link–
List, Inserting a Value to The Link–List, Displaying
Link–List, Deleting a Value From The Link–List

Unit 5 MORE ON Link–List

Introduction, Types of Link–List, Singly Link–List, Doubly
Link–List, Circular Link–List, Doubly Link–List
Implementation, Declaring of Node and First Pointer,
Creating a Doubly Link–List, Inserting a Value to The
Link–List, Displaying Doubly Link–List, Deleting a Node
From Doubly Link–List

Unit 6 STACK AND THEIR APPLICATIONS

Introduction, Definitions, Array and Link Representation
of Stack, Array Representation of Stack, Link–List
Representation of Stack, Operations and Applications of
Stack

Unit 7 QUEUES AND THEIR APPLICATIONS

Introduction, Definition, Basic Operations Performed on
Queue, Array and Link–List Representation of Queue,
Array Representation of Pueue, Link–List Representation
of Queue, D–Queue, Circular Queue, Applications of
Queue

BLOCK 3 : TREE AND GRAPHS

Unit 8 TREES

Introduction, Basic Terminology, Binary Tree, Binary
Tree Representation using Array and Link–List, Array
(Sequential) Representation, Link–List Representation,
Binary Search Tree

Unit 9 OPERATIONS ON BINARY TREE

Introduction, Operations on Binary Search Tree, Binary
Tree Traversals, Inorder Traversal, Preorder Traversal,
Postorder Traversal, Recursive Algorithms for Inorder,
Preorder and Postorder

Unit 10 GRAPHS

Introduction, Definition, Terminology, Types and
Representation of a Graph, Graph Traversal, Breadth
First Search (BFS), Depth First Search (DFS), Shortest
Path Algorithm, Kruskal's Algorithm, Prim's Algorithm

BLOCK 4 : TECHNIQUES (SEARCHING AND SORTING) AND FILE
STRUCTURE

Unit 11 SEARCHING TECHNIQUES

Introduction, Sequential or Linear and Binary Search,
Algorithms for Sequential and Binary Search,

Implementation of Linear Search, Implementation of
Binary Search

Unit 12 SORTING TECHNIQUES

Introduction, What is Sorting, Types of Sorting, Internal
and External, Bubble, Insertion, Selection, Quick, Merge,
Radix Sorting

Unit 13 FILE STRUCTURE

Introduction, File Structure – Concept of Fields, Files
and Records, Sequential and Index File Organizations,
Hashing Techniques

Unit 14 PROGRAMS OF SEARCHING AND SORTING

Data Structure Using C

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 1 : DATA STRUCTURES AND ARRAYS

UNIT 1 INTRODUCTION TO DATA STRUCTURES

UNIT 2 ARRAYS

UNIT 3 REPRESENTATIONS OF ARRAYS IN MEMORY

BCAR-201/
DCAR-201

Block Introduction :

Data can be defined as a piece of information. It can be of any type
including character, integer, date, float etc. Data structure is a method of
organizing data in such a way that various operations can be performed
effectively. In short, data structure is nothing but a combination of data and
operations which can be performed on data.

Block Objectives :

A data structure helps you to understand the relationship of data items
with one another; it also gives us an idea of how data is organized in the
memory and helps you to understand the concept of abstraction. Based on the
need of the operation a user can select different types of data structure.

After the study of this block students are able to :

• Understand what is data structure and why data structure.

• Learn various types of data structures.

• Understand about single dimensional arrays and its representation into
memory.

• Know the concept of multidimensional arrays and its representation into
memory.

• Understand time and space complexity of an algorithm.

Block Structure :

Unit 1 : Introduction to Data Structures

Unit 2 : Arrays

Unit 3 : Representations of Arrays in Memory

DATA STRUCTURES AND
ARRAYS

1

UNIT STRUCTURE

1.0 Learning Objectives

1.1 Introduction

1.2 Data, Information

1.2.1 Data

1.2.2 Information

1.3 Data Structure

1.3.1 Definition

1.3.2 Primitive and Non–Primitive Data Type

1.3.3 Types of Data Structures

1.3.4 Data Structure Operations

1.4 Primitive and Composite Data Structure

1.5 Time and Space Complexity of Algorithms

1.5.1 Time Complexity

1.5.2 Space Complexity

1.6 Let Us Sum Up

1.7 Suggested Answer for Check Your Progress

1.8 Glossary

1.9 Assignment

1.10 Activities

1.11 Case Study

1.13 Further Readings

1.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand the definition of Data, Information and Knowledge.

• Understand the concept and need of Data Structures.

• Understand the concept of Private and Composite Data Structures.

• Understand the Time and Space complexity of Algorithms.

1.1 Introduction :

Data Structures are one of the important fields in computer science that
refers to different methods of storing and retrieving of data in the computer
memory. In this Unit, we will be discussing about the concept of data, information
and knowledge, the concept and need of data structures, difference between
primitive and composite data structures and time and space complexity of
algorithms.

INTRODUCTION TO DATA
STRUCTURES

Unit

01

2

Data Structure Using C 1.2 Data, Information :

Data

1.2.1 Data :
Data is considered as one of the crucial component for any organization

because many decisions are taken based on the data. Hence it is essential to
know what data and information is. Data is in raw pieces or parts when it
is processed as per the requirement of the user it becomes information. Data
is the lowest level of abstraction from which meaningful information and
knowledge are derived. So if data is wrong then the information or knowledge
which is derived from the data would be wrong and ultimately the decisions
which are taken based on this knowledge would be wrong. Hence data should
be accurately collected and efficiently represented into computer memory for
future use. For example, a customer after making his purchase, needs a bill
to make the payment. The bill has a variety of data such as item, name, quantity,
price, taxes if any and total amount. The data can be in the form of number,
character, text etc. All these data are collected and processed as one compiled
bill that becomes the information to a customer and the cashier shall now accept
the bill amount.

1.2.2 Information :
As discussed in the above paragraph the term information is a collection

of data from various corners that is processed in a meaningful form as per
the requirement of the user. In simple terms information is a processed data
in meaningful form. It has specific meaning. A collection of information in
an organized manner which is stored and available to use as required is known
as knowledge. The main difference in information and knowledge is in the
level of abstraction being considered. Data is the very first level of abstraction
followed by information being the next and knowledge being the final and
highest level.

Let's understand the concept of knowledge with an example. Following
table shows the result of student X in university exam.

BCA–201 BCA–202 BCA–203 BCA–204 BCA–205

75 80 55 91 60

Student X is passing with 72.20%. His result is 10% more than previous
semester.

Here we have compared the result of Student X with his previous semester
result and extract knowledge that his result is 10% more than his previous
semester result.

3

Introduction to
Data Structures

 Check Your Progress – 1 :
1. What is data ? Explain with an example.

2. What is information ? Explain with an example.

...

...

...

...

...

1.3 Data Structures :

We know that the processor can only process the data that is available
in the main memory. If the data to be processed is not available in main memory,
then it has to be transferred from the secondary memory to the main memory.

In order to represent and store data in the main memory we need an
appropriate model to organize data in the main memory. This model is called
a data structure. We can say that data structure is special way of organization
and management of the data. Data structure provides the functionality to manage
the data and information.

1.3.1 Definition :
As we discussed in the previous topic that data is important and hence

should be stored in the memory effectively. Data Structure is a way of storing
and retrieving the data into computer memory effectively. In simple words it
is an organization of data in to computer memory. Data structures provide the
way to manage data efficiently as per our requirement. Different Data structures
are designed for data arrangement to meet a specific purpose. This arrangement
helps to access data efficiently with minimum efforts. For example to represent
hierarchical data (parent–child relationship) tree data structure is appropriate.
To represent map data, graph data structure is good choice.

1.3.2 Primitive and Non–Primitive Data Type :
(1) Primitive Data Type : These are also called fundamental data types.

These data types are not composed of other data types. Example : int
float, char, double.

(2) Non–Primitive Data Type : These are composed of primitive data types.
Sometimes it is called user–defined data type, such as, arrays, structures,
enumeration, union etc.

1.3.3 Types of Data Structures :
Data structures can be classified into the following two types :

(1) Simple Data Structures : Simple Data Structures are built from Basic
or Primitive data types. They are built using int, char or real data types.
Arrays are example of simple data structures. To form an array we use
int, char or real types.

(2) Compound Data Structures : These data structure are formed after
combining simple data structures in various ways and can be classified
as :

4

Data Structure Using C (i) Linear Data Structures : All elements in these structures form
a sequence and are hence, single level data structures. Data or items
are stored in linear fashion. Insertion, deletion and traversal are
done in sequential or linear manner. We can access the data in
linear way. For example Stack, Queue and Linked List are linear
data structures.

(ii) Non–Linear Data Structure : These are multilevel data structures.
Data is not represented as well as processed in sequential manner.
Elements are stored in non–linear fashion. For example, Tree and
Graph data structures.

Types of Data Structures

1.3.4 Data Structure Operations :
The data present in our data structure is processed by means of certain

operations. Generally, the particular data structure which is chosen depends
largely on the frequency on which specific operations are performed on it. Given
below are the major operations which are performed on the data :

(1) Insertion – Addition of a new record to the structure.

(2) Deleting – Deletion of a record from the structure.

(3) Searching – Finding the element with its location from the data structure.

(4) Traversing – Accessing each record exactly once, so that all the items
in the structure are visited.

(5) Sorting – Arranging the elements in proper order.

 Check Your Progress – 2 :
1. What are linear and non–linear data structures ?

...

...

...

...

...

1.4 Primitive and Composite Data Structure :

These are also called fundamental data types. These are not composed
of other data types, that is, int float, char, double.

Data Structure

Simple Data Structures Compound Data Structures

Array Structures Linear Data
Structures

Non Linear
Data Structures

Stack Linked ListQueue Tree Graph

5

Introduction to
Data Structures

Primitive data is a data which is simple, single, and atomic and cannot
be decomposed further.

e.g Integer, character, floating point. The examples include roll no. of
students or seat no. of the candidate for the examination or bill no. of a
customer, percentage of student etc.

Composite data type is derived from the primitive data type, slightly
complex than primitive data. It can be similar or of a different type.

e.g Array, union, record. To represent changes in the temperature after
every hour in the atmosphere or a change in the velocity speed of a car when
it starts to when it is running on the road at various speeds such data types
are used.

 Check Your Progress – 3 :
1. What is a data structure ? Give the types of data structure.

...

...

...

...

...

2. What is the difference between a primitive and composite data structure ?
Explain with an example.

...

...

...

...

...

1.5 Time and Space Complexity of Algorithms :

An algorithm is a well–defined sequence of steps to solve a particular
problem. There may be multiple algorithms to solve one problem. Choosing
the best algorithm out of these is our topic of interest. The algorithm which
required less storage and less execution time is considered as an efficient
algorithm.

Efficiency or complexity of an algorithm is related with the number of
steps (time complexity) or storage locations (space complexity). Each of the
algorithms involves a particular data structure. And we cannot use the data
structure of the most efficient algorithm, as it totally depends on the type of
data and frequency of data operations. Efficiency of an algorithm is majored
in terms of time and space requirements.

1.5.1 Time Complexity :
In simple terms time complexity is majored as time required executing

the program. Running time of the program as a function of size of input is
known as time complexity. It is the number of operations the algorithm performs
to complete its task with respect to the input size. It is important to consider
the time complexity while selecting the best algorithms because the algorithm
should take less execution time to complete the task.

6

Data Structure Using C 1.5.2 Space Complexity :
While we are considering the time complexity for choosing the efficient

algorithm, it is essential to look at the memory requirements (space) of the
algorithm.

During the program execution, the total amount of computer memory
required as a function of input size is known as space complexity. These memory
requirements can be of direct requirements such as memory required to store
variable and arrays or indirect requirements such as memory required for
backend process like managing stack for recursion process.

The analysis of algorithms is a major and critical task. There must be
some criteria to measure the efficiency of the algorithms. Now, suppose A is
an algorithm and n is the size of input data then, the time is measured by
counting the number of key operations or comparisons and the space is
measured by counting the total amount of memory required by the algorithm
during the execution.

The complexity of an algorithm A is the function f(n) which gives the
total running time and storage space requirement of the algorithm in the form
of input data of size n.

Three cases which are usually investigated in the complexity theory are :

1. Best Case : The minimum value of f(n).

2. Average case : The expected value of f(n).

3. Worst Case : The maximum value of f(n) for any possible input.

Let us understands the concept of best, average and worst case with an
example. Suppose you want to search an element form any array using sequential
search then the function would be like :

Search(int a[5], int x)

{

int i;

for(i=0;i<5;i++)

{

if(a[i] == x) // it compares the value X with each array element

return 1;

}

return 0;

}

Above function search will compare the search element x with each
element of an array and if its finds the element then it returns 1 else return 0.

Now consider the time required to find an element from this array. Let's
assume that each comparison takes 1 second of time.

Best Case : It is the case which has minimum execution time. Suppose
the array elements are 10,20,30,40 and 50 and you want to search 10 then
it takes only one comparison to find the element. Hence it takes only 1 second.
It is Best Case for this searching algorithm.

7

Introduction to
Data Structures

Worst Case : It is a case where maximum time is required to perform
the task. For example in the above array we want to search 100. Now the
value 100 is not available in the array but to confirm that, it performs 5
comparisons. So it takes 5 seconds which is maximum and hence this case
is considered as worst case for this searching algorithm.

Average Case : Average case is calculated by finding the average time
required to search the element for all possible inputs. If we have n inputs then
find the sum of running time for n inputs and divided this sum with n.

 Check Your Progress – 4 :
1. Define what are complexity and the types of complexity.

...

...

...

...

...

2. What is the difference between space and time complexity ?

...

...

...

...

...

3. Which of the following data structure is nonlinear data structure ?

(A) Array (B) Queue (C) Tree (D) Stack

4. Find the odd one out.

(A) int (B) char (C) float (D) array

5. Which of the following is the lowest level of abstraction ?

(A) Data (B) Information (C) Knowledge (D) Decision

6. Which of the following criteria's are considered while majoring the
efficiency of an algorithm ?

(A) Memory (B) Time

(C) Both A and B (D) None of the above

7. Suppose A is an array having size N where all the elements are sorted
in descending order. The time required to sort this array in ascending
order with sorting algorithm would be considered as :

(A) Best Case (B) Average Case

(C) Worst Case (D) None of the above.

1.6 Let Us Sum Up :

Data is the lowest level of abstraction from which meaningful information
and knowledge are derived. When data is processed and has some meaning
it becomes information. Based on this information knowledge is derived and
based on these knowledge, decisions are taken. There are mainly two type of
data such as Primitive data type and Non–primitive data type.

8

Data Structure Using C Meanwhile we have understood about two types of data structures those
are Simple data structures and Compound data structures : Simple data structure
can be combined in various ways to form compound data structures further
has classification having two types as Linear Data structures and Non–Linear
Data Structure. If data is represented and operated in linear fashion then it
is called linear data structure. Ex. Stack, Queue, Linked List. If data is not
stored and operated in linear fashion then it is called nonlinear data structure.
Ex. Tree and Graph.

Further we have studied and understood about algorithm which is nothing
but list of steps for solving a particular problem. Algorithm has got complexity
and hence efficiency or complexity of an algorithm is stated as a function
relating the input length to the number of steps (time complexity) or storage
locations (space complexity). Complexity of Algorithms can be majored in terms
of Time Complexity and Space Complexity,

Finally we have also understood with an example about three types of
analysis for an algorithm those are 1. Worst Case Running Time, 2. Average
Case Running Time 3. Best Case Running Time.

1.7 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Sec 1.2

 Check Your Progress 2 :

See Sec 1.3

 Check Your Progress 3 :

See Sec 1.4

 Check Your Progress 4 :

1. See Sec 1.5 2. See Sec 1.5 3. C 4. D

5. A 6. C 7. C

1.8 Glossary :

1. Data Structure – Data Structure is a way of storing and retrieving the
data into computer memory effectively. In simple words it is an organization
of data in to computer memory.

2. Primitive Data Structures – These are also called fundamental data
types. These data types are not composed of any other data types.
Example : int, float, char, double.

3. Compound Data Structures – Simple data structures can be combined
in various ways to form compound data structures.

4. Algorithm – It is a sequence of steps to solve a particular problem.

5. Average Case Running Time – It is an estimate of the running time
of an algorithm for an average input.

6. Time Complexity – Running time of the program as a function of size
of input is time complexity.

7. Space Complexity – During the program execution, the total amount
of computer memory required as a function of input size is known as
space complexity.

9

Introduction to
Data Structures

1.9 Assignment :

Gather more information about primitive and non–primitive data types
and make a chart by representing them along with their sizes in terms of memory
requirements and ranges.

1.10 Activities :

Identify the data required to print a patient bill at the hospital and classify
data accordingly.

1.11 Case Study :

Find out which data structures are used in the following area and how
they are used ?

1. Recursion

2. Computer File System

3. Computer Networking

1.12 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahni.

4. Data Structures : An Advanced Approach Using 'C' by Esakov and Weises.

5. An Introduction to Data Structures with Applications by Tremblay &
Sorenson.

10

UNIT STRUCTURE

2.0 Learning Objectives

2.1 Introduction

2.2 Characteristics of an Array

2.3 Definition of an Array

2.3.1 Declaration of Arrays

2.3.2 Initialization of Arrays

2.3.3 Accessing Elements of an Array

2.3.4 Passing Array Elements to a Function

2.4 Definition of Multidimensional Array

2.4.1 Declaration of Two Dimensional Arrays

2.4.2 Initializing of Two Dimensional Arrays

2.4.3 Accessing elements of Two Dimensional Arrays

2.5 Sparse Arrays

2.5.1 Representation of Sparse Arrays

2.5.2 Array Representation

2.5.3 Linked List Representation

2.6 Let Us Sum Up

2.7 Suggested Answer for Check Your Progress

2.8 Glossary

2.9 Assignment

2.10 Activities

2.11 Case Study

2.12 Further Readings

2.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand the concept and need of Arrays.

• Understand the compile and runtime initialization of Arrays.

• Understand the concept of Sparse Arrays.

2.1 Introduction :

Till now you have studied that if you want to perform a certain set of
operations on a single number or a group of numbers, you need to store them
in variables. But if the numbers to be stored in variables are more, suppose,
50 numbers are there which have to be stored in 50 separate different variables,
now, managing 50 separate variables in a single program will make your

ARRAY
Unit

02

11

Arrayprogram lengthy and complicated. So, in order to reduce the number of variables
from a program, the concept of arrays was introduced. This chapter will
introduce the concept and characteristics of Arrays, the method of implementation
of Arrays and Array representation.

2.2 Characteristics of an Array :

An array is nothing but a collection of elements of the same data type
that share a common name. Array cannot have data of mixed data types. ie
we cannot store name and marks of students in same array. If we declare array
as int (Integer) type then all the elements of that array must be of integer
types. Same array cannot have a mixture of different data types as its elements.

Array elements are stored in continuous memory locations. Same size
of continuous memory blocks are allocated to array because all the elements
of an array are of same data type. One block of memory is occupied by each
element of an array. It is important to note down that the size of memory blocks
allocated to an array will be depending on the data type of any array.

For example if we declare array of type int with size 5 then total 10
bytes of continuous memory block will be assigned to this array. Where in
each 2 bytes of block have one element of an array to be stored. A variable
having int data type occupies 2 bytes of memory in C language hence to store
5 int elements 10 bytes of memory is required. Similarly if an array is of float
data type with size 5 then 20 bytes will be allocated because float variable
requires 4 bytes of memory in C language.

The declaration of an array involves (include) three important information.
The data type of an array, name of array and the size of array (maximum number
of elements to be stored in array).

Examples –

int marks[100]; // Declaration of An array

marks[9] = 55; // Assigning value 55 to the 10th element of an array.

Here a marks is the name of an array. int is a data type of this array
which indicates that this array can store only integer values and 100 indicates
the size of an array means we can store 100 integer values in this array.

 Array Characteristics :

1. Array is a collection of elements of same data type.

2. All the elements of an array share the common name i.e. name of an
array.

3. Array elements are stored in continuous memory locations.

4. An array index begins with 0 and ends with index(n–1) where n represents
the size of array.

 Check Your Progress – 1 :
1. Define an array.

...

...

...

...

...

12

Data Structure Using C 2. What are the characteristics of an array ?

...

...

...

...

...

2.3 Definition of an Array :

An array is a collection of homogeneous cells in the computer memory.
You can also say that it is a group of similar types of data items which are
referenced under a single name. Arrays allow you to store a collection of
elements of the same data type. For example marks of 100 students, temperature
of 10 cities, bills of 100 customers etc.

You can imagine an array in the computer's memory as a row of
consecutive memory blocks, each of which can store a single data item, known
as an element. Now suppose you want to store the roll nos. and percentage
of 50 students, you need to declare 2 separate arrays for that, as the roll nos.
will be of integer data type and percentage will be of float data type.

2.3.1 Declaration of Arrays :
Array must be declared first before they are used in the program. The

syntax to declare a single dimensional array is :

Data–type array–name [size];

– The Data–type specifies the type of the elements that will be stored in
this array.

– Array–name refers the name of the array which will be used to access
the elements of this array.

– size indicates the maximum number of elements that can be stored in
this array

Example :

int marks[10];

The above statement declares marks to be an array containing 10 integer
elements. To access the elements of this array, an index value is used which
is called array index. In C language, array index starts with 0 and the last
index would be size–1. Here for array marks the valid array indexes are 0
to 9. marks[0] refers the marks of first student. marks[9] refers the marks of
10th student.

To assign the element to this array we can use assignment operator (=).
Left side of the assignment operator should be array name with index value
and at the right side of the assignment operator should be the array element.

For Example :

marks[0] = 60;

The value 60 is stored in the 0th index of the array marks. By changing
the index value we can assign the elements to this array.

13

Array2.3.2 Initialization of Arrays :
There are different ways to initialize an array in C language. Array can

be initialized at compile time and runtime. When we assign the value to the
array at the time of declaration then it is called compile time initialization.
When you assign the value to the array at runtime then that initialization is
called runtime initialization.

There are different ways to initialize single dimensional array at compile
time.

The general form of initialization of arrays is :

Data–type array_name[size]={list of values};

The values in the list are separated by commas, for example the statement

int marks[3]={70,80,90};

Will declare the array of size 3 and will assign 10, 20 and 30 values
as the first, second and third element of this array. Index wise storage of these
elements would be like :

Array Index Marks (Array Elements)

marks[0] 70

marks[1] 80

marks[2] 90

Representation of Array Elements Index wise

The following statement initializes all the elements of an array with 0
values.

int a[3] ={0};

If the number of values in the list is less than the size of an array, then
only that many elements are initialized. The remaining elements will be set
to zero automatically. For example following statement only initializes first 3
elements of an array with values 10, 20 & 30. The values of last two elements
will be initialized as 0.

int a[5] = {10,20,30};

Array size may be omitted at the time of the declaration of an array.
In such cases the compiler allocates space to such array based on the number
of initialized elements. For example, the statement

int a[]={10,20,30,40};

will declare the array of size 4. This approach only works when we
initialize every element in the array at the time of declaration.

The issues with array declarations are :

– The size must be known in advance.

– Wastage of memory. If we declare array of type integer with size 5 then
10 bytes of memory will be allocated to this array. Now if we store
only 3 elements to this array than 6 bytes of memory will be utilized
and the remaining 4 bytes will remain unutilized. This is wastage of
memory because those 4 bytes of memory will not be assigned to any
program.

14

Data Structure Using C 2.3.3 Accessing Elements of an Array :
Once the array is declared, the individual elements can be referred by

their subscripts, that is, the number specified in the bracket with the array name.
This subscript specifies the position of the element in the array. For example
to access the first element of an array we should write :

int a[3] = {10,20,30};

printf("%d",a[0]); // a[0] means the first element.

The printf statement will print the first element of any array which is
10.

The valid indexes for the above array are 0, 1 and 2. a[0] represents
first element, a[1] represents second and a[2] represents third element.

Given below is a small C program code which will ask the user to enter
the values of array for the subsequent positions and keep on storing them at
those specific positions. It also access all the elements one by one and print
its.

void main()

{

int a[5], i;

for(i=0;i<5;i++)

{

printf ("\nEnter %d element of an array",i+1) :

scanf ("%d", &a[i]);

}

for(i=0;i<5;i++)

{

printf ("\n %d ", a[i]);

}

}

The first for loop will ask user to enter 5 values of an array and assign
these values to the array in the index 0 to 4. Initially the value of i is 0,
which will let the value entered by the user to store at 0th position, making
it the first element of the array.

In for loop, scanf () statement is used, with the "ampersand" (&) operator.
The purpose of using it is to pass the address of the particular array element
to the scanf ().

In the second for loop, it access and prints the array elements one by
one.

/*Program to count the even and odd numbers from array*/

#include<stdio.h>

void main ()

{

int a[10],even=0,odd=0,i;

for(i=0; i<10;i++)

15

Array{

printf("Enter the element %d of the array\n",i+1);

scanf("%d", &a[i]);

}

for(i=0; i<10; i++)

{

if(a[i] % 2 == 0) // it will check that the number is even ?

even=even+1;

 if (a[i] %2 !=0) // will check for odd number

odd=odd+1;

}

printf ("\nTotal no. of even nos. are %d", even);

printf ("\nTotal no. of odd nos. are %d", odd);

}

The above program performs modulo operation on each element of any
array with value 2 and check. If the reminder value is 0 means the number
is even else the number is odd. Every time when it finds even or odd number
it increase the value of even or odd variables which are here working as a
counter variables. At last it prints the value of even and odd variables.

/* Program to find the sum of elements of an arrays*/

#include<stdio.h>

#include<conio.h>

void main()

{

int a[5]={1,2,3,4,5},i,sum=0;

for(i=0;i<=4;i++)

{

sum=sum + a[i];

}

printf("Sum of the elements of an array = %d", sum);

}

2.3.4 Passing Array Elements to a Function :
We can easily pass the array elements to a user defined function by two

ways. Call by value and Call by reference. In call by value method, we pass
values of array to the function, whereas in call by reference method, the
addresses of array elements are passed to the function instead of values. The
call by value method is illustrated below :

void main()

{

int i=0,a[5];

for(i=0;i<5;i++)

16

Data Structure Using C {

printf("Enter elements\n");

scanf("%d",&a[i]);

}

for(i=0;i<5;i++)

{

display(a[i]);

}

}

void display(int v)

{

printf("%d",v);

}

In the above program, we are passing an individual array element as
value to display() function and printing it in the function display(). Here we
are passing single value at a time at every function call and hence in function
display() we have declare only single integer variable v. Every time variable
v is assigned the value of an array and it is printed using function display.
If we change the value of variable v then it will not affect the original array
elements because here copy of the element is passed to the function.

The second approach is to pass the address of the element to the function.
Let's understand the call by reference concept with following example.

void main()

{

int a[5],i=0;

for(i=0;i<5;i++)

{

printf("Enter elements\n");

scanf("%d",&a[i]);

}

for(i=0;i<5;i++)

{

display(&a[i]);

}

void display(int *p)

{

printf("%d",*p);

}

In the above program we are passing the memory address of each of
the array element to the function. As we know that in C language pointer
variable is used to store the address of the variable. So in the display function
we have declared variable p as a pointer variable. * is used to declare pointer

17

Arrayvariable. Every time the function display () receives the address of the array
element and prints its value using pointer variable p. If you change the value
using pointer variable in the function display () then it will affect the original
value of array and the array value will be updated with the new value.

 Check Your Progress – 2 :
1. How can you initialize single dimensional array ?

...

...

...

2.4 Definition of Multidimensional Array :

An array having more than one dimensions are called multidimensional
array. Two dimensional arrays are the arrays having two dimensions. If we
want to store the marks of ten students for one subject then we can use single
dimension array but if you want to store marks of 3 students for six subjects
then in that case you need to declare 2D array. 2D array can be thought as
a matrix having rows and columns. The elements of 2D array are arranged
in rows and columns. To access the elements of 2D array we need two indexes
: row index and column index.

2.4.1 Declaration of Two Dimensional Arrays :
Two dimensional arrays are declared as :

Datatype array_name[rowsize][columnsize];

int marks[3][3];

Above array is 2D having row and column size equals 3. We can store
marks of 3 students of 3 subjects into this array.

The valid index values for this 2D array are :

marks[0][0], marks[0][1], marks[0][2],

marks[1][0], marks[1][1], marks[1][2],

marks[2][0], marks[2][1], marks[2][2].

Take a note that the row and column indexes are always starts with 0
in C language.

2.4.2 Initializing of Two Dimensional Arrays :
Two dimensional arrays can be initialised at compile time and runtime.

If we assign the elements of 2D array at the time of declaration than it is
called compile time initialization and if we assign the elements at run time
then it is called the run time initialization.

 Compile Time Initialization :

int marks[3][3]={50,60,70,55,65,75,44,66,77};

The above array will looks like

Col0 Col1 Col2

Row0 50 60 70

Row1 55 65 75

Row2 44 66 77

18

Data Structure Using C marks[0][0]=50 denotes the marks of first student for first subject.

marks[1][2]=75 denotes the marks of second student in third subject.

marks[2][1]=66 denotes the marks of third student in second subject.

 Runtime Initialization :

In runtime initialization of two dimensional arrays, the values are initialized
during the execution of the program. The advantage of runtime initialization
is that we can supply different values every time we run the program and
ultimately we can test the logic with different sets of inputs.

The following code initializes 2D array runtime.

void main()

{

int marks[3][3], i, j;

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

printf("\n Enter the elements of an Array");

scanf("%d",&a[i][j]);

}

}

}

Above program will ask to enter array elements to users when they run
the program. Users can input different set of elements every time they run
the program.

2.4.3 Accessing Elements of Two Dimensional Arrays :
Once the array is declared, the individual elements can be referred by

their row and column subscripts, that is, the number specified in the brackets
with the array name. This row and column subscripts specifies the position
of the element in the array in terms of rows and columns.

Following code in C language is used to read the array elements run
time and print it.

#include<stdio.h>

#include<conio.h>

void main()

{

int marks[3][3];

int i,j;

clrscr();

// loops to read the value of array from user at runtime.

for(i=0;i<=2;i++)

19

Array{

for(j=0;j<=2;j++)

{

printf("enter marks");

scanf("%d",&marks[i][j]);

}

}

// code to access each element of array and print it.

for(i=0;i<=2;i++)

{

for(j=0;j<=2;j++)

{

printf("%d ",marks[i][j]);

}

printf("\n");

}

}

Consider one more example. We want to store marks of 3 students of
3 subjects and need to print total for each student. We can do it with 2D array
easily.

/ C Program to calculate the total of students marks /

#include<stdio.h>

#include<conio.h>

void main()

{

int a[3][3],i,j,sum[3]={0};

clrscr();

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

{

printf("\n Enter the marks of student [%d] of subject

[%d] :–>",i+1,j+1);

scanf("%d",&a[i][j]);

}

}

for(i=0;i<3;i++)

{

for(j=0;j<3;j++)

20

Data Structure Using C {

sum[i] = sum[i] + a[i][j];

}

}

for(i=0;i<3;i++)

printf("\n Total of student %d is = %d",i+1,sum[i]);

}

Above program first read the marks of 3 students for 3 subjects. Here
we need to calculate the total of each student and store the total marks. Students
are 3 so need to have 3 variables. Instead of declaring 3 different variables
we have declared a single dimensional array called sum with size 3 which
is used to store the total of each student. It stores the total of first student
in sum[0], total of second student in sum[1] and total of third student in sum[2].
Finally we have printed the values of sum array.

 Check Your Progress – 3 :
1. How to initialize 2D array compile time and runtime ?

...

...

...

...

...

2.5 Sparse Arrays :

A sparse array is simply an array in which most of its elements are zero.
An m x n matrix is called a sparse matrix if most of its elements are zero.
The advantage of sparse array is that it requires lesser memory storage compare
to normal array because only non–zero elements are going to be stored in the
memory. We can also save computational time by logically designing a data
structure with an intension to traverse only non–zero elements of the array.

2.5.1 Representation of Sparse Arrays :
If we represent sparse array using two dimensional arrays than it is not

efficient storage because we are wasting memory storage by storing zero values.
So the effective way should be of storing non zero values with triples {Row,
Column, Value}. There are two different ways to represent sparse arrays
efficiently. These are :

1. Array Representation

2. Linked List Representation

2.5.2 Array Representation :
2D array is used to represent sparse array (also called sparse matrix)

in which we consider only non–zero elements of array along with their row
and column indexes. In this type of representation the first row basically stores
the information such as total number of rows, columns and total number of
non–zero elements in sparse matrix.

21

ArrayLet's understand the array representation using an example. Following
table is a 5 x 6 sparse matrix having 6 non–zero values and 24 zero values.

C0 C1 C2 C3 C4 C5

R0 0 0 0 2 0 0

R1 0 0 1 0 0 5

R2 0 4 0 0 0 0

R3 3 0 0 0 0 0

R4 0 0 0 0 7 0

5 x 6 Sparse Matrix

2D Array Representation of above matrix is as below :

Rows Columns Values

5 6 6

0 3 2

1 2 1

1 5 5

2 1 4

3 0 3

4 4 7

2D Array Representation of Sparse Matrix

In the above 2D array representation, first row indicates that there are
total 5 rows, 6 columns and 6 non–zero elements are there in sparse array.
Second and onwards rows represents the row & column indexes of the non–
zero elements along with the non–zero values. For example the values 0, 3,
2 indicate that the non–zero element 2 is located in 0th row and 3rd column.
By representing only non–zero elements in the memory we are saving storage
space and increasing computational time.

2.5.3 Linked List Representation :
In Linked List representation of Sparse Matrix, Linked List is used to

represent the data. In linked list representation two kinds of node structures
are used : Header Node and Element Node. Header nodes are used for rows
and columns identification and element node represents the data. The node
structures of header and element nodes are as below :

 Index Value Row Column Value

Down Right Down/Up Right

Header Node Element Node

In header node index value represents either row or column number.
Down and Right are the pointer which are used to store the addresses of adjacent
nodes in rows and columns.

In element node row represents the row number of non–zero element,
Column represents column number of non–zero element and value is used to
store non–zero value. Down/Up is the pointers which are used to store the

22

Data Structure Using C address of the next element node in the same column. Similarly Right is the
pointer which is used to store the address on the next element node in the
same row. Following figure shows the linked list representation of the sparse
matrix we have taken as an example.

Link–List Representation of Sparse Matrix

In the above figure nodes with values only as 0, 1, 2, 3, 4, 5 are header
nodes showing corresponding row or column number. All other nodes having
five fields are element nodes which are used to represent non–zero elements
of the matrix. The first node in the upper left corner having values as 5, 6,
6 is used to represent the abstract information of the sparse matrix. We can
see that all the nodes are connected with each other in circular fashion so
accessing of any non–zero element is very easy.

 Check Your Progress – 4 :
1. Define sparse array.

...

...

...

2. Explain linked list representation of sparse array with example

...

...

...

3. Which of the following is not true for array in C language ?

(A) It must be declared before to use it.

(B) It can be initialised at compile time and run time.

(C) Size must be known in advance.

(D) We can store elements of different data types.

23

Array4. Which of the following is correct way to initialize array in C language ?

(A) int a[5]; (B) int a[5]={1,2,3};

(C) int a[]={1,2,3}; (D) All of above.

5. The array where most of its elements are zero is called ?

(A) Sparse Array (B) Multi–Dimensional Array

(C) Static (D) Dynamic array

6. What will be the output of following code ?

int a[5]={1,2,3,4};

printf("%d", a[4]);

(A) 4 (B) Error (C) 0 (D) Garbage Value

7. Which of the following is not the valid index for the following array ?

float temperature[3][4];

(A) temperature[0][3] (B) temperature[0][4]

(C) temperature[1][0] (D) temperature[2][2]

2.6 Let Us Sum Up :

In this unit we have understood the concept of array which is a collection
of homogeneous cells in computers memory. You can also say that array is
a collection of elements of same type which are referenced under a single
common name. Arrays allow us to store a collection of elements of the same
data type. You can imagine an array in the computer's memory as a row of
consecutive memory blocks, each of which can store a single data item of same
type, known as an element. suppose you want to store roll no. and percentages
of 50 students, you need to declare 2 separate arrays for that, as the roll nos.
will be of integer data type and percentages will be of float data type. Like
variables, arrays are also must be declared before they are used in the program.
The syntax for single dimensional array declaration is :

Data type array-name [size];

Further we have understood that there exists type of array like One or
Single dimension array and two dimensional arrays or multidimensional arrays.
In two-dimensional array - Unlike single dimensional array, has two indexes
or subscripts. One subscript denotes the row number & the other denotes the
column number.

The two dimensional arrays are declared as follows:

data_type array_name[row_size][column_size];

int marks[3][3]; // array to store the marks of 3 students of 3 subjects.

float temperature[10][12]; // array to store the temperature of 10 cities
for 12 months.

We have also understood a kind of array called Sparse array. A sparse
array is simply an array in which most of its elements are zero. An m x n
matrix is called sparse matrix if most of its elements are zero. There are two
ways to represent sparse arrays efficiently those are 1) Array Representation
and 2) Linked list representation.

24

Data Structure Using C 2.7 Suggested Answers for Check Your Progress :

 Check Your Progress 1 :

See Sec 2.1 & 2.2

 Check Your Progress 2 :

See Sec 2.3.

 Check Your Progress 3 :

See Sec 2.4

 Check Your Progress 4 :

1. See Sec 2.5 2. See Sec 2.5 3. D 4. D

5. A 6. C 7. B

2.8 Glossary :

1. Array – An array is a collection of homogeneous cells in the computer's
memory.

2. Sparse Array – A sparse array is simply an array in which most of
its entries are zero. A m x n matrix is called as sparse matrix if most
of its elements are zero.

3. Single Dimensional Array – Single dimensional array or one dimensional
array requires only one index to access an element.

4. Multi–Dimensional Array – Multi–dimensional array can be represented
using a matrix which consists of r rows and c columns.

2.9 Assignment :

Suppose Arr is a linear single dimensional array with n numeric values.
Write a program to find the average AVG of the values in Arr. The arithmetic
mean or average of the values is defined by

AVG = (x1 + x2 + x3 + xn) / n

2.10 Activities :

Write a C program to understand the difference between call by value
and call by reference. What will happen if we pass array to function as an
argument and then change its values in the function ? Will it affect the original
array ? Check practically.

2.11 Case Study :

Take one m × n matrix and Perform following operations on it :

1. Addition of Two Matrices

2. Multiplication of Two Matrices. Find out what are the prerequisites for
performing multiplication of two matrices.

3. Transpose of the Matrix

25

Array2.12 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahni.

4. Data Structures : An Advanced Approach Using 'C' by Esakov and Weises.

5. An Introduction to Data Structures with Applications by Tremblay and
Sorenson.

26

UNIT STRUCTURE

3.0 Learning Objectives

3.1 Introduction

3.2 Representations of One Dimensional Array in Memory

3.3 Address Calculation for One Dimensional Array

3.4 Representations of Two Dimensional Arrays in Memory

3.4.1 Row Major Order Representation

3.4.2 Column Major Order Representation

3.5 Address Calculation for Two Dimensional Array

3.6 Let Us Sum Up

3.7 Suggested Answer for Check Your Progress

3.8 Glossary

3.9 Assignment

3.10 Activities

3.11 Case Study

3.12 Further Readings

3.0 Learning Objectives :

After learning this unit, you will be able to understand :

• How one dimensional arrays are represented in memory

• Row and Column Major order Representation of 2D Array

• How memory addresses are computed for array elements.

3.1 Introduction :

In previous units we have learned about single and multidimensional
arrays. Now it is important to understand how array elements are stored into
main memory and how these elements are accessed. In this chapter we will
learn the storage representation of Single and Two dimensional arrays. We will
also learn to calculate the memory address of an array element based on the
given base address.

3.2 Representations of One Dimensional Array in Memory :

As we know that whenever we declare a variable or an array, it is stored
in the main memory. If it is a simple int variable then in C language, two
bytes of empty memory block is assigned to this variable to store the value
of variable. Similarly if we want to store the values of arrays then multiple
memory address are assigned because in array we are going to store multiple
values. One Dimensional or Single Dimensional Arrays are stored in continuous
block of same size memory addresses. Arrays elements are always stored in
continue memory addresses.

REPRESENTATIONS OF
ARRAYS IN MEMORY

Unit

03

27

Representations of
Arrays in Memory

When one dimensional array is declared in the program, compiler first
calculate the memory requirement of that array based on the number of elements
and then search in the memory for the availability of required memory block
and based on that it assigns that free memory block to the array.

Let's understand the memory representations of One Dimensional Array
with an Example.

Suppose we want to store the marks of 5 students. Now these marks
are of integer types so we need to declare a one dimensional array with int
type like :

int marks[5]={40,84,67,55,75};

We have declared an array called marks and assign marks of 5 students
into it. As we know that these five elements are accessed using array index
as marks[0],marks[1] and so on. These marks are represented as :

Array Index Marks (Array Elements)

marks[0] 40

marks[1] 84

marks[2] 67

marks[3] 55

marks[4] 75

The marks of first student is stored in marks[0]. The marks of second
student is stored in marks[1] and so on. When this array is declared, program
calculates the total memory to store all the elements of this array. In C language,
2 bytes are required to store single integer value. Here in our example we
are going to store 5 integer values (marks) so the total memory requirements
for this array is 2*5 ie 10 bytes. So compiler will find the free block of 10
continuous bytes memory and assign that block to this array. The Storage
representation will looks like :

Array Index Marks Memory Addresses

marks[0] 40 2000 Base Address

marks[1] 84 2002

marks[2] 67 2004

marks[3] 55 2006

marks[4] 75 2008

The array marks has assigned the block of memory starting from memory
address 2000 to 2009. These memory addresses are nothing but the number
which is assigned to each byte in a computer's memory that is used by CPU
to track where data and instructions are stored in RAM. These numbers
represents the single byte of memory storage. So these 10 bytes of memory
block is assigned to array marks to store its 5 elements. These elements are
stored as :

• 40 is stored at memory address 2000 & 2001 (2 Bytes due to integer
values)

28

Data Structure Using C • 84 is stored at memory address 2002 & 2003

• 67 is stored at memory address 2004 & 2005

• 55 is stored at memory address 2006 & 2007

• 75 is stored at memory address 2008 & 2009

Address of the first element of an array is called as base address, using
this base address we can calculate the subsequent address of an array. If you
know the base address then you can easily calculate the memory address of
any element of that array because we know that array elements are stored in
continuous memory addresses.

3.3 Address Calculation for One Dimensional Array :

In previous topic we have learned that how single dimensional arrays
are stored in memory. Now let's take some examples to calculate the memory
addresses of array elements.

Address calculation in a single dimensional array :

Example, Suppose that int marks[10] is declared and its first element
is stored at address 1000. Calculate the address of 4th element of an array,
index of array starts from 0.

To calculate the address of any elements of an array, following details
are required :

• Base address or the address of the first element of an array

• Array index of the elements for which we want to find memory address

• Width (Number of bytes required to store individual array element).

– In this example Base address is 1000.

– Array index of the 4th element is 3(Because array index starts with
0 means first elements is stored in marks[0] and so on).

– Width is 2 bytes. As this is integer array so 2 bytes are required
to store each array element.

The equation to calculate the memory address is :

Base address + width * index

So putting all this values we have

Address of 4th element = 1000 + 2 * 3 which is equal to 1000 + 6
equals 1006.

So the 4th element is stored in 1006 memory location.

Example 2 : Suppose the array is int A[5]={10,20,30,40,50}; and base
address is 2000 then at what address the element 30 is stored in memory ?

Here base address = 2000, width=2 bytes and the index of 30 is 2. Hence

Address of 30 is = 2000 + 2 * 2 which is equal to 2004.

So the element 30 is stored at 2004 memory location.

Similarly if the array is storing character values then the width will be
1 because in C language characters are stored in single byte of memory.

If array is storing any floating values like percentage of students or
temperatures of different cities then in that case width will be 4 because float
values require 4 bytes of memory.

29

Representations of
Arrays in Memory

C program to display array elements with its memory address.

#include<stdio.h>

#include<conio.h>

void main()

{

int a[5],i;

clrscr();

for(i=0;i<5;i++)

{

printf("\nEnter the %d element of Array",i+1);

scanf("%d",&a[i]);

}

for(i=0;i<5;i++)

{

printf("\n Array Element %d is stored at %u location", a[i],&a[i]);

}

}

Above program receives 5 integer elements from user, store them in array
and then print each element with its memory address. %u format specifier in
printf is used to display the memory address of the elements of an array.

The output is as :

Array Element 10 is stored at location 5000

Array Element 20 is stored at location 5002

Array Element 30 is stored at location 5004

Array Element 40 is stored at location 5006

Array Element 50 is stored at location 5008

 Check Your Progress – 1 :
1. What is the equation to calculate the memory address of the element

of single dimensional array ?

...

...

...

...

2. If the given array is float percentage [10]; and base address is 3000 then
at which position the 5th element is stored in memory ?

...

...

...

...

30

Data Structure Using C 3.4 Representations of Two Dimensional Arrays in Memory :

Like one dimensional array, elements of two dimensional arrays are also
stored in continuous memory locations. It can be represented in memory using
two ways :

• Row–major Order

• Column–major Order

In computing, row–major order and column–major order representations
describe the methods of storing multidimensional arrays in linear memory
locations.

3.4.1 Row Major Order Representation :
Two Dimensional arrays are represented using rows and columns. Both

rows and column indexes are used to access the element of two dimensional
arrays. The elements of 2D arrays are stored into memory using Row or Column
Major Order. In Row major Ordering, all the rows of 2D arrays are stored
into memory continuously. First it stores the elements of first row into memory
in continuous locations, after that the elements of second rows are stored and
so on. This Row wise representation is called Row major Order Representation.

Let's understands the row major order representation using an example.
Suppose we want to store the marks of 3 students for 3 subjects. Here we
need to store two kinds of information, 3 students and 3 subjects, and hence
to store these values we need to declare a two dimensional array like :

int marks[3][3]={50,60,70,55,65,75,44,66,77};

Here the row size 3 indicates the 3 students and column size 3 indicates
3 subjects. 50 represent the marks of first student in first subject. 75 represent
the marks of second student in third subject and so on. In table structure it
looks as :

Col0 Col1 Col2

Row0 50 60 70

Row1 55 65 75

Row2 44 66 77

The elements are stored as :

marks[0][0] = 50 marks[0][1] = 60 marks[0][2] = 70

marks[1][0] = 55 marks[1][1] = 65 marks[1][2] = 75

marks[2][0] = 44 marks[2][1] = 66 marks[2][2] = 77

The Row major order representation of this array is as follows :

500 502 504 506 508 510 512 514 516

50 60 70 55 65 75 44 66 77

Row0 Row1 Row2

Row major order representations of 2D array

} } } Memory
Locations

Marks

31

Representations of
Arrays in Memory

In the above representations we can see that elements of array are stored
in continuous memory locations starting from 500 to 516. Here memory address
500 is considered as base address. Rows are stored in memory one after another
in continuous memory locations.

3.4.2 Column Major Order Representation :
In column major order representations, the elements of two dimensional

arrays are stored as column wise. First it stores the elements of first column
into memory in continuous locations, after that the elements of second column
are stored and so on. This column wise representation is called column major
order Representation.

The Column major order representation of the above array is as follows :

500 502 504 506 508 510 512 514 516

50 55 44 60 65 66 70 75 77

Col0 Col1 Col2

Column major order representations of 2D array

In the above representations we can see that elements of array are stored
in continuous memory locations starting from 500 to 516 according to column
order. Here memory address 500 is considered as base address. Columns are
stored in memory one after another in continuous memory locations.

3.5 Address Calculation for Two Dimensional Array :

In previous topic we have learned that how two dimensional arrays are
stored in memory in row and column major order. Now let's take some examples
to calculate the memory addresses of array elements in row and column order
representations

Address calculation in Row major order :

Example, we have array int marks[3][3]={50,60,70,55,65,75,44,66,77};

The element 55 is stored at which location in row major order
representations if base address is 500 ?

The equation to calculate the address of the element in row major order
representation is,

Loc(array[i][j])=base(array)+w(n*i+j)

Where i and j represents the ith row and jth column and n is number
of columns in array, w=width.

Here we need to calculates the address of the element 55 which is stored
at marks[1][0] that is second row and first column hence i=1 and j=0.

Base Address = 500, n=3 (Number of columns) and w=2 (Integer elements
require 2 bytes of memory).

Loc(marks[1][0]) = 500+2(3*1+0) = 506

So the element 55 is stored at 506 memory location in row major order
representation. We can confirm the same in figure available in the block 3.4.1

} } } Memory
Locations

Marks

32

Data Structure Using C Address calculation in Column major order :

In previous block we learn to calculate the memory address of the element
in row major order representation. Now let's take one more example to calculate
the address of the element in column major order representation.

Example, we have array int marks[3][3]={50,60,70,55,65,75,44,66,77};

The element 55 is stored at which location in column major order
representations if base address is 500 ?

The equation to calculate the address of the element in column major
order representation is,

Equation : Loc(array[i][j])=base(array)+w(m*j+i)

Where i and j represents the ith row and jth column and m is number
of rows in array, w=width

Here we need to calculates the address of the element 55 which is stored
at marks[1][0] that is second row and first column hence i=1 and j=0.

Base Address = 500, m=3 (Number of rows) and w=2 (Integer elements
require 2 bytes of memory).

Loc(marks[1][0]) = 500+2(3*0+1) = 502

So the element 55 is stored at 502 memory location is column major
order representation. We can confirm it from the figure available in the block
3.4.2

 Check Your Progress – 2 :
1. What are the equations to calculate the memory address of the element

of two dimensional arrays in row and column major order representations ?

...

...

...

...

2. Suppose marks[2][2]={10,20,30,40}; is a 2D array then calculate the
memory address of the element 30 in row and column major order
representation if base address is 5000.

...

...

...

...

3. How many bytes of memory would be assigned to the following array
in C language ?

int marks[3][4];

(A) 14 (B) 12 (C) 24 (D) 48

4. At which position the element 5 is stored in memory for following array
where the bases address is 4000 ?

int arra[5]={1,2,3,4,5};

(A) 4000 (B) 4004 (C) 4005 (D) 4008

33

Representations of
Arrays in Memory

5. How will the following array be represented in memory in column major
order representation ?

int marks[2][3] = {40,50,60,70,80,90};

(A) 40,50,60,70,80,90 (B) 40,70,50,80,60,90

(C) 40,60,80,50,70,90 (D) None of the above.

6. What is the right equation to find memory address of an element in row
major order representation for m × n matrix (m rows and n columns)

(A) Loc(array[i][j])=base(array)+w(n*i+j)

(B) Loc(array[i][j])=base(array)+w(m*i+j)

(C) Loc(array[i][j])=base(array)+w(n*j+i)

(D) Loc(array[i][j])=base(array)+w(m*i+j)

7. How many bytes of memory would be wastage for the following array
if we assign only 7 elements to this array ?

float percentage[10];

(A) 28 (B) 6 (C) 12 (D) 16

3.6 Let Us Sum Up :

This unit has the logical connection with unit 2. In this unit we have
learnt how single and two dimensional arrays are represented in the memory.
We have seen that array elements are stored in continuous memory locations.
If we know the address of the first element of a one dimensional array than
we can calculate the address of any element of array using the equation

Base address + width * index

There are two methods to represent the two dimensional arrays in the
memory : Row and Column major order representations. In row major order
representations, array elements are stored in memory row wise. In column major
order representations the array elements are stored as column wise in memory.
The equations to calculate the memory address of row and column major order
representations are as follows respectively :

Loc(array[i][j])=base(array)+w(n*i+j)

Loc(array[i][j])=base(array)+w(m*j+i)

With these equations we can easily calculate the memory address of 2D
array elements.

3.7 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

1. Base address + width * index 2. 3016

 Check Your Progress 2 :

1. Loc(array[i][j])=base(array)+w(n*i+j)

Loc(array[i][j])=base(array)+w(m*j+i)

2. 5004 in Row major order representations

5002 in Column major order representations

3. C 4. D 5. B 6. A 7. C

34

Data Structure Using C 3.8 Glossary :

1. Row major order – When the elements of the 2 Dimensional arrays
are stored row wise continuously in the memory then that representation
is called Row major order representation.

2. Column major order – When the elements of the 2 Dimensional arrays
are stored column wise continuously in the memory then that representation
is called Column major order representation.

3.9 Assignment :

Store the marks of 10 students of 10 subjects in 2D array. Calculate
the memory addresses of subject wise highest marks entries.

3.10 Activities :

• Prepare the list of programming languages that support the row and
column major order representations.

• Write a C program to display the memory addresses of the 2D array elements.

3.11 Case Study :

Do performance analysis of row and column major order representations
with an example. Find out which one is a better representation in terms of
performance.

3.12 Further Readings :

1. Data Structures Using "C" by Tanenbaum.

2. An Introduction to Data Structures with Applications by Tremblay and
Sorenson.

BLOCK SUMMARY :

In the First Unit collectively what we have studied can be said in this
manner. Data is important for any organization. Data is in raw pieces or parts
when it is processed and as per the requirement of the user it becomes
information. Data is the lowest level of abstraction from which meaningful
information and knowledge are derived. There are mainly two type of data
such as Primitive data type and Non–primitive data type

Meanwhile we have understood about two types of data structures those
are Simple data structures and Compound data structures : Simple data structure
can be combined in various ways to form compound data structures further
has classification having two types as Linear Data structures and Non–Linear
Data Structure.

Further we have studied and understood about algorithm which is nothing
but sequence of steps to solve a particular problem. Algorithms have complexity
and hence efficiency or complexity of an algorithm is stated as a function
relating the input length to the number of steps (time complexity) or storage
locations (space complexity). We have also connected to type of Complexity
of Algorithms. This is referred to Time Complexity and Space Complexity,

Finally we have also understood that there are three types of analysis
for an algorithm 1.Worst Case Running Time, 2.Average Case Running Time
3. Best Case Running Time.

In Unit No. 2 we have understood about an array which is a collection
of homogeneous cells in computers memory. You can also say that array is
a collection of elements of same type which are referenced under a single
common name. Arrays allow us to store a collection of elements of the same
data type. You can imagine an array in the computer's memory as a row of
consecutive memory blocks, each of which can store a single data item of same
type, known as an element. Now suppose you want to store roll no. and marks
of 50 students, you need to declare 2 separate arrays for that, as the roll nos.
will be of integer data type and marks will be of float data type. Like variables,
arrays are also must be declared before they are used in the program. The
syntax for single dimensional array declaration is : Data type array–name [size];
Further we have understood that there exists type of array like One or Single
dimension array and two dimensional arrays.

Two–dimensional array – Unlike single dimensional array, here the array
has two indexes or subscripts. One subscript denotes the row number & the
other denotes the column number. The two dimensional arrays are declared
as follows :

data_type array_name [row_size][column_size];

int marks[3][3]; // array to store the marks of 3 students of 3 subjects.

35

36

Data Structure Using C float temperature[10][12]; // array to store the temperature of 10 cities
for 12 months.

Sparse array – A sparse array is simply an array in which most of its
elements are zero. An m x n matrix is called sparse matrix if most of its elements
are zero. There are two ways to represent sparse arrays efficiently those are
1) Array Representation and 2) Linked list representation.

Row major order and Column major order Implementation of 2D

In computing, row–major order and column–major order representations
are the methods of storing multidimensional arrays in linear memory blocks.
In row major order representations, array elements are stored in memory row
wise. In column major order representations the array elements are stored as
column wise in memory. With the help of equations we can easily find the
memory address of the elements of single or two dimensional arrays.

We have studied and understood All the Units of this Block with the
help of various relevant examples.

BLOCK ASSIGNMENT :

 Short Questions :

1. What is a data structure ?

2. What are the types of data structure ?

3. Define complexity.

4. What are the types of complexity ?

5. Define arrays and types of arrays.

6. What is a sparse array ?

7. What is the equation to find the memory address of the element of one
dimensional array ?

 Long Questions :

1. How arrays are initialized compile time and runtime ?

2. How to represent single dimensional and multidimensional array in the
memory ?

3. How to calculate the memory address of single and two dimensional array
elements ?

4. What do you mean by linked list representation of sparse matrix ? Explain
with an example.

5. Explain time and space complexity with example.

37

38

Data Structure Using C Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 1 2 3

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

Data Structure Using C

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 2 : STACK, QUEUES AND LINK–LIST

UNIT 4 LINK–LIST

UNIT 5 MORE ON LINK–LISTS

UNIT 6 STACKS AND THEIR APPLICATIONS

UNIT 7 QUEUES AND THEIR APPLICATIONS

BCAR-201/
DCAR-201

Block Introduction :

We may need data structures which can be able to store the data in non–
contiguous manner into the memory. As we know arrays are storing homogeneous
collection of the data in contiguous manner in the memory. Similarly, Link–List
stores multiple data in non–contiguous manner.

A stack is a linear data structure in which elements can be inserted or
deleted through the same end called as the top of the stack. e.g., a stack of coins
where elements can be inserted through the top.

A queue is a linear data structure in which elements can be inserted from
rear end and deleted through the front end.

Block Objectives :

After learning this Block, you will be able to :

• Implement the Link–List

• Perform different operations on Link–List

• Understand the different types of Link–List

• Understand the Concept of Stacks

• Understand the Method of Representation of Stacks

• Understand the Applications of Stacks

• Implement Stacks

• Understand Basic operations performed on queue

• Understand Array and Link–List representation of queue

• Understand D–Queue

• Understand Circular queue

• Know application of queue Understand the concept of Link–List

Block Structure :

Unit 4 : Link–List

Unit 5 : More On Link–Lists

Unit 6 : Stacks And Their Applications

Unit 7 : Queues And Their Applications

STACK, QUEUES AND
LINK–LIST

39

UNIT STRUCTURE

4.0 Learning Objectives

4.1 Introduction

4.2 Dynamic Memory Allocation Functions

4.2.1 Malloc () Function

4.2.2 Calloc () Function

4.2.3 Free () Function

4.3 Link–List

4.3.1 Node Structure

4.3.2 Link–List Representation

4.3.3 Defining Structure Node

4.3.4 Difference in Array and Link–List Data Structures

4.4 Link–List Implementation

4.4.1 Declaration of Node and First Pointer

4.4.2 Creating a Link–List

4.4.3 Inserting a Value to The Link–List

4.4.4 Displaying Link–List

4.4.5 Deleting a Value From The Link–List

4.5 Let Us Sum Up

4.6 Suggested Answer for Check Your Progress

4.7 Glossary

4.8 Assignment

4.9 Activities

4.10 Case Study

4.11 Further Readings

4.0 Learning Objectives :

In this unit, we will discuss about the dynamic memory allocation and
Link–List :

After learning this unit, you will be able to understand :

• The concept of the Link–List.

• Implementation of the Link–List.

• Perform different operations on Link–List.

• Understand the different types of Link–List.

• Understand the applications of Link–List.

LINK–LIST
Unit

04

40

Data Structure Using C 4.1 Introduction :

As we know that the array implementation, can store multiple data
elements of the same type under one name. Usually, we are declaring array
using static method like int arr [10]. The problem with this approach is, you
should know the size of an array well in advance. Dynamic approach, allows
you to create the array dynamically at run time. So, even if, the size of the
array is not known you can take the size from the user at runtime and create
the array. To do this you need to learn, various functions of dynamic memory
allocation, available in the C–Language. So, in this unit we will discuss all
the functions of dynamic memory allocation and then we will see how can
we implement Link–List implementation.

4.2 Dynamic Memory Allocation Functions :

Variables can be declared in two ways : [1] Static declaration and [2]
Dynamic declaration. In the static declaration, you need to declare the variables
in the declaration section of any function. C–Language does not allow you
to declare the variable after any executable statement. When you run the
program, compliers of the C–Language will read all declarative statements and
make arrangement to occupy space for all of your variables into the main
memory of the system. Once the memory space is allotted to all variables then
program will start its execution. That means that, when program start its
execution, before that it reserves the space for all variables declared in the
function.

Dynamic memory allocation on the other hand, allows you to declare
the variable whenever it is needed. It is not mandatory that you need to declare
all variables first and then you need to write executable statements. Dynamic
memory allocation, start the program first and when it is needed variables will
be declared at runtime (not before start of execution of the program). The
following functions need to be used, to declare the variables dynamically.

4.2.1 Malloc () Function :
The function malloc() allows you to create one variable (of any type)

dynamically. To use the malloc() function you need to include header file
"alloc.h" if you are using turbo C or Borland C. If you are using CodeBlocks
the you need to include "stdlib.h" header file.

Syntax :

Pointer_Variable = (Data Type *) malloc (size);

For example, if you want to declare any variable of type 'int' then you
need to write :

Int_pointer = (int *) malloc (sizeof (int));

The following program guide you to declare an integer variable dynamically
using malloc () function :

#include<stdio.h>

#include<stdlib.h> // Turbo C and Borland C users include alloc.h

void main()

{

int *p;

41

Link–Listp=(int *) malloc (sizeof (int));

*p = 5;

printf("The value stored in Dynamic variable is %d", *p);

}

Dynamic memory allocation creates the variable at runtime; therefore,
they don't have variable name. So, malloc function always returns the address
of the memory space where it is created. In the above example, we are
instructing to the malloc function to occupy 'sizeof(int)' means 2 bytes of space
in the memory. The function malloc (), will find free space in the main memory
and reserves 2 bytes of space. The address of this memory space will be return
by malloc () function, which we are storing in the pointer variable 'p' (as we
know, pointer are the variables which stores the address of another variables).
Now, using the pointer variable 'p', we can store value 5 and print it on the
console screen. If malloc () function fails to occupies memory space due to
some reason, instead of memory address it returns NULL value to the pointer
variable.

4.2.2 Calloc () Function :
As malloc () function is used to create any type of single variable, calloc

() function allows you to create an array of any type (dynamically), where
multiple values you can store.

Syntax :

Pointer_Variable = (Data Type *) calloc (number_of_elements,
size_of_element);

For example, if you want to declare an array of type 'int' with size 10,
then you need to write :

Int_pointer = (int *) calloc (10, sizeof (int));

The following program guide you to declare an array of integer variables
dynamically using calloc () function :

#include<stdio.h>

#include<stdlib.h> // Turbo C and Borland C users include alloc.h

void main()

{

int i,n, *p;

printf("Enter Number of Elements :");

scanf("%d", &n);

p=(int *)calloc(n, sizeof(int));

for(i=0;i<n;i++)

{

printf("Enter Number :");

scanf("%d", &p[i]);

}

42

Data Structure Using C printf("You have Entered :");

for (i=0; i<n; i++)

printf("\n%d", p[i]);

}

The following program allow user to create the array as per user's need.
If user want to create the array of 5 elements, then user will enter 5 while
the program will prompt for "Enter Number of Elements :". The function
calloc() will now create the array of 5 elements of type int. Here, calloc ()
function allow user to create the array as per user's need, dynamically (at
runtime). We take 5 integer values from the user and store it into the dynamically
created array using for loop, and finally we are printing all 5 elements on
the console screen using another for loop.

4.2.3 Free () Function :
The function free () is used to delete the variable created by malloc ()

function. Consider the following program, in which we are creating an integer
variable dynamically using malloc () function. We store the value in it, and
finally after printing the value of dynamic variable on the console, we delete
it using free () function. Make sure, once the variable is deleted using free
() function, cannot be used in the program.

For Example :

#include<stdio.h>

#include<stdlib.h> // Turbo C and Borland C users include alloc.h

void main()

{

int *p;

p=(int *) malloc (sizeof (int));

*p = 5;

printf("The value stored in Dynamic variable is %d", *p);

free(p); // Dynamic variable is disposed here

}

 Check Your Progress – 1 :
1. dynamic memory allocation function is used to create one

variable dynamically.

[A] calloc () [B] malloc ()

[C] realloc () [D] None of the above

2. dynamic memory allocation function is used to declare an
array dynamically.

[A] calloc () [B] malloc ()

[C] realloc () [D] None of the above

3. To delete the variable, created by malloc () function, function
is used.

[A] clear () [B] delete ()

[C] free () [D] All of the above

43

Link–List4.3 Link–List :

We know that the array is a collection of same type of data. Similarly,
Link–List are also collection of data. The difference between the Array and
Link–List is, Array stores all data element sequentially (contiguous manner),
where Link–List stores all data elements randomly (non–contiguous manner).
For Example, if you declare array 'int x [10]', then program needs 20 bytes
of continuous space in the memory. Suppose, if the memory has 20 Bytes of
space but not continuously, then array will not be declared and system will
throw 'Memory Overflow' error. But in the case of Link–List, you can store
your data if memory has sufficient space to accommodate all data elements
either in contiguous or non–contiguous manner.

A Link–List is a collection of data elements called nodes, and these nodes
are divided into two parts–the data part and the address part. The data part
of the node contains the data to be stored in the list and the address part of
the node contains the address of the next node.

You can analyse the same with the help of the given example. Suppose,
a teacher takes her class students for a movie show and the total no. of students
in the class are 30. Now, the seats allotted to the students in the movie hall
are scattered, that is, are not contiguous, then it will be a difficult job for
the teacher to collect the students from the movie hall after the end of the
show. Now, what the teacher will do is she will keep a paper note with her
in which the seat no. (address) of the first student is written and she will also
distribute a paper note to each student in which the seat no. (address) of the
next student is written. Now, at the end of the show, the teacher will go to
the first student with her paper note on which his address is written and collect
him, and will take the note from that student to find the seat no. (address)
of the next student. Similarly, she'll go to each student and do the same, in
order to collect all the students. Therefore, as the seats of each student is
scattered and each student is having the seat no. (address) of the next node,
so it will be an easier job to locate the other students.

Similarly, in Link–List, all the nodes are not in contiguous order in the
memory, they are scattered and each node keeps a track of the next node by
storing its address with itself making it easy to traverse the entire link–list.

4.3.1 Node Structure :
Node is a data structure, which consists of two elements. First element

is data in which the data given by the user is stored. Second element stores
the address of the next node. Consider the following figure of node representation.
In the figure node represents two part. Suppose if we consider, user wants
to store some integer numbers then in the first part of the structure we declare
'int data' and in the second part we store the address of the next node, therefore
the second variable in the node structure will 'struct node *next'.{ Node

data next

int data struct node *next

44

Data Structure Using C 4.3.2 Link–List Representations :

As shown in the figure given above, 'First' variable is a pointer variable
which stores the address of the first node. 'First' pointer has value 100, which
is the assumed address of the first node. First node, has data 5 and address
200, which is the assumed address of the second node. The Link–List has 4
nodes. The Last node has value 20 and because it is last node, NULL value
is there in its next (address) part. In the given figure 100, 200, 300 and 400
are the assumed address of 4 nodes inserted into the Link–List.

 Check Your Progress – 2 :
1. In a singly Link–list each node has parts.

[A] 2 [B] 3 [C] 4 [D] 5

2. In a singly Link–list each node has an address of node.

[A] First [B] Last [C] Previous [D] Next

4.3.3 Defining Structure Node :
As we have discussed that a node is a basic building block of Link–

List data structure. Structure node consists of two parts : [1] Data : where
we will store the user's data and [2] Next : where we will store the address
of the next node. Because of we are storing the address in the Next part, it
must be declared as pointer. In short, we can define structure node as shown
below :

struct node

{

int data;

struct node *next;

};

Each of these expressions must be either an integer constant or a character
constant. Each statement following the case labels may be either simple or
compound. Compound statement does not require {} in switch statement. While
executing switch statement, the expression is evaluated and control is transferred
directly to the group of statements whose case labels value matches the value
of the expression. If the case–label value does not match with the value of
the expression, then none of the groups within the switch statement will be
selected. In this case, the control is transferred directly to the statement that
follows the switch statement.

Data Next

Structure of Node

Pointer First Holds
the address of the

first node

Next part of
the last node

should be
NULL

100

First

5 200 10 300 15 400 20 N

100 200 300 400

45

Link–List4.3.4 Difference in Array and Link–List Data Structures :

In the figure give above, we have represented an array data structure.
An array is homogeneous (same type of) collection of data, where all the data
elements of an array are stored in the contiguous manner in the memory. When
you declare 'int x [10];', then system search for 10 (number of elements) *
2 (each int data elements needs 2 Bytes) = 20 Bytes of contiguous memory
space into the main memory. Suppose, system gets contiguous 20 Bytes of space
at some address 100, then address 100 will be a base address of that array.
First element of an array, 5 will be stored between memory locations 100 to
102. Second data element 10, will be stored from 102 to 104 and so on. Array
name 'x' will represent the starting address (base address) of an array.

Link–List also a collection of homogeneous data like array, but in the
case of Link–List the data elements are stored in non– contiguous manner. Each
data element is encapsulated into the data structure called node. Each node
of the link list has data and address to the next node, which represent another
data entity. As shown in the figure data elements 5 and 10 are stored in two
different node and their addresses are non– contiguous (100 and 200). Each
node has an address field which provides address to the next node (which
contains next data element).

 Check Your Progress – 3 :
1. Linear data structure stores data element in non– contiguous

manner.

[A] Array [B] Link–List

[C] Tree [D] None of the above

2. From the given below is/are Linear data structure(s).

[A] Array [B] Link–List

[C] Stack [D] All of the above

100 102 104 106 108 110 112 114 116 118 120

5 10 15 20 25 30 35 40 45 50

0 1 2 3 4 5 6 7 8 9

Base Address 100

Memory Addresses

Data Items

Index Numbers
Lower
Bound

Upper
Bound

Data Next

Structure of Node

Pointer First Holds
the address of the

first node

Next part of
the last node

should be
NULL

100

First

5 200 10 300 15 400 20 N

100 200 300 400

46

Data Structure Using C 4.4 Link–List Implementation :

4.4.1 Declaration of Node and First Pointer :
As we know, Link–List is a linear data structure, can be stored in non–

contiguous memory locations. Link–List is a collection of nodes, which
encapsulate data element and address of the next node.

struct node

{

int data;

struct node *next;

} * first= NULL;

Pointer first is a pointer variable which can store the address of any
node. Usually, first pointer holds the address of the first node of the link list.
Initially, when the program is started, and there is no node is there in the link
list (Link–List is empty) first pointer do not have any address, at that time
first has NULL value.

 When user insert the first value, and first node is created in the link
list, pointer first will have the address of the first node.

4.4.2 Creating Link–List :
To create a link list, user will invoke create () function. In this function,

we take how many nodes has to be created in the link list, from the user.
Suppose, if user enters 4, then we take 4 values from the user and create 4
nodes in the link list. Each node contains one value given by the user. Each
node also stores the address of the next node. The next part of the 4th node
(last node) will be NULL and the address of the first node will be placed
in the pointer 'first'.

void create()

{

struct node *newnode;

int i,n;

printf("\nEnter Number of Elements to be entered in the Link
List:");

scanf("%d", &n);

for(i=1; i<=n; i++)

{

if(first==NULL)

{

newnode = (struct node *) malloc (sizeof (struct node));

first = newnode;

}

else

{

47

Link–Listnewnode–>next = (struct node *) malloc (sizeof (struct node));

newnode = newnode–>next;

}

printf("Enter Value :");

scanf("%d", &newnode–>data);

newnode–>next=NULL;

}

}

 Check Your Progress – 4 :
1. To create a new node function is used.

[A] create () [B] add () [C] new () [D] malloc ()

2. The default value (when the program is started), first pointer should have
 value.

[A] Address of first node [B] Address of last node

[C] NULL [D] None of the Above

4.4.3 Inserting a Value to The Link–List :
Insertion can be done at both ends of the link list. To insert the value

in the beginning of the link list, we will create a function called insert_at_beg()
and to insert the value at the end of the link list, we will create a function
called insert_at_end().

[1] Inserting value at the beginning of the Link List :

To insert the, at the beginning of the link list we will take a value from
the user. We will create a new node and set the value taken from the user
in the data part of the new node. We will copy the address stored in the first
pointer to the next part of the new node. Finally, the address of the new node
we will copy to the first pointer.

Copy address of first node to
the next part of new node

Copy the address of newnode to
first pointer

48

Data Structure Using C Suppose, in the Link–List, 3 nodes are inserted, by create () function.
These values are 5, 10 and 15. So there are 3 nodes are there in the link
list. Now, suppose user wants to insert a new node with value 1, at the beginning
of the link list. To do this, first create a new node using malloc () function.
Suppose the new node is created on memory address 500. Put 1 (value which
user wants to insert) in the data part of newnode, copy the address 100 from
the pointer first to the next part of newnode. so, the newnode will point to
the node '5'. Copy the address of newnode (500) in the pointer first. Therefore,
first will gives you the address 500 (first node) and the next part of the 500
will gives you the address 100, which will become second node.

void insert_at_beg (int val)

{

struct node *newnode;

newnode = (struct node *) malloc (sizeof (struct node));

newnode–>data=val;

newnode–>next=NULL;

if (first == NULL)

{

printf ("\n linklist is empty");

return;

}

new1–>next = first;

first=new1;

}

[2] Inserting value at the end of the Link List :

To insert the value at the end of the link list, we will take a temporary
pointer to find the last node of an existing link list. We will create a new
node, and place the data given by the user in the data part of the new node.
We will also set the next part of the new node to NULL. Then we will start
to search last node. Last node is that node in which NULL value is there in
the next part. When we get the last node, we will copy the address of the
new node in the next part of the last node.

49

Link–Listvoid insert_at_end (int val)

{

struct node *newnode,*tmp;

newnode = (struct node *) malloc (sizeof (struct node));

newnode–>data = val;

newnode–>next = NULL;

tmp = first;

while (tmp–>next != NULL)

{

tmp = tmp–>next;

}

tmp–>next = newnode;

}

4.4.4 Displaying Link–List :
 To display the link list, take the temporary pointer 'tmp' and place it

on the first node, if the, first pointer doesn't have NULL value. If first pointer
has NULL value then Link–List is empty and nothing to display, just return
from the function. Else print the value from the data part and move to the
second node, by taking new address from the next part of 'tmp' pointer. Continue
this process till 'tmp' will not become NULL.

void display ()

{

struct node *tmp;

if (first == NULL)

{

printf ("Link–List is empty :");

return;

}

tmp = first;

while (tmp != NULL)

{

printf("\n%d ––>",tmp–>data);

tmp = tmp–>next;

}

}

4.4.5 Deleting a value from the Link–List :
To delete the value from the Link–List, we need to check multiple

conditions. First will check if, pointer first is NULL then link list is empty
and nothing to delete from it, so simply return from the function. We need
to check if user wants to delete the first node, then we need to copy the address

50

Data Structure Using C of the second node in the first pointer, and then we need to delete the first
node. Otherwise, we need to search the element in the link list. If the value
to be deleted is present in the link list, then we need to copy the address placed
in the next part of that node, to the next part of its previous node. If the value
is to be deleted is not exists then show message that the value does not exists
in the Link–List.

To delete the node, we use a pointer 'curr' to find the node to be deleted.
We place a 'curr' pointer on the first node, and start searching that node in
which data part has a value which is given by the user to delete the node.
When we find the value, we need to copy address of next node (500 in the
figure, which is in the next part of the 'curr' node) to the next part of its previous
node.

In a singly link list, each node has address to its next node. So, we
can not access the previous node. To access the previous node, we need to
declare additional pointer variable called 'prev'. The pointer variable 'prev' will
follow the 'curr' pointer variable. That means, when the 'curr' pointer will reach
to the address 400, at that time, 'prev' pointer will be on its previous node
which is 300 in the figure. We can now easily copy the address 500 which
is in the next part of the curr node, to the next part of the prev node by just
writing an instruction :

pre–>next = curr –>next;

This is one of the drawbacks of singly link list. In singly link list,
each node has address to its next node, but no node has address to its previous
node. So, whenever we need to access the previous node, we need to use an
additional pointer variable. To implement deletion in the singly link list, we
make a function called 'delnode ()'. User will invoke 'delnode ()' function and
pass the value to be deleted to this function as an argument. The code to
implement delnode () function is described below :

void delnode (int val)

{

struct node *curr, *prev;

//If Link list is Empty then nothing to be deleted

If (first == NULL)

{

printf("\n link–list is empty");

return;

}

//Place curr pointer to the fist node

curr = first;

Before deleting copy 500
from curr node to prev node

Node to be deleted

51

Link–List//If value to be deleted is found in the first node

if (first–>data == val)

{

first = first–>next;

free (curr);

return;

}

//Search the value in the Link List

While (curr–>data != val && curr != NULL)

{

//Previous pointer is following to the current pointer

prev = curr;

curr = curr–>next;

}

//If value to deleted is not found

if (curr == NULL)

{

printf("\n value does not exist");

return;

}

//Copying the address of next to the previous node's next part

prev–>next = curr–>next;

//Deleting node

free (curr);

}

Finally, when we find the particular node in which the value of data
part match with the value to be deleted (given by the user), we can use free
() function to delete that node. To delete the desire node, we need to write :

free (curr);

Function free () will delete the node structure, specified on the address
stored in the 'curr' pointer variable.

 Check Your Progress – 5 :
1. In function of the singly link list we need to take an addition

pointer variable to access previous node.

[A] delnode () [B] display ()

[C] create () [D] insert_at_end ()

2. dynamic memory allocation function is used to delete the node
from the link list.

[A] delete () [B] clear () [C] erase () [D] free ()

52

Data Structure Using C 4.5 Let Us Sum Up :

In this unit, we :

• Discussed about dynamic memory allocation functions

• Elaborated on the structure of a link list.

• Talked about How to create a Link–List ?

• Explained How to implement functions like insert at beginning, insert
at end, display and delete node functions.

4.6 Suggested Answers for Check Your Progress :

 Check Your Progress 1 :

1. [B] 2. [A] 3. [C]

 Check Your Progress 2 :

1. [A] 2. [D]

 Check Your Progress 3 :

1. [B] 2. [D]

 Check Your Progress 4 :

1. [D] 2. [C]

 Check Your Progress 5 :

1. [A] 2. [C]

4.7 Glossary :

1. Pointer : Pointer is a special variable, which can store the address of
another variable.

2. Link–List : Link–List is a linear data–structure, which stores (collection)
homogeneous (same type of) data in non–contiguous memory locations.

4.8 Assignment :

1. Write a function called 'insbfr (int val, int key)', which will insert the
new value to the link list before the key value.

2. Write a function called 'insaft (int val, int key)', which will insert the
new value to the link list after the key value.

4.9 Activity :

1. Write a function to sort a link list.

4.10 Case Study :

Write a function to reverse all the values (nodes) of the link list using
recursion.

4.11 Further Reading :

• Data Structure through C by Yashvant kanetkar.

• Data Structures Using "C" by Tanenbaum.

• Data Structures and Program Design in "C" by Robert L. Kruse.

53

UNIT STRUCTURE

5.0 Learning Objectives

5.1 Introduction

5.2 Types of Link–List

5.2.1 Singly Link–List

5.2.2 Doubly Link–List

5.2.3 Circular Link–List

5.3 Doubly Link–List Implementation

5.3.1 Declaring of Node and First Pointer

5.3.2 Creating a Doubly Link–List

5.3.3 Inserting a Value to The Link–List

5.3.4 Displaying Doubly Link–List

5.3.5 Deleting a Node From Doubly Link–List

5.4 Let Us Sum Up

5.5 Suggested Answers for Check Your Progress

5.6 Glossary

5.7 Assignment

5.8 Activity

5.9 Case Study

5.10 Further Readings

5.0 Learning Objectives :

After working through this unit, you should be able to :

• Different types of Link–List

• Understand doubly Link–List

• Implement the programs of Link–List

5.1 Introduction :

In the previous unit, we have seen how can we implement Link–List,
what are the advantages are there and what are the similarities and differences
are there between Array and Link–List. In this Unit we will discuss different
types of Link–List and their implementation.

5.2 Types of Link–List :

The Link–List we have discussed in the previous unit, is a singly Link–
List. There are three types of Link–Lists are there :

[1] Singly Link–List

MORE ON LINK–LIST
Unit

05

54

Data Structure Using C [2] Doubly Link–List and,

[3] Circular Link–List.

5.2.1 Singly Link–List :
In the singly Link–List, each node of the Link–List has only one address,

and that is the address of a next node. Because, in the structure node, there
is single address is encapsulated, it is called a singly Link–List. In the singly
Link–List, global pointer variable first, holds the address of the first node of
the Link–List. The next (address) part of the Link–List, gives an address to
the second node and so on. The next part of the Last node has NULL value,
which indicates end of the Link–List. The structure of the singly Link–List
is described below :

struct node

{

int data;

struct node *next;

};

Singly Link–List

5.2.2 Doubly Link–List :
The problem with the singly Link–List is, it contains only one address

part in each node of the Link–List in which we store the address of the next
node. Due to this reason, we cannot have access to the previous node. Singly
Link–List provides forward pathway, but it doesn't provide backward traversal
compatibility. Recall the delnode () function, we have implemented in the
previous unit. To access the node to be deleted we have taken an additional
pointer variable 'prev', which was following the 'curr' pointer.

To overcome this problem, we have developed doubly Link–List. In the
case of doubly Link–List, we modify the structure of node. In the node of doubly
Link–List we will place one data and two address parts (total three elements).
Each node hold user data, address on the next node and in addition address of
the previous node too. That means in doubly Link–List, from any node you can
visit next node as well as its previous node. It provides forward and backward
compatibility. The structure of the doubly Link–List is shown below :

struct node

{

struct node *lptr;

int data;

struct node *rptr;

};

55

More on Link–ListAs shown in the figure given above, node has three parts data, lptr and
rptr. Data part of the node will store user's data, lptr and rptr are pointer
variables which store address of the left node and right node. Means, each
node stores two addresses, address of the previous node as well as address
of the next node. User can visit the next node using address stored in rptr
and also visit previous node using the address stored in lptr.

Make sure in the lptr of first node, we will store NULL because there
no node is there on left side of it, and in the same way we will also store
NULL in the rptr of the last node as there is no node is three on the right
side of the last node.

 Check Your Progress – 1 :
1. In link–list each node has address for its next node only..

[A] Singly [B] Doubly

[C] Both [A] and [B] [D] None of the above

2. In link–list each node has address for its next node and
previous node too.

[A] Singly [B] Doubly

[C] Circular [D] All of the above

5.2.3 Circular Link–List :
Circular Link–List is similar to the singly Link–List. In the singly Link–

List we store NULL value in the next part of the last node, so that we can
come to know that this node is the last node and there no further node is
there. Singly Link–List suffers from the problem that, it provides way to forward
direction only. We can not visit the previous node. To overcome this problem,
in the circular Link–List, we store the address of the first node, in the next
part of the last node. This will create a cycle and user can visit first node
after visiting last node.

Circular Link–List and Singly Link–List share the same data structure.
The difference between circular and singly Link–List is, in a singly Link–List
last node's next part will remain NULL whereas in the circular Link–List, last
node's next part will store the address of the first node. The data structure
and circular Link–List is shown in the figure given below :

struct node

{

int data;

struct node *next;

};

56

Data Structure Using C

 Check Your Progress – 2 :
1. In doubly link–list, lptr of the first node and rptr of the last node will

be .

[A] first node [B] next node

[C] previous node [D] NULL

2. In circular link–list, last node has address in its next part.

[A] first node [B] next node

[C] previous node [D] NULL

5.3 Doubly Link–List Implementation :

5.3.1 Declaration of Node and First Pointer :
We know that the doubly Link–List is a linear data structure, in which

each node has two addresses. Pointer 'lptr' preserves the address of the previous
node and pointer 'next' preserves the address of the next node. The data structure
for the node of doubly Link–List is as given below :

struct node

{

int data;

struct node *lptr, *rptr;

} * first= NULL;

Pointer variable first is a global variable, which holds NULL value
initially (when the program is started and there is no node is there in the doubly
Link–List). Once the nodes are created in the doubly Link–List, first pointer
will store the address of the first node.

5.3.2 Creating a Doubly Link–List :
To create a doubly link–list, we prompt to the user that 'How many values,

user want to insert in the doubly Link–List'. Based on user input we will create
that many nodes. We will take integer numbers from the user as use data and
store it into each node of the doubly Link–List.

We set the address of the first node of the doubly Link–List into the
first pointer variable. Each node, stores the address of the previous node into
the lptr and address of the next node into the rptr. The lptr of the first node
will be set to NULL and the rptr of the last node will also be set to NULL.
The source code of the create () function, for the doubly Link–List is given
below :

void create()

{

struct node *tmp, *newnode;

int val, i;

57

More on Link–List/*Taking how many values user want to insert at the time of Creation
*/

printf ("Enter number of Elements :");

scanf ("%d", &val);

for (i=0; i<val; i++)

{

/* Creating a new node in the memory */

newnode = (struct node *) malloc (sizeof (struct node));

printf ("Enter Value");

scanf ("%d", &newnode–>data);

newnode–>lptr = newnode–>rptr = NULL;

/* If first pointer is NULL then this the first value inserted by the
user, and this is the first node */

if (first == NULL)

{

first = newnode;

tmp = newnode;

}

else

{

newnode–>lptr = tmp;

tmp–>rptr = newnode;

tmp = newnode;

}

}

}

5.3.3 Inserting a Value to The Link–List :
Like singly Link–List, insertion can be done at both ends. User can insert

the value either to the beginning of the doubly Link–List, or end of the doubly
Link–List.

[1] Inserting value at the beginning of the Doubly Link–List :

58

Data Structure Using C As shown in the above figure, to insert the value at the beginning of
a doubly Link–List, we will create a newnode using malloc () function. We
will place the value inputted by the user into the data part, and NULL value
in the lptr of the newnode. Copy the address of the first node, from the first
pointer variable to the rptr of the newnode. Then copy the address of newnode
to the lptr of the first node. Finally set the newnode as a first node, by copying
the address of the newnode to the first pointer variable. At the end, you will
get the following Link–List.

The code for the function inser_at_beg (), to insert the value to the
beginning of the doubly linked is given below :

void inst_at_beg (int val)

{

struct node *newnode;

if (first == NULL)

{

printf("Doubly Link–List is empty");

return;

}

newnode = (struct node *) malloc (sizeof (struct node));

newnode–>data = val;

newnode–>lptr = NULL;

newnode–>rptr = first;

first–>lptr = newnode;

first = newnode;

}

[2] Inserting value at the end of the Doubly Link–List :

To insert the value at the end of the doubly Link–List, first we will
create a new node using malloc () function. We will store the user's data (20)
into the data part of the newnode, and set NULL into the rptr of the newnode.
We will then take a temporary variable tmp to search the last node of the
doubly Link–List. Last node of the Link–List is that node in which NULL
is there in the rptr. After finding last node we will copy the address of the
newnode to the rptr of the tmp node, and address of the tmp node to the lptr
of the newnode as shown in the following figure.

59

More on Link–ListAfter the insertion, links list looks like as in the following figure :

The following code we need to write to implement the function
'insert_at_end'.

void ins_at_end(int val)

{

struct node *newnode, *tmp;

newnode =(struct node*) malloc (sizeof (struct node));

newnode–>data = val;

newnode–>rptr = NULL;

if (first == NULL)

{

printf ("Doubly Link–List is Empty");

return;

}

tmp = first;

while (tmp–>rptr != NULL)

{

tmp = tmp–>rptr;

}

if (tmp–>rptr == NULL)

{

tmp–>rptr = newnode;

newnode–>lptr = tmp;

}

}

 Check Your Progress – 3 :
1. Identify the given data structure is of link–list.

struct node

{

int data; struct node *lptr, *rptr;

};

[A] Singly [B] Doubly

[C] Circular [D] All of the above

60

Data Structure Using C 2. In doubly link–list, when the same node has NULL value in its lptr and
rptr ?

[A] Link–List is Empty [B] Link–List has more than 2 nodes

[C] Link–List has only one node [D] It is not possible

5.3.4 Displaying Doubly Link–List :
Implementation of the display () function is similar to the display ()

function of singly Link–List. Just the difference is instead of next, we need
to use rptr. The following code needs to be written to implement display ()
function to display all the values inserted by the user.

void display()

{

struct node *curr;

/* If Link–List is not created by user or there is no value in the Link
List */

If (first == NULL)

{

printf ("Doubly Link–List is empty");

return;

}

/* Setting current pointer to first node */

curr = first;

/*Printing value and moving current pointer to the next node, till we
reach to Last node. */

while (curr–>rptr != NULL)

{

printf ("%d––>",curr–>data);

curr = curr–>rptr;

}

/* Printing the value of the Last node. */

printf ("%d",curr–>data);

}

5.3.5 Deleting a Node From Doubly Link–List
To delete the node from a doubly link–list, we need to search for a node,

in which data part has same value which user want to delete. To do this we
need to take only one pointer 'curr'. Recall the delnode () function, of singly
link–list, where we have taken two pointers 'curr' and 'prev'. The pointer 'prev'
was following 'curr' pointer, as in singly link–list node do not store the address
of previous node. In the case of doubly link–list each node has addresses of
previous node and next node. So, there is no reason to take additional pointer
called 'prev'.

To search the value, we will palace 'curr' pointer on the first node, by
copying the address of the first node from pointer first to curr. We will run
a loop till the data part of the curr does not match to the value to be deleted

61

More on Link–Listor pointer 'curr' does not becomes NULL. If 'curr' contain NULL means, the
value to be deleted is not present in the link–list. If the value to be deleted
is exists then we adjust links and then by using free () function, we will delete
the node.

To adjust the links, following code we need to write :

curr–>lptr–>rptr = curr–>rptr;

curr–>rptr–>lptr=curr–>lptr;

 In the first statement we copy the address, stored in the rptr of the
node to be deleted to the rptr of its previous node. In the second statement,
we copy the address stored in the lptr of the curr node to the lprt of the next
node.

Some conditions we need to check during deletion of the node. The
conditions are : [1] If the link–list is Empty, then nothing to be deleted.
[2] If user want to delete the first node, then second node will become first
node and the address of the second node, has to be placed in the first pointer.
[3] If the value to be deleted is not exists in the link–list. If this the case
then nothing to be deleted. [4] If user is deleting a last node.

The code given below, take care of all the conditions described above,
and delete the node which user want to delete :

void delnode (int val)

{

struct node *curr;

/*If first pointer has NULL value, no value is there in the Link–List,
so deletion is not possible. */

if (first == NULL)

{

printf ("Doubly Link–List is empty :");

return;

}

/* Place the address of first node in the curr pointer */

curr = first;

/* If user want to delete first node, then second node will become first
node after deletion */

if (first–>data == val)

{

first = first–>rptr;

free(curr);

first–>lptr = NULL;

return;

}

/* Searching the value to be deleted in the Doubly Link–List */

while (curr != NULL && curr–>data != val)

62

Data Structure Using C {

curr = curr–>rptr;

}

/* If User wants to delete the last node of the Doubly Link–List */

if (curr–>rptr == NULL)

{

curr–>lptr–>rptr=NULL;

free(curr);

return;

}

/* If current pointer is NULL, that means the value we are searching
is not present in the list */

if (curr == NULL)

{

printf("value doesnt exsist");

return;

}

/* If value found then we will set (1) Next node's address in to the
rptr part of Previous node and (2) Previous node's address in the lptr
of Next node.Finally, Deleting current node. */

curr–>lptr–>rptr=curr–>rptr;

curr–>rptr–>lptr=curr–>lptr;

free(curr);

}

 Check Your Progress – 4 :
1. In function of doubly Link–List, we use only rptr and doesn't

use lptr.

[A] create () [B] insert_at_end ()

[C] display () [D] delnode ()

2. In link–list, we do not need extra pointer variable to keep
track of previous node in the delnode () function.

[A] Singly [B] Doubly

[C] Circular [D] All of the above

5.4 Let Us Sum Up :

In this unit, we :

• Have seen the different types of link–lists.

• Have elaborated how to implement doubly link–lists.

63

More on Link–List5.5 Suggested Answers For Check Your Progress :

 Check Your Progress 1 :

1. [A] 2. [A]

 Check Your Progress 2 :

1. [D] 2. [A]

 Check Your Progress 3 :

1. [D] 2. [A]

 Check Your Progress 4 :

1. [C] 2. [C]

5.6 Glossary :

1. Doubly Link–List – List is also a type of Link–List, which is a collection
of several nodes, in which each node is divided into three parts.

2. Circular Link–List – It is a type of Link–List, in which last node stores
the address of the first node instead on NULL value.

5.7 Assignment :

• List and Explain different types of Link–Lists.

5.8 Activity :

1. Write a function to reverse the doubly Link–List.

2. Write a function to sort the doubly Link–List.

5.9 Case Study :

Write a program to add two polynomials. To store both polynomials, take
two Link–Lists, and to store result take one more Link–List. You can use either
singly Link–Lists or doubly Link–Lists. The node will have 3 parts (in the
case of singly Link–List) which are coefficient, exponent and address of next
node. For Example,

1.4 x^5 : 1.5 x^4 : 1.7 x^2 : 1.8 x^1 : 1.9 x^0

1.5 x^6 : 2.5 x^5 : –3.5 x^4 : 4.5 x^3 : 6.5 x^1

--

1.5 x^6 : 3.9 x^5 : –2.0 x^4 : 4.5 x^3 : 1.7 x^2 : 8.3 x^1 : 1.9 x^0

5.10 Further Reading :

• Data Structure through C by Yashvant kanetkar.

• Data Structures Using "C" by Tanenbaum.

• Data Structures and Program Design in "C" by Robert L. Kruse.

64

UNIT STRUCTURE

6.0 Learning Objectives

6.1 Introduction

6.2 Definitions

6.3 Array and Link–List Representation of Stack

6.3.1 Array Representation of Stack

6.3.2 Link–List Representation of Stack

6.4 Operations and Applications of Stack

6.5 Let Us Sum Up

6.6 Suggested Answer for Check Your Progress

6.7 Glossary

6.8 Assignment

6.9 Activities

6.10 Case Study

6.11 Further Readings

6.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand the Concept of Stacks.

• Understand the Method of Representation of Stacks.

• Understand the Applications of Stacks.

• Implement Stacks.

6.1 Introduction :

In this unit, we'll be discussing about one of the elementary data structures
called Stacks. When the data elements are stored one above the other, then
this type of arrangement is called a stack. A stack commonly stands for a block
of memory cells, with the "bottom" on a fixed location, and the stack pointer
holding the address of the current "top" cell in the stack.

We will also be discussing about the static (array) and dynamic (linked
list) representations of stacks.

6.2 Definitions :

 Stack :

A stack is a linear data structure in which elements are inserted or deleted
through one end which is called the top of the stack. Stack is a last in first
out (LIFO) structure. This can be well understood by help of following diagram.

STACK AND THEIR
APPLICATIONS

Unit

06

65

Stack and Their
Applications

In stack, objects contained are inserted or removed based on the (LIFO)
last–in–first–out method. Only two possible operations can be allowed in
pushdown stacks namely, push in the item into the stack and secondly pop
the item out of it. The stack data structure is rather limited or minimalistic;
elements can be added and removed only at the top. In order to insert an item
to the top push is used, whereas in the case of removing an item pop is used.

For example, think of a library where one can remove a book only from
the top of the stack of books and can also add a new book only at the top.

Hence, we can say that stack is a recursive data structure.

 Check Your Progress – 1 :
1. A Stack is a data structure.

[A] FIFO [B] LIFO [C] FILO [D] LILO

2. Value is inserted or removed in the stack on position.

[A] front [B] rear

[C] top [D] All of the above

6.3 Array and Link–List Representation of Stack :

6.3.1 Array Representation of Stack :
Stack is a linear data structure, which is used as storage of data in LIFO

ordering. Stack stores user's data and return it back to the user in Last In First
Out manner. To store user's data, we can use either Array or Link–List. We
have already discussed that the both Array and Link–List are linear data
structure which stores user's data. Just the difference is, Array stores the data
in contiguous memory location whereas the Link–List stores data elements in
non–contiguous memory locations.

To implement the stack, we need to take an array and a top variable
(integer). Initially the top variable has to be initialized with value –1.

[1] PUSH () Function :

Function push () is used, when user want to insert an element into the
stack. Each time when user call a push function, first we need to check for
overflow condition. Suppose if the capacity of the array is to store MAX
elements, and if variable top is on MAX –1 then, we can say that the array
is full and it doesn't have space to accommodate new element. This situation
in the stack, where user want to insert an element but array is full is called
OVERFLOW condition. If there is no overflow situation is there, then the
variable top has to incremented by 1, and the new element has to be placed
on the top position of the array. Each time when user, push an element top
variable is incremented by 1 and element has to be placed on the top position
of an array. It is shown in the following figure.

66

Data Structure Using C

As shown in the figure, the initial value of top variable is –1. On each
time when user call a push function, top variable will be incremented and on
the top position of an array, the newer element has been placed. When the
user calls a push function and top is on 4th position, we need to show overflow
message.

To implement push () function, we need to write the following code :

#include <stdio.h>

#define MAX 5

int stack [MAX];

int top = –1;

void push (int val)

{

if (top == MAX –1)

{

printf ("\n Stack Overflow :");

return;

}

top++;

stack (top) = val;

}

[2] POP () Function :

When the user invokes the pop () function, stack will return the value
from the top position of an array (LIFO). If top is on –1 and user invoke
pop () function, there is nothing in the stack to return. This situation is called
UNDERFLOW condition. After returning the value, it is to be assumed that
the value is deleted from the stack, therefore the value of top variable has
to be decremented by 1.

67

Stack and Their
Applications

As shown in the figure, consider a stack of size 5, and 3 elements are
pushed in the stack called 5, 10 and 15. The variable top will be on 2. On
first pop () call, the value 15 has to be returned to the user, and variable top
will be decremented by 1, so it will become 1. On second pop (), call, 10
will be returned and the again top will be decremented to 0. On third pop
() call, value 5 will be returned and top variable is decremented to –1. Now,
there is no value is there in the stack. Suppose, still user calls the pop ()
function, we have to show underflow message as there is nothing in the stack
and top is on –1.

To implement the pop () function following code needs to be write :

int pop ()

{

int tmp;

if (top==–1)

{

printf ("\n Stack Underflow :");

return 0;

}

tmp = stack[top];

top––;

return tmp;

}

[3] PEEP () Function :

The function is peep is similar to pop () function. It returns the value
which is stored on the top of the stack. The only difference between pop ()
function and peep () function is, pop () function assumes the data to be deleted
from the stack after returning the value, whereas in the peep () function the
value will remain as it is in the stack. Therefore, the code of the peep () is
similar to pop () function but in peep () function, variable top will not be
decremented by 1.

int peep ()

{

int tmp;

if (top == –1)

68

Data Structure Using C {

printf ("\n Stack Underflow :");

return 0;

}

tmp = stack[top];

return tmp;

}

 Check Your Progress – 2 :
1. In the implementation of the stack by array, initial value of top will be

.

[A] 0 [B] 1 [C] –1 [D] NULL

2. Overflow condition for the stack has to check in function.

[A] push () [B] pop () [C] peep () [D] NULL

6.3.2 Link–List representation of Stack
Stack can also be implemented using Link–List. To implement the stack

using link–list we need to define structure node as shown below :

#include<stdio.h>

#include<stdlib.h>

struct node

{

int data;

struct node *next;

} *top =NULL;

Definition of structure node is similar to the Link–List program. Node
is defined with an integer variable call data to store the user's data, and next
variable of type struct node *, to store the address of next node. We are declaring
a pointer variable top of type struct node *, which will always point to the
recent (latest) value pushed (inserted) by the user. Pointer variable *top will
be initialized with NULL value initially.

[1] PUSH () Function :

As we know, push () function indicated insertion into the stack. We need
to create a node using malloc () function. If malloc () function returns NULL
value instead of the address of newly created node, which means memory is
full and it doesn't have free space to create new node. In such situation, we
will print the OVERFLOW message.

If the node is created, we need to place the address stored in the *top,
to the next part of the newnode. The following figure demonstrate the stack
implemented by Link–List.

69

Stack and Their
Applications

Implementation of push () function of the stack implemented using link
list is given below :

void push (int val)

{

struct node *newnode;

newnode = (struct node *) malloc (sizeof (struct node));

if (newnode == NULL)

{

printf ("\n Stack Overflow");

return;

}

newnode–>data = val;

newnode–>next = top;

top = newnode;

}

[2] POP () Function :

As we know pop () function delete the value (node), which is on the
top, and return that value. To do this, we take a pointer tmp pointer and place
it on the top node. We will move the *top to its next node. We will copy
the data element of the tmp pointer to some variable called val. We will delete
the tmp node and finally return the value of the val variable. As we know,
in the pop () function we need to check for UNDERFLOW condition. So, first
we will check the *top. If *top is NULL, we will show the error message
of underflow condition. The code for pop () function is given below :

int pop ()

{

struct node *tmp;

int val;

if (top == NULL)

{

70

Data Structure Using C printf ("\n Stack Underflow");

return 0;

}

tmp = top;

top = top –> next;

val = tmp –>data;

free (tmp);

return val;

}

[3] PEEP () Function :

As we know the peep function, returns the value situated on the top
of the stack, without deleting it from the stack. The following code need to
be written to implement peep () function.

int peep ()

{

if (top == NULL)

{

printf ("\n Stack Underflow");

return 0;

}

return top –> data;

}

 Check Your Progress – 3 :
1. In the implementation of the stack by Link–List, initial value of top will

be .

[A] 0 [B] 1 [C] –1 [D] NULL

2. For Overflow condition in the stack implemented by Link–List,
condition is checked.

[A] newnode == NULL [B] top == NULL

[C] top == –1 [D] Node of the above

3. For Underflow condition in the stack implemented by Link–List,
condition is checked.

[A] newnode == NULL [B] top == NULL

[C] top == –1 [D] Node of the above

6.4 Operations and Applications of Stack :

 Basic Operation of Stack :

The bottom of a stack is a sealed end; this means there is no chance
of insertion. Stack may have a capacity which is a limitation on the number
of elements in a stack. The operations on stack are :

Push – Places an object on the top of the stack or in the beginning.

Pop – Removes or erases an object from the top of the stack.

71

Stack and Their
Applications

Peep – Return the value of the tope of the stack without removing it
from the stack.

Is Empty – This report whether the stack is empty or not.

Is Full – This report whether the stack exceeds limit or not.

1. Expression Evaluation,

2. Expression conversion like,

• Infix to Postfix.

• Infix to Prefix.

• Postfix to Infix.

• Prefix to Infix.

3. Parsing

4. Recursion and Function call

5. String Reversal

 Check Your Progress – 4 :
1. From the given below, is/are basic operation of stack.

[A] push [B] pop

[C] peep [D] All of the above

2. From the given below is not a stack application.

[A] Recursion [B] Infix to Postfix

[C] Finding shortest path [D] String reversal

Expression Representation (conversion) – Evaluating arithmetic
expressions

Infix Prefix Postfix

x +y + x y x y+

x + y * z + x * y z x y z * +

(x + y) * (z – n) * + x y – z n x y + z n – *

 Procedure for Postfix Conversion :

1. First Scan the Infix string from left to right and.

2. Then Initialize an empty stack.

3. In case the scanned character is an operand, add it to the Postfix string.

4. In case the scanned character is an operator and if the stack is empty
push the character to stack.

5. If the scanned character is an Operator and the stack is not empty then
compare the precedence of the character with the element on top of the
stack properly.

6. In case the top Stack has higher precedence over the scanned character
pop the stack else push the scanned character to stack. Repeat or redo
this step until the stack is not empty and the top Stack always has
precedence over the character.

7. Repeat or redo step 4 and 5 till all the characters are scanned.

72

Data Structure Using C 8. In case all the characters are scanned, we have to add any character that
the stack may have to the Postfix string.

9. Suppose if stack is not empty add top Stack to Postfix string and Pop
the stack.

10. Repeat or redo this step as long as the stack is not empty (until and
unless the stack is not empty).

 Reversing Data :

We can use stacks to reverse data (example : files, strings). It is also
very useful and important for finding palindromes.

Consider the following pseudo code and see the outcome –

a. read (data)

b. loop (data not EOF and stack not full)

1. push (data)

2. read (data)

c. loop (while stack not Empty)

1. pop (data)

2. print (data)

Converting Decimal numbers to Binary –

Consider the following pseudo code and see the outcome –

1. Read (number)

2. Loop (number > 0)

a. digit = number modulo 2

b. print (digit)

c. number = number / 2

The problem with this code is that it will print the binary number
backwards.

(For Example : 19 become 11001000 instead of 00010011).

To overcome this problem, instead of printing the digit right away, we
can push it onto the stack. Then after the number is done being converted,
we pop the digit out of the stack and print it.

1. Evaluating arithmetic expressions (This is another example of arithmetic
expression)

A prefix, infix and postfix expression can be written as :

Prefix : + a b

Infix : a + b

Postfix : a b +

In high level languages, an infix notation cannot be used to evaluate
expressions. We must analyse the expression to determine the order in which
we evaluate it. A common technique is to convert an infix notation into a postfix
notation, then evaluating it.

73

Stack and Their
Applications

Infix to Postfix Conversion –

Before discussing about the infix to postfix conversion first of all let's
discuss about the priority of operators. Given below is the hierarchy of priority
of operators :

(1) ^ (Exponentiation) – Highest Priority

(2) *,/ (Multiplication/Division)

(3) +,– (Addition, Subtraction) – Lowest Priority

So, it can be concluded that exponentiation has higher priority
multiplication/ division have equal priority and similarly addition/subtraction
have equal priority.

An infix expression can be converted into postfix form by pushing the
operands on the stack. The Rules for conversion of the same is given below :

If the stack contains a higher priority operator and we are trying to push
a lower priority operator, then it will not be allowed until and unless the lowest
priority operator is popped out, to understand this see following example,

2. Now if the stack contains a lower priority operator and we are trying
to push a higher priority operator, then it will be allowed, to understand
this see following example,

1. If the stack contains an equal priority operator and we are trying to push
an operator of same priority, then it will be allowed, to understand this
see the following example,

Algorithm for Conversion of an Infix expression to Postfix. The following
explanation will help you to understand better :

Suppose A is an arithmetic expression written in infix notation. The given
algorithm finds the equivalent postfix expression P, Push "("onto STACK,
and add ")" to the end of A.

2. Scan A from left to right and repeat steps 3 to 6 for each element of
A until the STACK is empty.

3. If an operand is encountered, add it to P.

4. If a left parenthesis is encountered, push it onto STACK.

74

Data Structure Using C 5. If an operator is encountered, then :

(a) Repeatedly pop from STACK and add to P each operator (on the
top of STACK) which has the same precedence as, or higher
precedence.

(b) Add the operator to STACK. [End of if structure]

6. If a right parenthesis is encountered then :

(a) Repeatedly pop from STACK and add to P each operator (on the
top of STACK) until a left parenthesis is encountered.

(b) Remove the left parenthesis. (Do not add the left parenthesis to
P) [End of if structure]

[End of Step 2 loop]

7. Exit

The example below shows us the outcome of the above algorithms, but
with different expressions.

 Check Your Progress – 5 :
1. Postfix of the Infix expression : 2 + 3 * (9 – 7) % 3 is

[A] 97–3*3%2+ [B] 2397–*3%+ [C] 23+97–*3% [D] 23973+*–%

2. is also known as reverse polish notation.

[A] Infix [B] Prefix

[C] Postfix [D] Node of the above

3. Postfix of the Infix expression : A * B – (C + D) + E is .

[A] AB*CD+–E+ [B] ABCDE*–++

[C] AB*CD+–E+ [D] CD+B–A*E+

6.5 Let Us Sum Up :

In this Unit there is lot of leaning about Stack. Whenever the data
elements are arranged one above the other or one after another, then this type
of structure is called stack. In a stack, data elements can be always inserted
from top of the stack and can also always be deleted from the top position;
hence, it follows, Last in First out (LIFO) order. The addition of an element

75

Stack and Their
Applications

to a stack is called performing PUSH operation of function and deletion of
an element from a stack is called performing POP operation or function.

Consider the time of insertion of an element, if the stack is full then
this condition is always called Stack Overflow. And, similarly, consider that
at the time of deletion if the stack is empty and we are trying to delete an
element, then this condition is always known as Stack Underflow. Stacks are
represented in two ways namely 1) Array Implementation and 2) Linked List
Representation.

The Push and Pop operations for a Stack can be implemented as : PUSH
Function : The Push function adds an element to the stack. At the time of
addition of an element, the stack overflow condition is checked, that is, if the
stack is full or not. If not, then the position of top pointer is shifted up by
one place and the desired element is added at that position. Now, the element
which was last inserted becomes the TOP element. There is POP Function :
The Pop function deletes an element from the top of the stack. At the time
of deletion of an element, the stack underflow condition is checked out, that
is, if the stack is empty or not, if not, then, the element to be popped out
is first stored into a variable, then the position of top pointer is decremented
by one step, making the next element as TOP element.

There is Infix to Postfix Conversion. Now at the end of this unit we
also discussed about the priority of operators. Given below is the hierarchy
of priority of operators. Two types of priority of operator :

1. ^ (Exponentiation) – Highest Priority

2. *,/ (Multiplication/Division)

3. +,– (Addition, Subtraction) – Lowest Priority

It can be concluded that exponentiation has always higher priority
multiplication/and division have always equal priority and similarly addition/
subtraction have equal priority.

6.6 Suggested Answers For Check Your Progress :

 Check Your Progress 1 :

1. [B] 2. [C]

 Check Your Progress 2 :

1. [C] 2. [A]

 Check Your Progress 3 :

1. [D] 2. [A] 3. [B]

 Check Your Progress 4 :

1. [D] 2. [C]

 Check Your Progress 5 :

1. [B] 2. [C] 3. [A]

6.7 Glossary :

1. Stack : Stack is a linear data structure, which can be implemented by
either array of Link–List. It is collection of data implemented in LIFO
(Last In First Out) ordering.

76

Data Structure Using C 2. Inorder : Inorder is a method of writing expression, in which all binary
operators are written between two operands. In our day to day lives,
we use Inorder expression.

6.8 Assignment :

• Write a program to convert any given Infix expression to Postfix.

6.9 Activity :

1. Write a program to reverse the string using stack.

2. Write a program to find Binary string of a given number using stack.

6.10 Case Study :

Search 8–Queen puzzle on the Internet and try to understand it. Also
write the program to solve 8–Queen puzzle to find and print all possible
combinations.

6.11 Further Reading :

• Data Structure through C by Yashvant Kanetkar.

• Data Structures Using "C" by Tanenbaum.

• Data Structures and Program Design in "C" by Robert L. Kruse.

77

UNIT STRUCTURE

7.0 Learning Objectives

7.1 Introduction

7.2 Definition

7.3 Basic Operations Performed on Queue

7.4 Array and Link–List Representation of Queue

7.4.1 Array Representation of Pueue

7.4.2 Link–List Representation of Queue

7.5 D–Queue

7.6 Circular Queue

7.7 Applications of Queue

7.8 Let Us Sum Up

7.9 Suggested Answer for Check Your Progress

7.10 Glossary

7.11 Assignment

7.12 Activities

7.13 Case Study

7.14 Further Readings

7.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand Basic Operations Performed on Queue

• Understand Array and Link–List Representation of Queue

• Understand D–Queue

• Understand Circular Queue

• Know Application of Queue

7.1 Introduction :

In the last unit we have studied about the stack data structure, in which
the data elements were arranged one above the other. In this unit, we'll be
discussing about another type of data structure called queues in which the data
elements are arranged one after the other. For Example, a queue of people
at a railway reservation counter or in a network where many computers share
a few printers, then the print jobs may accumulate in a print queue. We'll also
be discussing about the array and linked list representation of queues. Apart
from this we are going to focus on various types of queues. This is of much
importance in a data structure. As you know in the earlier chapter there is
a limitation in case of stacks for the data structure hence in this chapter you

QUEUES AND THEIR
APPLICATIONS

Unit

07

78

Data Structure Using C are going to focus on further features of the data structure operations or
functions.

7.2 Definition :

 Queue :

Queue is a data structure in which elements are added through the rear
end and deleted through the front end.

Queue

A queue is a container or open box of objects (of a linear collection)
that are inserted one after the other and removed according to the (FIFO) first–
in first–out principle. For example, a queue of customers waiting to pay their
bills at the cashier's counters in a mall.

 Stack :

Stack is data structure in which elements are added and deleted through
the same end that is top of the stack. (As we have already studied in the previous
topic in details).

 Check Your Progress – 1 :
1. A Queue is a data structure.

[A] FIFO [B] LIFO [C] FILO [D] LILO

2. Value is inserted in the queue from position.

[A] front [B] rear

[C] top [D] All of the above

3. Value will be removed in the queue from position.

[A] front [B] rear

[C] top [D] All of the above

7.3 Basic Operations Performed on Queue :

The two basic operations performed on queue are insert and delete.

Elements in queue are inserted through the rear end using the insert
operations and deleted through the front end using delete operation.

Queue operations :

Operations on queue are :

1. Enqueue – insert item at the back of queue

2. Dequeue – return (and virtually remove) the front item from queue

3. Init – initialize queue, reset all variables

79

Queues and Their
Applications

7.4 Array and Link–List Representation of Queue :

Queues can be implemented statically or dynamically i.e., as an array
or as a linked list.

1. Array implementation of Queue

2. Link–List implementation of Queue

7.4.1 Array Representation of Queue :
As discussed earlier, implementation of the Queue can be done by taking

an Array of a Link–List. In the case of array, we need to take an array to
store the data elements of queue. Along with the array, we need two more
variables front and rear to keep track of front and rear positions of array.

Recall stack data structure. In the stack data structure, we have taken
a variable top, because in the stack, elements of the stack are inserted on the
top, and removed from the top position. In the case of queue, elements are
inserted at the rear position and removed from the front position. So, to
implement queue we need to declare following global variables.

include <stdio.h>

define MAX 10

int queue [MAX];

int front = –1;

int queue = –1;

Similar to the top variable of stack program, we need to initialize front
are rear variable with value –1. Variable front and rear are –1, that indicates
that the queue is empty, and there is no element is there in the queue.

[1] Enqueue () Function :

As we know, user will invoke enqueue () function to insert an element
into the queue. We have already discussed that the value in the queue is inserted
at rear position. So, to implement enqueue () function, we will check the rear
position if it is MAX –1, then queue is full (as array queue, do not have space
to accommodate new value). Otherwise, we need to increment the value of
rear variable by 1, and we need to place the value on the rear position of
the queue array. When the first element is inserted, we also need to set front
variable to 0. The following figure will help you to understand the functioning
of enqueue () function.

80

Data Structure Using C Function enqueue () can be implemented as follow :

void enqueue (int val)

{

if (rear == MAX –1)

{

printf ("Queue Overflow :");

return;

}

rear++;

queue[rear] = val;

if (front == –1)

front++;

}

[2] Dequeue () Function :

In the dequeue () function, we need to check front variable, it is –1
then the queue is underflow (as there is no element in the queue array to delete
and return). Otherwise, we copy the element situated on the front position of
the array into the temporary variable 'tmp' and increment the front variable.
Before doing this, we need to check one more condition. If the value of front
and rear variables is same, that means user is deleting the last value from the
queue. In such situation we need to set front and rear both variables to –1.
The following figure will help you to understand the function dequeue ().

 To implement the dequeue () function, following code need to be
written :

int dequeue ()

{

int tmp;

if (front == –1)

{

printf ("Queue Underflow :");

return 0;

81

Queues and Their
Applications

}

tmp = queue [front];

if (front == rear)

front = rear = –1;

else

front++;

return tmp;

}

 Check Your Progress – 2 :
1. Identify the TRUE statement from the given below :

[A] In enqueue () function, front variable is increased and in dequeue
function it will be decrease.

[B] In enqueue () function, front variable is decreased and in dequeue
function it rear variable will be decrease.

[C] In enqueue () function front will be increase and in dequeue ()
function rear will be increase

[D] None of the above.

2. Identify the statement, we need to write in dequeue () function, while
implementing queue using an array.

[A] if (rear == MAX –1) [B] rear++;

[C] queue[rear] = val; [D] front++;

7.4.2 Link–List Representation of Queue :
Data structure Queue can be implemented using Link–List data structure.

Like singly Link–List we will create a structure of node with two data elements :
data and next. We will declare two pointer variables of type 'struct node' :
front and rear. Both pointers, * front and * rear will ne initialized with NULL
value.

Struct node

{

Int data;

Struct node *next;

} *front = NULL, *rear = NULL;

[1] Enqueue () Function :

To implement enqueue () function, we need to create a new node using
malloc () function. If malloc () function returns NULL value, instead of address
of new node, we will print the message that Queue is full. Otherwise, we will
insert the newnode to the end (rear) of the queue. Make sure, in the implementation
of the queue using Link–List, *front will always point to first node of the
Link–List and *rear always point to the last node of the link list. Figure given
below will help you to understand functioning of the enqueue () function of
the queue implemented using Link–list.

82

Data Structure Using C

From the figure, you will come to know that, initially when we execute
the program there no node is there in the Link–List and * front and * rear
both will have NULL value. When user inserts value 5 to the queue, we create
a new node and both pointers, *front and *rear points to this node. When user
inserts another value 10, at that time a new node is created and will place
value 10 into the data part of the new node. We will copy the address of the
new node into the next part of the rear node (*rear points to memory location
100). Now because the new node with value 10 is inserted in the Link–List,
rear pointer should point to newly inserted node. Therefore, we will place the
address of new node into the rear pointer. The following code, we need to
write to implement enqueue () function.

void enqueue (int val)

{

struct node *newnode;

newnode = (struct node *) malloc (sizeof (struct node));

if (newnode == NULL)

{

printf("\nQueue is Full :");

return;

}

newnode–>data = val;

newnode–>next = NULL;

if (front == NULL)

{

front = rear = newnode;

return;

}

rear–>next = newnode;

rear = newnode;

}

83

Queues and Their
Applications

[2] Dequeue () Function :

As we know dequeue () function is used to remove element from the
queue, and in the queue, element is removed from the front position. To
implement dequeue () function, we will place a temporary pointer on the first
node (by copying address from *front). We will move *front to its next node
and then we will delete that node. The following figure will give you better
idea to understand the functioning of dequeue () function.

The following code, we need to write to implement dequeue () function :

int dequeue ()

{

int data;

struct node * tmp;

if (front == NULL)

{

printf ("\nQueue Underflow :");

return 0;

}

tmp = front;

front = front–>next;

data = tmp–>data;

free(curr);

if (front == NULL)

rear = NULL;

return data;

}

 Check Your Progress – 3 :
1. Queue implemented using Link–List, *front and *rear will be

initially.

[A] –1 [B] 0 [C] 1 [D] NULL

84

Data Structure Using C 2. In queue data structure, condition needs to be check in dequeue
().

[A] overflow [B] underflow

[C] both [A] and [B] [D] None of the above

3. In () function of the queue, we need to use malloc () function.

[A] push [B] dequeue [C] peep [D] enqueue

7.5 D–Queue :

D–queue also called as double ended queue, is a data structure in which
the element can be inserted or deleted either through the front end or rear
end.

D–queue can be implemented and represented with a modified dynamic
array or with a doubly linked list.

A Deque is a generalization way of both the FIFO Queue and the LIFO
Queue (Stack). A Deque shows or represents a sequence of elements, with a
front and a back. Elements can be added at the front of the sequence or the
back of the sequence. The names of the Deque operations are self–explanatory :

However, unlike stack and queue, the deque (pronounced "deck") has
very few restrictions. Also, be careful that you do not confuse the spelling
of "deque" with the queue removal operation "dequeue."

 Check Your Progress – 4 :
1. data structure can be used as FIFO and LIFO ordering.

[A] stack [B] queue

[C] circular queue [D] Deque

2. is not a valid function for Deque.

[A] add_to_front [B] add_to_rear

[C] enqueue [D] remove_from_front

7.6 Circular Queue :

In a circular queue, if the 'front' is equal to the 'rear', the circular queue
will be considered as empty. If the circular queue is defined to contain n
elements, then it can only support n–1 elements, as after insertion of the nth
element, the rear will be equal to the front. So, we cannot say whether the
queue is empty or full.

The given figure shows the representation of a circular queue, in which
the value of the front and rear both are 0, if there is a single element.

85

Queues and Their
Applications

[Circular Queue]

 Algorithm for Insertion of an Element :

1. If you see the rear is pointing to the last position, then you need go
to step 2 or else step 3.

2. Then make the rear value as 0 (zero).

3. Increment the rear value by 1 (one).

4. In case the front points where the rear is pointing and also the queue
holds a not NULL value for it, then in that case it is a queue overflow
state, so quit, else go to step 5.

5. Enter or Insert the new value for the queue position pointed by the rear.

 Algorithm for Deletion :

(a) In case the queue is empty then display an Underflow, message and quit,
else continue.

(b) Then delete the front element.

(c) In case the front is pointing to the last position of the queue then go
to step 4 else step 5.

(d) Finally make the front point to the first position in the queue and quit.

(e) Increment the front position by one.

7.7 Applications of Queue :

Queue is an abstract data type which follows FIFO and because of this
property queue is applicable in the following scenario. Queue is used when
things don't have to be processed immediately, but have to be processed in
First In First Out (FIFO) order like Breadth First Search. This property of queue
makes it useful in the following scenarios :

1. When resources are required to be shared between multiple users. Examples
in CPU scheduling, Disk Scheduling.

2. When data is transferred asynchronously between two processes. Examples
in pipes, IO Buffers, file IO, etc.

 Check Your Progress – 5 :
1. is/are application(s) of queue data structure.

[A] CPU scheduling [B] Disk scheduling

[C] Breadth First Search [D] All of the above

2. is a memory efficient version of queue.

[A] stack [B] tree [C] graph [D] circular queue

86

Data Structure Using C 7.8 Let Us Sum Up :

In this Unit we have focused on queue and types of queues. The queue
data structure can be characterized by the fact that inducing or insertions are
made at one end and at the same time deletions are made at another end. Further
the first element of queue is called as a front element and the last element
of queue is called as a rear element. In case of queues, we can insert an element
from the rear end and we can delete an element from the front end.

The queue follows FIFO order, in which the element which is inserted
first will be the first one to be taken out. In case the queue is full and we
are trying to insert an element to it, then this condition is called Overflow
and if the queue is completely empty and we are trying to delete an element
from it, then this condition is called as Underflow.

Further we have studied that queues can be implemented statically or
dynamically i.e., as an array or as a linked list. There are two basic operations,
add and delete, which can be performed on queues. As we have understood
about the queue type one can conclude by noting following type of queues :

• Circular Queue – In circular queue, if the 'front' is equal to 'rear', the
circular queue will be considered as empty. If the circular queue is defined
to contain n elements, then it can only support n–1 elements, as after
insertion of nth element, the rear will be equal to front. So, we cannot
say whether the queue is empty or full.

• Double Ended Queue – Always a double ended queue is an abstract
data structure which implements a queue for which elements can only
be added to or removed from the front (head) or back (tail). These
dequeues can be of following given types : a) See that an input–restricted
deque, where deletion can be made from both ends, but input can be
made at one end.2) See that an output–restricted deque, where input can
be made at both ends, but output can be made from one–end only.

• Priority Queue – A priority queue can be considered as a modified or
changed queue, but when any one would get the next element off the
queue, the highest priority one is retrieved or accessed first. Even a queue
is a special case of a priority queue where an element's priority is the
time, that element was inserted. The highest priority element is at the
top.

At the end of this unit, it is also important to learn about few applications
of queue : those are

I. When resources are required to share between multiple users. Examples
in CPU scheduling, Disk Scheduling.

II. When data is transferred asynchronously between two processes. Examples
in pipes, IO Buffers, file IO, etc.

7.9 Suggested Answers For Check Your Progress :

 Check Your Progress 1 :

1. [A] 2. [B] 3. [A]

 Check Your Progress 2 :

1. [D] 2. [D]

87

Queues and Their
Applications

 Check Your Progress 3 :

1. [D] 2. [B] 3. [D]

 Check Your Progress 4 :

1. [D] 2. [C]

 Check Your Progress 5 :

1. [D] 2. [D]

7.10 Glossary :

1. Queue – is an abstract data type which follows FIFO.

2. Deque – A Deque is a generalization way of both the FIFO Queue and
LIFO Queue (Stack).

7.11 Assignment :

• Write following programs : [1] Implementation of queue using array,
[2] Implementation of queue using Link–List and [3] Circular queue.

7.12 Activity :

1. Watch the process of issuing tickets at the ticket window to understand
a queue data structure.

7.13 Case Study :

• Write a program that reads a file, breaks each line into words, strips
whitespace and punctuation from the words, and converts them to lowercase.

7.14 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahani.

4. Data Structures : An Advanced Appraoch Using 'C' by Esakov and Weises.

5. Data Structures and 'C' Programming by Cristopher J. Vanwyk.

88

Data Structure Using C BLOCK SUMMARY :

• Array is a linear data structure, used to store collection of homogeneous
(same) type of data.

• Array stores data elements in contiguous memory location.

• Link–List is similar to Array. It is linear data structure which stores
homogeneous collection of data.

• Difference between Array and Link–List is Array stores all data element
in contiguous memory locations, whereas Lin–List stores all data elements
in non– contiguous memory locations.

• To construct the Link–List we need to use dynamic memory allocation
functions like malloc (), calloc (), and free ().

• Dynamic memory allocation functions allow user to create the variable
(allocation of memory) at runtime (while the program is in running).

• Function malloc (), is used to create a single instance of the variable,
function calloc (), is used to create an array (collection) of multiple
instances at runtime.

• Function free (), is used to release the memory. It is used to delete the
variable at run time, which is created by malloc () or calloc () function.

• There are three types of Link–Lists. [1] Singly Link–List, [2] Doubly
Link–List and [3] Circular Link–List.

• Singly Link–List stores one data element and one address part. In the
address part each node stores the address of the next node. Singly Link–
List allow user to traverse in forward direction only. User cannot travers
in reverse direction because the node structure does not store address
of the previous node.

• The node of the Doubly Link–List has 3 parts, one data and two address
parts. Two address parts (lptr and rptr) stores the address of the previous
node and next node. Doubly Link–List allows user to travers in both
(forward and reverse) directions.

• In the Circular Link–List we store the address of the first node in the
address (next) part of the last node. This allows users to move to the
first node after visiting last node.

• Stack is a linear data structure, which stores the data and returning to
the user in LIFO (Last In First Out) manner.

• Stack data structure can be implemented using Array or Link–List.

• Stack data structure is useful in reversing the string, computing binary
of integer number, to convert Infix expression to Postfix or Prefix, and
also in the evaluation of Postfix expression.

• Calculator uses built–in stack circuitry, to evaluate Infix expression
entered by the user.

• Stack is also a good replacement of recursion.

• Infix expressions are such expressions, in which we write all binary
operators between two operands. In our daily life we use Infix expression.
For example : 2 + 3 is infix expression.

• Prefix expressions also known as polish notations are such expressions,
in which we write all binary operators first and the both operands. For
example : + 2 3 is prefix expression.

• Postfix expressions also known as reverse polish notations are such
expressions in which we write binary operators are written after the
operands. For example : 2 3 + is a postfix expression. It is easy to develop
a circuit, which can evaluate Postfix expression. Due to this reason
calculator converts the Infix expression into the Postfix first using stack
data structure and then evaluate Postfix expression in to the answer with
the help of stack.

• Queue is a linear data structure, which stores the data element and return
the value back to the user in FIFO (First In First Out) manner.

• Queue is implemented to schedule various processes to assign CPU to
them.

• Queue can be implemented by using Array or Link–List.

• Circular queue is a kind of queue which utilise the memory more
efficiently than queue data structure.

BLOCK ASSIGNMENT :

 Short Questions :

1. Explain node structure for singly Link–List.

2. Explain node structure for doubly Link–List.

3. Define Stack data structure.

4. What are the different data structures can be used to implement stack ?

5. List different applications of the Stack data structure.

6. Define : Queue.

 Long Questions :

1. List and explain different types of Link–Lists in detail.

2. What is Stack ? Write a program to implement stack using Array.

3. What is Stack ? Write a program to implement stack using Link–List.

4. What is Queue ? Write a program to implement queue using Array.

5. What is Queue ? Write a program to implement queue using Link–List.

6. What is Circular Queue ? Write a program to implement circular queue.

89

90

Data Structure Using C Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 4 5 6 7

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

Data Structure Using C

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 3 : TREE AND GRAPHS

UNIT 8 TREES

UNIT 9 OPERATIONS ON BINARY TREE

UNIT 10 GRAPHS

BCAR-201/
DCAR-201

Block Introduction :

In Previous blocks we have studied linear data structures as Array, Stack,
Queue and Linked List. In this block we will examine non–linear data structures
such as Tree and Graph. Trees and Graph data structures have the ability to model
real life problems and hence these data structures are important for modern
programming.

Tree Data Structure is a non–linear data structure and it is represented in
a hierarchical form. It is implemented by using a linked list which is best suitable.
Hence, it becomes easier to do operations like insertion, searching and deletion
as compared to linear data structure.

Graph is a collection of two sets i.e. set of vertices and set of edges that
can also be implemented using non–linear data structure. These can be used in
describing a wide range of relationships between objects. Such graphs allow real
world situations to be represented as models, depicted by generalized structures.

Block Objectives :

After learning this block, you will be able to understand :

• Basic terminologies of Tree

• Basic tree representation using array and linked list

• Different operations on trees

• Traversal of binary tree– Inorder, Preorder and Postorder

• Basic Terminologies, type and representation of Graph

• Graph traversal : BFS and DFS

• Shortest path algorithm : Kruskal's algorithm and Prim's Algorithm

Block Structure :

Unit 8 Trees

Unit 9 Operations on Binary Tree

Unit 10 Graphs

TREE AND GRAPHS

91

UNIT STRUCTURE

8.0 Learning Objectives

8.1 Introduction

8.2 Basic Terminology

8.3 Binary Tree

8.4 Binary Tree Representation using Array and Linked List

8.4.1 Array (Sequential) Representation

8.4.2 Linked List Representation

8.5 Binary Search Tree

8.6 Let Us Sum Up

8.7 Suggested Answer for Check Your Progress

8.8 Glossary

8.9 Assignment

8.10 Activities

8.11 Case Study

8.12 Further Readings

8.0 Learning Objectives :

After learning this unit, you will be able to understand :

• Basic concepts and terminologies of Trees.

• Concepts of Binary Tree and Binary Search Trees.

• Representations of Trees using Arrays and Link–List.

• Applications of Trees.

8.1 Introduction :

In the last unit we have discussed about linked lists which is a method
of dynamic memory allocation. In this unit we shall discuss about one of the
most widely accepted data structures called trees. A tree is a widely used
nonlinear data structure that represents a hierarchical structure (Parent – Child
Relationship) with a set of connected nodes, such as the root node, the left
child node and the right child node. It is also an acyclic connected graph in
which each node has a zero or more children nodes and only one parent node.
We shall also discuss the different representations of tree data structure.

Tree is a nonlinear data structure that contains nodes which are connected
by directed edges. It contains one root node and its child nodes. Tree represents
data in hierarchical form. Following Figure represents Tree Data structures.

TREES
Unit

08

92

Data Structure Using C

Tree Data Structure

A, B, C, D, E, F, G, H, I and J are called the nodes and the lines that
connects these nodes are called the edges. Node A is called the Root node
of this tree. Let's understand the basic terminology of the tree.

8.2 Basic Terminology :

To understand the tree data structure, some of the basic terminologies
should understand first. These terminologies are as below :

• Root – The very first node of the tree is called the root node. A special
node which does not have any parent. In degree of root node is 0. In
the above tree, node A is Root node because it has no parent node.

• Parent and Child Node – If there is an edge (X,Y) between nodes X
and Y then X is known as Parents (Father) node of Y. The node Y is
known as Child node of X. The child will have only once parent node.
In Example B & C are child of A.

• Degree of a node – Total number of sub trees a node have. The Degree
of node A is 2 because it has two sub trees.

• Degree of a tree – The maximum number of nodes a tree contains. The
degree of the above tree is 10 because it contains 10 nodes.

• Indegree – number of branches terminated at given node. In degree of
all the nodes except root node is 1 in above tree

• Outdegree – It is the number of branches emerging from a given node.
In above tree Outdegree of nodes A, B, E, F is 2. Out degree of node
C is 1. Outdegree of node D, G, H, I and J is 0 because they do not
have any child.

• Leaf (Leaves) Node – The node having Outdegree 0 is known as Leaf
node. In Simple words the node having no child node is called leaf node.
In the given tree, D, G, H, I, J are leaf nodes. Leaf nodes are also known
as External nodes in tree.

• Internal Nodes – All the nodes of the tree which have child are known
as Internal Nodes. B, C, E, F are Internal Nodes of the given tree.

• Siblings – The nodes which are the children of the same parents. G and
H are siblings because their parent is same.

• Ancestors of a node – all the nodes along the path from the root node
to the node are called ancestors of that node. Ancestors of node J are
F, C and A, because they fall in the path of root node to the node J.

• Descendants of a node – all the nodes that are in subtrees of a given
node are called descendants of that node. Descendants of node C, are
F, I and J.

93

Trees• Level of a node – it represents the number of connections between the
node and the root. Root node has level 0. B & C are at level 1 and
so on. G, H, I and J are on level 3.

• Height of a tree – Height of the tree is number of edges from the root
node to its most distant leaf node. In simple terms, the maximum level
number of the node in the tree is called the height or depth of the tree.
The Height of the given tree is 3 because the maximum level number
is 3 or the number of edges between the root node to the deepest nodes
G, H, I and J are 3. Hence height of this tree is 3.

• Depth of node – The depth of a node is the number of edges from
the node to the root node. Means one need to traverse that number of
edges if he wants to visit that node from the root node. The depth of
E is 2. Depth of G is 3.

• Following figure has shown all the important terminologies

Leaf Nodes

 Applications of Tree :

• Trees are used to represent Computer File Systems.

• Syntax tree is used by compilers to check the syntax of the program
we write.

• Trees are used in many popular databases to implement indexing.

• Trees are used to store data in routing tables in routers.

 Check Your Progress – 1 :
1. Calculate the height of the following tree.

2. Find Root node, leaf nodes, and siblings of the following tree.

3. Find the Ancestors of a node I.

 Root Node
Edge

 Siblings

 Level 2

 Level 1

 Level 0

Level 3

94

Data Structure Using C 8.3 Binary Tree :

In previous section we have discussed the terminologies of basic trees.
Now it's time to learn the concept of the special type of tree called binary
tree. A Binary Tree is a special type of tree in which each node has at most
(maximum) two children. In simple words a binary tree is a tree in which
each of its nodes has either 0 or 1 or 2 child. In General Tree it may possible
that the tree has more than 2 children. Following figures shows the difference
between general and binary tree. Fig. A is a Binary Tree where Fig. B is General
Tree.

Fig. A – Binary Tree Fig. B – General Tree

Fig. A is Binary tree because each of its nodes has at most 2 children
but Fig. B is not considered as Binary Tree because node B has more than
2 children. So it is known as basic or general tree.

 Complete Binary Tree :

A Complete Binary tree is a tree in which each level (except last level)
must be completed (full), before we start a new level. Also note that all the
nodes should be filled from the left.

Complete Binary Tree

Above tree is complete binary tree because except the last level each
level has full nodes and at last level the nodes are filed from left.

 Check Your Progress – 2 :
1. What is the difference between general and binary tree ?

2. Define Complete Binary Tree.

8.4 Binary Tree Representation using Array and Link–List :

We will learn two ways to represent binary tree :

1. Array Representation

2. Linked List Representation

95

Trees8.4.1 Array Representation :
In array representation of the binary tree, an index array is used to

represent the nodes of the tree. Let's represent the following tree using array.

To represent the binary tree using array, each nodes of the tree are
assigned an index value starting from root node. Root node is stored at array
index 1. All the nodes of next level are stored at subsequent index and so
on. The array representation the above tree is as below :

A B C D E F G

1 2 3 4 5 6 7

Array Representation of the Tree

Root node A is stored at index 1. Node B and C are in the same levels
and hence stored in index 2 and 3 subsequently. Next D, E, F and G are on
next level and hence stored at 4, 5, 6 and 7th index.

In this type of implementation, the location of left child of a particular
node can be identified using the following formula :

If the node is at Ith location then

Left child of that node would be at 2 * I location.

Right child of that node would be at (2 * I) + 1 location.

Suppose we want to find out the left and right child of node C. Node
C is stored at 3rd location so I=3.

Left child of node C is stored at : 2 * 3 = 6th Location.

Right child of node C is stored at : (2 * 3) + 1 = 7th Location.

We can verify that left child of the node C is node F which is stored
at 6th location in the array and right child of node C which is node G is
stored at location 7 in the array representation.

8.4.2 Link–List Representation :
A binary tree can be represented using link–list. Doubly link–list is used

to represent binary tree, the node structure of the doubly linked list would
be like :

LPTR Info RPTR

Node Structure of Doubly Link–List

Where LPTR is the pointer used to store the memory address of the
left sub tree (left child) of the node and RPTR is the pointer used to store
the memory address of the right sub tree (right child) of the node. Info part
is used to store the data.

1

3

7654

2

96

Data Structure Using C

The Linked Representation of the above Tree would be :

Linked Representation of Binary Tree

In the above figure we can see that A is the root node and in LPTR
of A, the address of its left child B is stored, similarly in RPTR of A, the
address of its right child is stored. By following LPTR and RPTR links, one
can traverse the nodes of the binary tree. If the node has no left child then
the LPTR would be NULL. Similarly if the node has no right child in that
case RPTR would be NULL and if the node is leaf node then in that case
both LPRT and RPTR would be NULL.

 Check Your Progress – 3 :
1. Represent the following tree using Array and Link–List.

2. The node in the tree having indegree 0 is called ?

(A) Leaf Node (B) Isolated Node

(C) External Node (D) Root Node

3. In which of this tree the value of left children are less than the value
of its parent node and the value of right children are greater than the
value of its parent ?

(A) Complete Binary Tree (B) Binary Search Tree

(C) Threaded Tree (D) Full Binary Tree

4. If the parent node in the binary tree is stored in ith location then at
which position its left child is stored ?

(A) 2 * i (B) 2 * i + 1 (C) 2 * i – 1 (D) 2 * i + 2

97

Trees5. Which of the following type best represents tree using link–list ?

(A) Single Link–List (B) Single Circular Link–List

(C) Doubly Link–List (D) All of above

6. Which of the following are the applications of the tree data structure ?

(A) Representation of Computer File System

(B) Syntax Tree in compiler

(C) Indexing in Database

(D) All of Above

8.5 Binary Search Tree :

A binary tree is called Binary Search Tree, if each node N of Tree must
satisfies following property,

The value of node N is greater than every value in the left sub–tree
of N node and it is less then every value in the right sub–tree of N node.
In Simple words Binary Search Tree also called as BST or ordered tree is
a binary tree in which each value of the left subtree of the node is less than
the value of the node and each value of the right subtree of the node is greater
than the value of the node. Example :

Binary Search Tree

We can see that for each node of the above tree, the values of its left
child is smaller than the value of the node and the value of the right child
is greater than the value of the node.

8.6 Lets Us Sum Up :

Tree is a nonlinear data structure that contains nodes which are connected
by directed edges. It contains one root node and its child nodes. Tree represents
data in hierarchical form. Trees are normally used to represent computer file
system. It is also used in compilers and routers. Binary trees are the special
types of general trees where each node has at most 2 children.

Binary trees can be represented using Array representation or Linked List
representation. Doubly Linked list is used to represent binary tree where the
node has three parts. LPTR, Info and RPTR to store the address of left child,
data and the address of the right child respectively.

A Complete Binary tree is a tree in which each level (except last level)
must be completed (full), before we start a new level. A binary tree is called
Binary Search Tree or BST, if each node N of Tree must satisfies following
property, the value of node N is greater than every value in the left sub–tree
of N node and it is less than every value in the right sub–tree of N node.

98

Data Structure Using C 8.7 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See sec 8.2

 Check Your Progress 2 :

See sec 8.3

 Check Your Progress 3 :

1. See sec 8.4 2. D 3. B

4. A 5. C 6. D

8.8 Glossary :

1. Root – The very first node of the tree is called the root node. A special
node which does not have any parent.

2. Parent and Child Node – If there is an edge (X, Y) between nodes
X and Y then X is known as Parents (Father) node of Y. The node Y
is known as Child node of X. The child will have only once parent node.

3. Degree of a node – Total number of sub trees a node have.

4. Degree of a tree – The maximum number of nodes a tree contains.

5. Indegree – number of branches terminated at given node.

6. Outdegree – It is the number of branches emerging from a given node.

7. Leaf (Leaves) Node – The node having Outdegree 0 is known as Leaf
node. In Simple words the node having no child node is called leaf node.

8. Internal Nodes – All the nodes of the tree which have child are known
as Internal Nodes.

9. Siblings – The nodes which are the children of the same parents.

10. Ancestors of a node – all the nodes along the path from the root node
to the node are called ancestors of that node.

11. Descendants of a node – all the nodes that are in subtrees of a given
node are called descendants of that node.

12. Level of a node – it represents the number of connections between the
node and the root. Root node has level 0.

13. Height of a tree – Height of the tree is number of edges from the root
node to its most distant leaf node. In simple terms, the maximum level
number of the node in the tree is called the height or depth of the tree.

14. Depth of node – The depth of a node is the number of edges from
the node to the root node. Means one need to traverse that number of
edges of he wants to visit that node from the root node.

15. Binary Tree – A Binary Tree is a special type of tree in which each
node has at most two children.

16. Complete Binary Tree – A Complete Binary tree is a tree in which
each level (except last level) must be completed (full), before we start
a new level.

17. Binary Search Tree – A binary tree is called Binary Search Tree or
BST, if each node N of Tree must satisfies following property, the value

99

Treesof node N is greater than every value in the left sub–tree of N node
and it is less than every value in the right sub–tree of N node.

8.9 Assignment :

1. How to calculate the height and depth of the tree ?

2. What are the applications of Tree ?

3. What characteristics make binary tree a Binary Search Tree ?

8.10 Activities :

1. Write a C program to display all the leaf nodes in tree.

2. Write a C program to calculate total number of nodes of the given binary
tree.

8.11 Case Study :

An address book contains the name and other details of employee's. The
Admin wants to search for a particular name and find out the information related
to it. Data shall keep updating after each operation (Insertion, Deletion).
Formulate the problem and write a C program with appropriate data structures
and algorithms.

8.12 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahni.

4. Data Structures : An Advanced Approach Using 'C' by Esakov and Weises.

5. Data Structures and 'C' Program by Christopher J. Van Wyk

6. An Introduction to Data Structures with Applications by Tremblay and
Sorenson.

100

UNIT STRUCTURE

9.0 Learning Objectives

9.1 Introduction

9.2 Operations on Binary Search Tree

9.3 Binary Tree Traversals

9.3.1 Inorder Traversal

9.3.2 Preorder Traversal

9.3.3 Postorder Traversal

9.4 Recursive Algorithms for Inorder, Preorder and Postorder

9.5 Let Us Sum Up

9.6 Suggested Answer for Check Your Progress

9.7 Glossary

9.8 Assignment

9.9 Activities

9.10 Case Study

9.11 Further Readings

9.0 Learning Objectives :

After learning this unit, you will be able to understand :

• Different operations on Binary Search Tree.

• Inorder, Preorder and Postorder Traversals of Binary Tree.

• Recursive Algorithms of Binary Tree Traversals

9.1 Introduction :

In previous unit we understood the concept of binary tree and binary
search tree. Now it is essential to know which kind of operations we can perform
on binary search tree. As we discussed that binary search tree is an ordered
tree where the left sub–tree of the node has value less than it and the right
sub–tree of the node has value greater than the value of node. We can perform
insert, delete as well as search operations on the Binary Search Tree. In
following section we will discuss these operations with example.

9.2 Operations on Binary Search Tree :

As we discuss we can perform following operations on the Binary Search
Tree :

• Insert – Inserting a new node in to BST

• Delete – Deleting a node from BST

• Search – Searching a node from BST

OPERATIONS ON BINARY TREE
Unit

09

101

Operations on
Binary Tree

 Insert Operation :

To insert an element in the binary search tree, first finds its proper
position in the tree. Start searching from the root node if the value of the
new node is less than the value of the root node then the new node will be
inserted in the left subtree and if the value of the new node is greater than
the value of the root node then the new node will be inserted in the right
subtree.

Let's understand the same by inserting multiple elements in the binary
search tree.

– Insertion of element 15. As the tree is empty, element 15 is inserted
and becomes the root node.

– Insertion of element 10. Compare the value 10 with the value of the
root node which is 15. 10 is less than 15 so element 10 will be inserted
at the left sub–tree. Left sub–tree is empty so 10 will be inserted as
a left child of 15.

– Insertion of element 25. Again start form the root node and compare.
Element 25 is greater than the root node element 15, so it will be inserted
as right child.

– Insertion of element 6. Compare element 6 with the element of the root
node which is 15. Element 6 is less than 15 so it will be inserted at
the left sub–tree. Here left sub–tree is not empty and has left child 10.
So element 6 will be compared with the 10 and it is less than 10 so
it will be inserted at the left child of 10.

– Insertion of Element 12. Compare it with 15, it is less than 15 so will
be inserted at the left sub–tree. Now at left sub–tree 10 is present so
12 is compared with 10 and is greater than 10 so it will be inserted
at the right side of 10.

102

Data Structure Using C

– Insertion of element 20. It is greater than 15 so will be inserted at right
side. At right side 25 is present so 20 is compared with 25 and is less
than it so 20 will be inserted at the left side of 25.

– Insertion of element 30. It is greater than 15 and hence should be inserted
at the right side. At right position 25 is present so 30 is compared with
25 and found greater that it so will be inserted at the right of 25.

By this way the elements are added in the binary search tree. If you
look at any node of this tree you can see that all the nodes in the left subtree
have values less than the value of the node and all the nodes in the right subtree
have values greater than the value of the node.

 Search Operation :

When you want to search any element in Binary Search Tree, Start
Searching with root node. Compare the value of root node with search element,
if both are same then element is found and search is complete. Else if the
search value is less than the value of root node than search the element in
the left subtree and if the value is greater than the value of the root node
than search the element in the right subtree. Follow the same procedure for
each node until you found the element.

 Delete Operation :

There are three cases of Delete Operations in Binary Search Tree.

– Case 1 : Deletion of leaf node. We want to delete leaf node (a node
with no child). As it has no child so it will be directly removed from
the tree. Suppose we want to delete node 6 from the following tree than
the tree will look like :

103

Operations on
Binary Tree

Before

After

– Case 2 : Deletion of node which has either left or right sub–tree.
If a node to be deleted has only one left sub–tree or right sub–tree then
the sub tree of the deleted node is linked directly with the parent of
the deleted node. Suppose we want to delete node 10 from the following
tree. After deletion the tree will look like :

Before

After

– Case 3 : Deletion of node having both left and right sub tree : If
the node to be deleted has both left and right sub–tree then in that case
follow these steps :

1. find inorder successor of the deleted node

2. append the right sub–tree of the inorder successor to its grand parent

3. replace the node to be deleted with inorder successor

To find the inorder successor of the deleted node we need to traverse
the tree in inorder. Inorder tree traversal is performed using following three
steps :

• Traverse the left subtree in Inorder (Recursive Process)

• Visit the root node.

• Traverse the right subtree in Inorder (Recursive Process)

104

Data Structure Using C

Inorder Traversal of the above tree is : 6, 10, 12, 15, 25. We will
learn inorder traversal in detail in upcoming section.

In Case 3 we want to delete a node having both left and right sub–
tree. Suppose in given tree we want to delete node 10.

Before

Here we need to delete node 10. So first we need to find the inorder
successor of the node 10. Inorder traversal of this tree is 6, 10, 11, 12, 14,
15, 25. So the inorder successor of the node 10 is node 11. So node 10 will
be replaced by node 11 and the right subtree of node 11 which is node 12
will be appended with its grandparent 14. Hence after deletion of node 10
the Binary Search tree would be like :

After

 Check Your Progress – 1 :
1. Construct Binary Search Tree by adding the elements 50, 70, 40, 35,

45, 65, 80, 42.

2. How will the tree looks like after deletion of element 70 ?

105

Operations on
Binary Tree

9.3 Binary Tree Traversals :

The method of visiting each node of a tree is called a Tree Traversal.
There are three types of tree traversal methods :

– Inorder Traversal

– Preorder Traversal

– Postorder Traversal

9.3.1 Inorder Traversal :
In case of Inorder tree traversal method, the left node/sub–tree of the

tree is visited first, then the root node and finally the right node or right sub–
tree is visited (Left, Root, Right), which can be stated in steps as given below :

• Traverse the left sub tree in Inorder (Recursive Process)

• Visit the root node.

• Traverse the right sub tree in Inorder (Recursive Process)

Let's travers the given tree in inorder fashion. First it starts with root
node. Traverse the left sub–tree until you found a node which has no left child.
Visit that node and then traverse the right sub–tree of that node and repeat
these 3 steps for each node of the tree recursively.

Inorder Traversal : 6, 9, 10, 12, 15, 17, 20, 25, 30

9.3.2 Preorder Traversal :
In the preorder tree traversal method, the root node is visited first, then

the left sub–tree is visited and finally the right subtree is visited. (Root, Left,
Right). The steps are given below :

• Visit the root node.

• Traverse the left subtree in Preorder. (Recursive Process)

• Traverse the right subtree in Preorder (Recursive Process)

If we traverse the above tree in preorder then we got :

Preorder Traversal : 15, 10, 6, 9, 12, 25, 20, 17, 30

9.3.3 Postorder Traversal :
In the postorder traversal method, first the left subtree is visited, then

the right subtree is visited and then the root node is visited (Left, Right, Root).
The steps for the postorder traversal are :

• Traverse the left subtree in Postorder (Recursive Process)

• Traverse the right subtree in Postorder (Recursive Process)

• Visit the root node.

106

Data Structure Using C The postorder traversal of the above tree would be :

Postorder Traversal : 9, 6, 12, 10, 17, 20, 30, 25, 15

 Check Your Progress – 2 :
1. Find inorder, preorder and postorder traversals of the following BST ?

9.4 Recursive Algorithms for Inorder, Preorder and Postorder :

In previous section we have seen the inorder, preorder and postorder
traversals methods of the binary search tree. Now let's understand the recursive
algorithms for binary tree traversals.

 Recursive Algorithm for Inorder Traversal :

INORDER(PT)

INORDER is recursive function which is used to traverse the tree in
inorder. Here PT is the pointer that points to the root node of the tree. LPTR
points the left child and RPTR points the right child.

STEP 1 : [Check if tree is empty ?]

If PT=NULL then

Write "Tree is empty"

Return

STEP 2 : [Traverse the left sub tree in recursive fashion]

If LPTR(PT) != NULL then

CALL INORDER (LPTR(PT))

STEP 3 : [Visit the root node]

Write INFO(PT)

STEP 4 : [Traverse the right sub tree in recursive fashion]

If RPTR(PT) != NULL then

CALL INORDER (RPTR(PT))

STEP 5 : Return

PT

Inorder : D, B, E, A, F, C, G

107

Operations on
Binary Tree

 Recursive Algorithm for Preorder Traversal :

PREORDER(PT)

PREORDER is recursive function which is used to traverse the tree in
preorder. Here PT is the pointer that points to the root node of the tree.

STEP 1 : [Check if tree is empty ?]

If PT=NULL then

Write "Tree is empty"

Return

STEP 2 : [Visit the root node]

Write INFO(PT)

STEP 3 : [Traverse the left sub tree in recursive fashion]

If LPTR(PT) != NULL then

CALL PREORDER (LPTR(PT))

STEP 4 : [Traverse the right sub tree in recursive fashion]

If RPTR(PT) != NULL then

CALL PREORDER (RPTR(PT))

STEP 5 : Return

PT

Preorder : A, B, D, E, C, F, G

 Recursive Algorithm for Postorder Traversal :

POSTORDER(PT)

POSTORDER is recursive function which is used to traverse the tree
in postorder. Here PT is the pointer that points to the root node of the tree.

STEP 1 : [Check if tree is empty ?]

If PT=NULL then

Write "Tree is empty"

Return

STEP 2 : [Traverse the left sub tree in recursive fashion]

If LPTR(PT) != NULL then

CALL POSTORDER (LPTR(PT))

STEP 3 : [Traverse the right sub tree in recursive fashion]

If RPTR(PT) != NULL then

CALL POSTORDER (RPTR(PT))

STEP 4 : [Visit the root node]

Write INFO(PT)

STEP 5 : Return

108

Data Structure Using C PT

Postorder : D, E, B, F, G, C, A

 Check Your Progress – 3 :
1. Write recursive algorithms for inorder, preorder and postorder traversals.

2. If you want to delete the node having both left and right subtree in Binary
Search Tree then which of the following node will replace the deleted
node ?

(A) Inorder successor (B) Inorder predecessor

(C) Preorder successor (D) Postorder successor

3. Which of the following is a right sequence to be followed in post order
traversal of binary tree ?

(A) Left, Root, Right (B) Left, Right, Root

(C) Root, Left, Right (D) Left, Right, Left

4. Which of the following traversal technique in Binary Search Tree would
print the numbers in ascending order ?

(A) Postorder (B) Preorder

(C) Inorder (D) None of the above

5. What will be the preorder traversal of this BST ?

(A) 3, 4, 5, 10, 12, 15, 18 (B) 4, 3, 5, 12, 18, 15, 10

(C) 10, 5, 3, 4, 12, 18, 15 (D) 10, 5, 3, 4, 15, 12, 18

6. What will be the postorder traversal of the above tree ?

(A) 3, 4, 5, 10, 12, 15, 18 (B) 4, 3, 5, 12, 18, 15, 10

(C) 10, 5, 3, 4, 12, 18, 15 (D) 10, 5, 3, 4, 15, 12, 18

9.5 Let Us Sum Up :

In this section we have understood the insert, delete and search operations
of binary search tree. Insertion of new element requires finding out its proper
position on the Binary Search Tree. This is done by start comparing the newly
inserted element with the element of root node. If the new element is less
than the element of root node than it will be inserted at the left subtree else
it will be inserted at the right subtree.

109

Operations on
Binary Tree

Searching of element also requires comparing the value with the value
of root node and then either on left subtree or in right subtree based on its
value.

Deletion of element requires three criteria's to check. If the element to
be inserted is a leaf node than it will directly deleted. If it has left or right
subtree then the sub tree of the deleted node is linked directly with the parent
of the deleted node. If the deleted node has both left and right subtree then
the inorder successor of the deleted node will replace the deleted node and
any right subtree of inorder successor will be appended to its grandparent.

Vising any node in the binary tree is known as tree traversal. There are
there tree traversals techniques :

– Inorder – (Left, Root, Right)

– Preorder – (Root, Left, Right)

– Postorder – (Left, Right, Root)

We can implement these traversals using recursive algorithms. For that
we need to represent tree as a doubly linked list.

9.6 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

Refer Section 9.2

 Check Your Progress 2 :

Inorder : 8, 9, 10, 12, 15, 20, 25, 27, 30, 40

Preorder : 15, 10, 8, 9, 12, 25, 20, 30, 27, 40

Postorder : 9, 8, 12, 10, 20, 27, 40, 30, 25, 15

 Check Your Progress 3 :

1. Refer Sec 9.4 2. A 3. B

4. C 5. D 6. B

9.7 Glossary :

1. Inorder – This is one of the techniques to traverse a tree, which traverses
to Left Subtree first then displays the elements and then traverses to
Right Subtree.

2. Preorder – This is also one of the techniques to traverse a binary tree,
where first the element is displayed then left subtree is traversed and
then the right subtree is traversed.

3. Postorder – Another tree traversal technique where we traverse first to
the left subtree and then traverse to right subtree and finally display the
element.

9.8 Assignment :

1. How the elements are inserted in the binary search tree ?

2. How can you delete an element from the binary search tree where the
deleted node has both left and right subtree ? Give example.

3. Explain different recursive tree traversing techniques.

110

Data Structure Using C 9.9 Activities :

1. Write down C program to insert and delete element from Binary Search
Tree

2. Implement recursive C language functions for inorder, preorder and
postorder traversals based on the recursive algorithms.

9.10 Case Study :

List out the application areas of inorder, preorder and postorder traversals
in computer science. Understand how different tree traversal techniques are
used in such areas effectively.

9.11 Further Readings :

1. An Introduction to Data Structures with Applications by Tremblay and
Sorenson.

2. Data Structures Using "C" by Tanenbaum.

3. Data Structures and Program Design in "C" by Robert L. Kruse.

4. Fundamentals of Data Structures by Horowitz and Sahni.

5. Data Structures : An Advanced Approach Using 'C' by Esakov and Weises.

6. Data Structures and 'C' Program by Christopher J. Van Wyk.

111

UNIT STRUCTURE

10.0 Learning Objectives

10.1 Introduction

10.2 Definition

10.3 Terminology

10.4 Types and Representation of a Graph

10.5 Graph Traversal

10.5.1 Breadth First Search (BFS)

10.5.2 Depth First Search (DFS)

10.6 Shortest Path Algorithm

10.6.1 Kruskal's Algorithm

10.6.2 Prim's Algorithm

10.7 Let Us Sum Up

10.8 Suggested Answer for Check Your Progress

10.9 Glossary

10.10 Assignment

10.11 Activities

10.12 Case Study

10.13 Further Readings

10.0 Learning Objectives :

After learning this unit, you will be able to understand :

• The concept of Graphs.

• The different types of Graphs.

• The methods of representations of Graphs.

• The Graph traversal methods.

• The Shortest path algorithms.

10.1 Introduction :

In previous unit we studied binary tree data structures, which provide
a useful way of storing data for efficient searching. In Binary tree each node
can have at most two children however more general tree structures can be
created in which each node can have more numbers of child nodes. In this
unit we will be discussing about another type of non–linear data structure called
graphs and its method of representation.

We will also be discussing about the different shortest path algorithms
which are used to traverse a graph from a source node to a destination node.

GRAPHS
Unit

10

112

Data Structure Using C 10.2 Definition :

Graph is a nonlinear data structure that contains nodes which are connected
by edges.

A graph is a collection of nodes called vertices, and the connections
(links) between them called as edges.

A graph G, G = (V, E) comprises of a nonempty set V called the set
of nodes or vertices, set E which is the set of edges and a mapping from the
set of edges E to a set of pairs of element V.

Graph

Above figure represents the graph data structure. Where A, B, C, D, E
are the nodes of the graph and e1, e2, e3, e4, e5, e6 are the edges of the
graphs. We can see that these nodes are connected with edges.

Graphs are the important nonlinear data structures used to define flow
of computation in computer science.

Graph theory is used to find shortest path in networks.

Graphs are used in Google maps to represent locations as vertices and
roads connecting these locations as edges. Shortest path between two nodes
is calculated based on this representation.

Social Media Platform like Facebook use graph theory to represent users
and their friends.

10.3 Terminology :

To understand the graph data structures, it is essential to learn some of
the basic terminologies. These terminologies are :

– Adjacent Nodes – Two nodes of the graph which are directly connected
by an edge are called adjacent nodes. In the above graph A & B, A
& D etc. are called adjacent nodes.

– Directed Edges – An edge which has direction and which is directed
from one node to another node in graph is called directed edge. e1, e4
and e6 are directed edges. Directions are given for source node to the
destination node. (Origin and Termination)

– Undirected Edges – An edge in a graph which has no specific direction
is known as undirected edge. e2, e3, e5 are undirected edges.

– Incident – An edge which joins two vertices of the graph is called
incident to that nodes. e2 is incident to nodes A & D.

– Loop – An edge of the graph which connects a node itself is called
loop. For example in following graph, edge e7 is called the loop.

e6

113

Graphs

– Parallel Edges – In a graph, when pair of nodes are connected by more
than one edge then such edges are called parallel edges. e6 & e7 are
called parallel edges in the following graph.

– Isolated Node – A node which is not connected (adjacent) to any other
node in the graph is called isolated node. Ex : in above graph node F
is called isolated node because it is not connected to any node of the
graph.

– In degree & Out Degree – In a directed graph (a graph in which all
the edges are directed), number of edges incoming (terminating) to the
node is called In Degree. Similarly, the number of edges outgoing
(initiating) from the node is called Out Degree. In the following graph
In degree of node B is 1 and out degree is 2. In degree of node E is
3 and Out degree 0

– Total Degree of a node – The sum of in degree and out degree for
a node is called the total degree of that node. In above graph the total
degree of node B is 3 (2 Out Degree + 1 In degree).

– Path – It is a sequence of edges that connects sequence of vertices. In
the above graph Path from A to E is P1={A,B,C,E}

– Simple Path – A path in a graph, in which all the edges and vertices
are distinct are called simple path. Ex. Path P1.

– Cycle – A Path in the graph that originates and ends to the same node
or vertices is called a cycle. For example in below graph path
P1={A,B,C,E,A} is cycle because it originates and terminates to the same
vertex A.

e6

e7

114

Data Structure Using C

 Check Your Progress – 1 :
1. What is Graph ? What are the applications of the graph ?

2. Define the following terminologies : Directed Edge, Isolated node, Path,
Cycle

10.4 Types and Representation of a Graph :

– Directed Graph : A graph in which all the edges are directed is known
as Directed Graph. Following graph is an example of directed graph
because all the edges of this graph are directed.

Directed Graph

– Undirected Graph : A graph in which all the edges are not directed
is called Undirected Graph. Following graph is undirected graph.

Undirected Graph

– Weighted Graph : A graph in which weights are assigned to all the
edges of the graph is called weighted graph. Following graph is an
example of weighted graph because weight is assigned to each edge of
the graph. Such graph is used to display the distance between cities where
nodes are cities, edges are roads and weights represents distance in KM.

Weighted Graph

115

Graphs– Multi Graph : A graph having some parallel edges is called Multi Graph.

Multi Graph

– Simple Graph : A graph in which no more than one edge exists between
a pair of nodes is called a Simple Graph. In other words a graph having
no parallel edges is called Simple Graph.

Simple Graph

 Representations of Graph :

It is a technique to store graph into computer memory. There are two
different methods for the representation of graphs :

1. Adjacency Matrix Representation

2. Adjacency List Representation

 Adjacency Matrix Representation of Graph :

In this type of representation, matrix is used to represent graph. Rows
and Columns of the matrix represent the source and destination vertices and
entries in graph indicate whether an edge exists between the vertices or not ?
It's a two dimensional array having size V V where V represents the vertices
or nodes of the graph.

Suppose adjc[][] is a adjacency matrix then adjc[i][j]=1 indicates that
there is a direct edge between vertices i and j. The value 0 indicates that there
is no direct edge between vertices i and j means node i and j are not directly
connected by an edge. It can be represented as

1 if there is a direct edge between nodes i and j
Adjcij =

0 otherwise
Let's represent the following directed graph using adjacency matrix.

{

116

Data Structure Using C

Directed Graph

A B C D E

A 0 1 0 1 0

B 0 0 1 0 0

C 0 0 0 0 1

D 0 0 1 0 1

E 1 1 0 0 0

Adjacency Matrix

Value 1 at particular row and column indicates that there is a direct edge
between those two vertices. Value 1 at row A and column B indicates that
there is an edge who origins from A and terminates at B. We can also represent
undirected graph using adjacency matrix. Following example shows the adjacency
matrix representation of undirected graph.

Undirected Graph

A B C D E

A 0 1 0 1 0

B 1 0 1 0 1

C 0 1 0 0 1

D 1 0 0 0 1

E 0 1 1 1 0

We can also represent weighted graph in the adjacency matrix. In the
case of weighted graph, value 1 will be replaced by the actual weight of the
connected edge.

The representation of the graph is simple and easy using adjacency matrix
however it requires more storage space.

 Adjacency List Representation of Graph :

In Adjacency List representation, an array of linked list is used for
representation. The size of the array equals the number of nodes or vertices
of the graph. The ith array entry indicates the list of vertices which are adjacent
to the ith node of the graph.

117

GraphsThe Adjacency List representation of following directed graph is as
under :

Directed Graph

Adjacency List

This type of representation requires less storage space. It is also easy
to store additional information in the data structure. However there isn't a quick
way to check whether a given edge is present in the graph ?

 Check Your Progress – 2 :
1. What are the different types of graphs ?

2. What are the different ways to represent graphs in memory ?

10.5 Graph Traversal :

The process to visit all the nodes of the graph is known as graph traversal.
There are two popular approaches for Graph Traversals :

– Breadth First Search (BFS)

– Depth First Search (DFS)

10.5.1 Breadth First Search (BFS) :
Breadth First Search (BFS) is used to find the shortest distance between

pair of nodes of the graph. Shortest distance means to traverse minimum edges
to reach from node A to node B. It uses Queue data structure to store the
visited nodes of the graph. BFS works as follows :

– Starting from one node, it is visited and marked as visited.

– All the nodes adjacent to the visited node are then visited and placed
in the queue.

– In this fashion all the nodes of the queue are picked one by one and
their adjacent nodes are visited. This process continues until the queue
is empty.

Breadth first traversal/search visits all adjacent nodes of a visited node
first. Then it picks one of these adjacent node and visit its adjacent nodes.

118

Data Structure Using C It traverses the nodes as per tree level. Web crawlers or bots use BFS concept.
They first visit any webpage and then all the links of that web page are visited.

Example : The BFS traversal of the following graph would be as follows :

Graph

 BFS Traversal : A, B, D, E, C, G, F :

The traversal starts with node A. It is marked as visited and placed into
the queue. Then all the adjacent nodes of A which are B, D, E are visited
and placed into queue. Now no more adjacent node of A is left for visit so
remove first element form the queue which is A and check if any adjacent
node of it is left unvisited ? Here all are visited for node A so remove next
node from the queue which is node B. All the adjacent nodes of B are then
checked for visit, here node C which is adjacent to node B is not visited yet
so it is marked as visited and placed into the queue. Similarly all the nodes
of the queue are one by one deleted and their adjacent nodes are checked.
If they are not visited then their status is marked as visited. The final sequence
of visit for BFS would be A, B, D, E, C, G, F.

The labels 0, 1 and 2 on the nodes indicate the distance of that node
from the starting node. Here in our case starting node is A so A is marked
as label 0 because the distance between A to A is zero. B is marked as 1
means we need to travel one edge to traverse from node A to node B. Similarly
node C is marked as 2 which indicate that you need to traverse minimum 2
edges to reach from A to C. The queue representation during the BFS is shown
below.

The left side of the image shows the insertion or deletion of the element
form queue and the right part of the image shows the queue with its elements.

0 1 2

1

2

2

1

119

Graphs Algorithm for BFS :

This algorithm performs a breadth first search on a graph G beginning
with a starting node A.

In breadth first search, queue data structure is used

Suppose Graph G starts with node A then,

1. Insert starting node A into queue.

2. Repeat steps 3 and 4 until queue is empty.

3. Remove the first node N from queue, process it and change the status
of it as visited.

4. Find out all the adjacent nodes (neighbours) of node N, if they are not
visited yet then insert them into queue.

5. Step 3 loop ends.

6. Exit.

10.5.2 Depth First Search (DFS) :
Depth First Search (DFS) is another graph traversal technique. Unlike

BFS, DFS uses stack data structure to store the visited nodes. DFS works as
follows :

– Starting from node A, it is visited and marked as visited.

– Pick one adjacent node of A and mark it as visited. It becomes new
starting node.

– Now visit the adjacent node of new starting node which leaves the
exploration of original node.

– This visit continues until current path has a node which has out degree
0 or a node who's all the adjacent nodes are marked as visited.

– Search moves backward on the same path to last node that has adjacent
nodes which are still not visited and marked. Process continues in such
fashion until all the nodes are marked as visited.

The DFS traversal of the following graph is as under :

 DFS Traversal : A, B, C, D, E, F, G :

The traversal starts from node A. A is visited and pushed into stack.
Now it will pick any of its adjacent node, here we take B so now B is marked
as visited and pushed into stack. Now any adjacent node of B is picked, here
we pick C so C is visited and pushed into the stack. Now D which is the
adjacent node of C is picked and marked as visited and pushed into the stack.
Now E which is adjacent to D is marked as visited and pushed into the stack.
Now there are no more adjacent nodes to E so it will pop the last inserted
element from the stack and start visiting its adjacent nodes which are left to

1 6 7

54

3

2

120

Data Structure Using C visit which is node F. So F is marked as visited and pushed into stack then
it will visit G and it is pushed into the stack. The process continues until the
stack is empty.

DFS is a recursive algorithm and it uses the concept of backtracking.
Backtracking means that when you reach to the end of the current path where
there isn't any node further in the path you move backwards to the same path
to find the nodes to traverse.

The labels 1, 2, 3, 4, 5, 6, 7 indicate the sequence number of visited
nodes. The stack representation during DFS is as below :

The left portion shows the push and pop operations and right part shows
the status of stack with its elements at each stage.

 Check Your Progress – 3 :
1. What are BFS and DFS traversals ? Explain with examples.

...

...

10.6 Shortest Path Algorithms :

In Graph Theory, Shortest Path Problem is about to find the path between
pair of vertices in the graph such that the total sum of the weights of the
edges is minimum. Different Shortest Path Algorithms are available to find
such path. We are going to discuss two shortest path algorithms which are :

– Kruskal's Algorithm

– Prim's Algorithm

Before we discuss these algorithms in detail, we should know the concept
of Spanning Tree and Minimum Spanning Tree.

 Spanning Tree :

It is a subset of the graph in which all the vertices or nodes are covered
with minimum number of edges.

Therefor a spanning tree has :

• No cycle

• It cannot be disconnected. If you remove any edge from the spanning
tree then the graph becomes disconnected.

A graph can have multiple spanning trees. Following figures shows the
graph and its possible spanning trees.

121

Graphs

Graph

Spanning Trees of the Graph

We can see in the above figure that this graph may have three different
spanning trees. In all the spanning trees maximum 2 edges are required to
connect all the nodes of the graph.

 Minimum Spanning Tree :

A minimum spanning tree (also known as MST) is a spanning tree whose
sum of edge weight is minimum compare to all the spanning trees of the same
connected and weighted graph. MST doesn't contain any cycle.

It is used to find the minimum path to connect all the vertices of the
connected graph.

Example :

Graph

(a) (b) (c)

Spanning Trees of the Graph

For the above connected and weighted graph three spanning trees are
possible which are shown in the figures (a), (b) and (c). If you count the sum
of weights of the edges of all the spanning trees than it is 10, 11 and 7
respectively. So the minimum sum of edge weight is for spanning tree (c) which
is 7, so it is called the Minimum Spanning Tree for this graph.

7

4
3

7

3
4

7

4
3

122

Data Structure Using C

4
3

Minimum Spanning Tree

Minimum Spanning tree is used to find the shortest path in the maps.

10.6.1 Kruskal's Algorithm :

It is used to find the minimum spanning tree of a connected graph. The
main goal is to find the subset of edges that creates the tree which includes
all the vertices of the graph and has minimum sum of edge weights. In this
approach a tree is connected to other tree (each node is considered as separate
tree) if and only if it has least cost (edge weight) from all the available options.

Algorithm starts with the edge which has lowest weight and keep adding
edges in the minimum spanning tree having lowest weights until all the vertices
are connected.

While adding the edge, care should be taken that no cycle is created.
If adding an edge creates a cycle in the spanning tree then that edge is not
considered. This connection should not violate Minimum Spanning Tree property
(No Cycle).

This algorithm consists of the following steps :

1. Arrange all the edges of the graph in ascending order of their weights.

2. Then select the edge e with the smallest (lowest) weight. If adding of
that edge into MST creates cycle then discards it else adds it into the
MST.

3. Repeat step 2 until n–1 edges are selected.

Example : Let's apply kruskal's algorithm to the following graph.

Weighted Graph

Step 1 :

Step 2 :

123

GraphsStep 3 :

Step 4 :

Step 5 :

Minimum Spanning Tree

Step 1 : Algorithm first adds the edge between vertices C and F because
it has lowest weight 1.

Step 2 : Then it adds the edge between F and E having weight 2.

Step 3 : Next it adds edge between B and C having weight 2.

Step 4 : Next it adds the edge between F and D which has also weight 2.

Now next lowest weight edges are between E and D and A & C. But
if we add the edge between E and D then it creates cycle and there should
not be any cycle in minimum spanning tree and hence that edge is not added.

Step 5 : Next it adds the edge between nodes A and C having weight
3. At this stage all the nodes are connected so we have the final minimum
spanning tree as shown in the above figure. It connects all the vertices of the
graph with minimum sum of edge weights.

10.6.2 Prim's Algorithm :
It is also used to find the minimum spanning tree of a connected graph.

The main goal is to find the subset of edges that creates the tree which includes

Can't
connect due
to cycle

124

Data Structure Using C all the vertices of the graph and has minimum sum of edge weights. As the
goal is same as Kruskal's algorithm, the approach is different then it. It treats
each node of the tree as a single tree and it adds new node to the spanning
tree.

The algorithm has following steps :

1. Choose any vertex randomly. We can start with any vertex because
ultimately we have to connect all the vertices.

2. Find all the edges that connect the tree to new vertices and then find
the edge having least weight among those edges and include it in the
MST. Reject the edge if including that edge creates a cycle. Look for
the next least weight edge.

3. Repeat step 2 until all the vertices are included and we obtain minimum
spanning tree.

Example : Let's create minimum spanning tree of the following graph
using Prim's Algorithm.

Weighted Graph

Step 1 :

Step 2 :

Step 3 :

125

GraphsStep 4 :

Step 5 :

Minimum Spanning Tree

Step 1 : Algorithm starts with choosing one node randomly. In example
B is Chosen. Now examine all the edges connected with B and find the edge
which has minimum weight. Here we have edge between B and C with minimum
weight 2 so it is added in the tree.

Step 2 : Now examine all the edges connected with B and C and find
out the edge having least weight which is an edge between C and F having
weight 1. Hence it is added in the tree.

Step 3 : Algorithm again examine all the edges connected with these
added vertices and find the edge having least weight from these edges. It finds
the edges between F and D and F and E with weight 2. So both the edges
are added in the tree.

Step 4 : Now the edge between node E and D has lower weight 3. But
adding it in the tree creates cycle so it is not added in the MST.

Step 5 : Next edge having minimum weight connected with the vertices
of the new tree is edge between A and C having weight 3 so it is picked
and added to the MST.

Now all the vertices are added in the tree so we have our final Minimum
Spanning Tree as shown in the above figure.

 Check Your Progress – 4 :
1. What do you mean by Spanning Tree and Minimum Spanning Tree ?

Can't
connect due
to cycle

126

Data Structure Using C 2. Generate Minimum Spanning Tree of the following graph using Kruskal's
and Prim's Algorithms.

3. A Graph in which all the edges are directed is called ?

(A) Simple Graph (B) Undirected Graph

(C) Directed Graph (D) Multi Graph

4. Which of the following data structure is used in Depth First Search ?

(A) Stack (B) Queue (C) Linked List (D) Array

5. What is the degree of isolated node in Graph ?

(A) 2 (B) 1 (C) 0 (D) 3

6. Which of the following is not the algorithm to find minimum spanning
tree for the given graph ?

(A) Kruskal's Algorithm (B) Prim's Algorithm

(C) Depth First Search (D) None of the above

7. Which of the following data structure is used in Breadth First Search ?

(A) Stack (B) Linked List (C) Array (D) Queue

10.7 Let Us Sum Up :

In this Unit we studied about nonlinear data structure called Graph. In
a nut shell a graph is a collection of nodes called vertices, and the connections
(links) between them called as edges.

There are several important terminologies with help of diagram can be
quickly recapitulated A, B, C, D and E are called the vertices or nodes of
the graph. e1, e2, e3, e4, e5, e6, e7, e8 and e9 are the edges of the graph.
A & C are adjacent nodes. All the edges are undirected edges because no
direction is given. This graph is called undirected graph because all the edges
in the graph have no direction. If all the edges are directed than that graph
is called directed graph. An edge of the graph which connects a node itself
is called loop. Edge e8 is called the loop. The total degree of the node is
the sum of edges originates and terminates to that node. Total degree of node
B is 5. When pair of nodes is connected by more than one edge then such
edges are called parallel edges. e6 and e9 are parallel edges. A graph which
has some parallel edges is known as multi graph.

Path is a sequence of edges that connects sequence of vertices. Simple
Path is a path in which all its vertices and edges are distinct.

127

GraphsThere are different ways to represent graphs into memory such as
Adjacency Matrix and Adjacency List. In adjacency matrix representation, two
dimensional arrays are used to represent graph. Value 1 in the matrix indicates
the presence of direct link between the pair of nodes. In Adjacency List, the
array of Linked List is used to represent the graph. This approach is space
efficient.

BFS and DFS are two techniques to traverse the nodes of the graphs.
BFS uses queue data structure to store the details of visited node whereas DFS
use stack data structure.

When you connect each vertices of the graph with minimum edges then
that tree representation is called Spanning Tree. To find the shortest path in
the graph, minimum spanning tree is generated. Minimum Spanning Tree (MST)
is a spanning tree having minimum sum of edge weights.

Shortest path in the graph can be generated using Kruskal's as well as
Prim's algorithms. Both the algorithm generates Minimum cost spanning tree
form the graph.

10.8 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

See Sec 10.2 and 10.3

 Check Your Progress 2 :

See Sec 10.4

 Check Your Progress 3 :

See Sec 10.5

 Check Your Progress 4 :

1. See Sec 10.6 2. See Sec 10.6

3. C 4. A 5. C 6. C 7. D

10.9 Glossary :

1. Graph – A graph G, G=(V,E) comprises of a nonempty set V called
the set of nodes or vertices, set E which is the set of edges and a mapping
from the set of edges E to a set of pairs of element V.

2. Spanning Tree – It is a subset of the graph in which all the vertices
or nodes of the graph are covered (connected) with minimum number
of edges.

3. Minimum Spanning Tree – A minimum spanning tree (also known as
MST) is a spanning tree whose sum of edge weight is minimum compare
to all the spanning trees of the same connected and weighted graph.

10.10 Assignment :

1. For the below graph, answer the following questions.

– What is the type of this graph ?

– Generate Spanning Trees for this graph

128

Data Structure Using C – Represent this graph using Adjacency Matrix

10.11 Activities :

1. Write a C function to traverse all the nodes of the graph.

2. Write a C program to perform BFS and DFS traversals on the graph.

10.12 Case Study :

Suppose a salesman wants to reach at five places of the city in the
minimum time period. Which method shall help him in to reach at each place
within a given time period in the shortest distance covered ? Draw the graph
that represents these five places with distance between them and find the
shortest path that connects all these five places with minimum distance.

10.13 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahni.

4. Data Structures : An Advanced Approach Using 'C' by Esakov and Weises.

5. Data Structures and 'C' Programs by Christopher J. Van Wyk

6. An Introduction to Data Structures with Applications by Tremblay and
Sorenson

7. https://www.javatpoint.com/breadth–first–search–algorithm

8. https://www.tutorialspoint.com/data_structures_algorithms/spanning_
tree.htm

BLOCK SUMMARY :

This block comprise with three units. Unit 8 gives detail understanding
about tree data structure, its applications and Basic terminologies. Unit 9 is
about different Binary Tree operations and traversals methods. Unit 10 gives
detail understanding about another nonlinear data structure called Graph and
its traversals.

In unit 8 we studied that Tree is a nonlinear data structure that contains
nodes which are connected by directed edges. It contains one root node and
its child nodes. Tree represents data in hierarchical form. Trees are normally
used to represent computer file system. It is also used in compilers and routers.
Binary trees are the special types of general trees where each node has at most
2 children.

Binary trees can be represented using Array representation or Linked List
representation.

A Complete Binary tree is a tree in which each level (except last level)
must be completed (full), before we start a new level. A binary tree is called
Binary Search Tree or BST, if each node N of Tree must has following property,
the value of node N is greater than every value in the left sub–tree of N node
and it is less than every value in the right sub–tree of N node.

Unit 9 talks about the various operations and traversals methods of Binary
Tree. Insertion of new element requires finding out its proper position on the
Binary Search Tree. This is done by start comparing the newly inserted element
with the element of root node. If the new element is less than the element
of root node than it will be inserted at the left subtree else it will be inserted
at the right subtree. Searching of element also requires comparing the value
with the value of root node and then either on left subtree or in right subtree
based on its value.

Deletion of element requires three criteria's to check. If the element to
be inserted is a leaf node than it will directly deleted. If it has left or right
subtree then the sub tree of the deleted node is linked directly with the parent
of the deleted node. If the deleted node has both left and right subtree then
the inorder successor of the deleted node will replace the deleted node and
any right subtree of inorder successor will be appended to its grandparent.

Visiting any node in the binary tree is known as tree traversal. There
are there tree traversals techniques :

– Inorder – (Left, Root, Right)

– Preorder – (Root, Left, Right)

– Postorder – (Left, Right, Root)

129

130

Data Structure Using C We can implement these traversals using recursive algorithms. For that
we need to represent tree as a doubly linked list.

Finally in Unit 10 we have learnt the concept of graph. Graph is a
collection of nodes called vertices, and the connections (links) between them
called as edges. There are different types of graphs like Directed Graph – A
graph in which all the edges are directed. Undirected Graph – a graph in which
all the edges are not directed. Weighted graph – A graph in which weight is
assigned to every edge of the graph.

There are different ways to represent graphs into memory such as
Adjacency Matrix and Adjacency List. In adjacency matrix representation, two
dimensional arrays are used to represent graph. Value 1 in the matrix indicates
the presence of direct link between the pair of nodes. In Adjacency List, the
array of Linked List is used to represent the graph. This approach is space
efficient.

BFS and DFS are two techniques to traverse the nodes of the graphs.
BFS uses queue data structure to store the details of visited node whereas DFS
use stack data structure.

When you connect each vertices of the graph with minimum edges then
that tree representation is called Spanning Tree. To find the shortest path in
the graph, minimum spanning tree is generated. Minimum Spanning Tree (MST)
is a spanning tree having minimum sum of edge weights.

Shortest path in the graph can be generated using Kruskal's as well as
Prim's algorithms. Both the algorithm generates Minimum cost spanning tree
form the graph.

BLOCK ASSIGNMENT :

 Short Questions :

1. In which situation a Graph or Tree is a more suitable data structure ?

2. How can you identify that the tree is complete binary tree or not ?

3. What is leaf node in tree ?

4. What is isolated node in graph ?

5. What is shortest path in graph ?

 Long Questions :

1. What are the real time applications of tree and graph ?

2. Write down C functions for searching an element from Binary Search Tree.

3. How can you draw a graph from adjacency matrix ? Explain with example.

4. What are the real time applications of Minimum Spanning Tree ?

5. Create one graph and perform BFS and DFS traversals on it.

131

132

Data Structure Using C Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 8 9 10

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

Data Structure Using C

Dr. Babasaheb Ambedkar
Open University Ahmedabad

BLOCK 4 : TECHNIQUES (SEARCHING AND SORTING) AND
FILE STRUCTURE

UNIT 11 SEARCHING TECHNIQUES

UNIT 12 SORTING TECHNIQUES

UNIT 13 FILE STRUCTURE

UNIT 14 PROGRAMS OF SEARCHING AND SORTING

BCAR-201/
DCAR-201

Block Introduction :

This is a collection of algorithms for the sorting and searching of records
from the data base or from a memory location.

The first unit introduces the basic searching techniques of records stored
in the database stored in the memory location. The Second unit presents several
sorting algorithms and various types of searching methods and techniques to
retrieve the records from a database. Finally, the third unit deals with file
structures that allow efficient insert, search, and delete operations.

Block Objectives :

After learning this block, you will be able to :

• Understand the concept of Searching

• Understand the types of Searching

• Implement algorithms of various Searching methods

• Understand the concept of Sorting

• Understand the difference between Internal and External Sorting

• Understand the different types of Sorting

• Implement the different Sorting methods

• Understand the concept of Sorting

• Understand the difference between Internal and External Sorting

• Understand the different types of Sorting

• Implement the different Sorting methods

• Understand file structure–concept of fields

• Understand files and Records

• Understand sequential and Index file organizations

• Understand hashing Techniques

Block Structure :

Unit 11 : Searching Techniques

Unit 12 : Sorting Techniques

Unit 13 : File Structure

Unit 14 : Programs of Searching and Sorting

TECHNIQUES (SEARCHING AND
SORTING) AND FILE STRUCTURE

133

UNIT STRUCTURE

11.0 Learning Objectives

11.1 Introduction

11.2 Sequential or Linear and Binary Search

11.3 Algorithms for Sequential and Binary Search

11.4 Implementation of Linear Search

11.5 Implementation of Binary Search

11.6 Let Us Sum Up

11.7 Suggested Answer for Check Your Progress

11.8 Glossary

11.9 Assignment

11.10 Activities

11.11 Case Study

11.12 Further Readings

11.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand the concept of Searching

• Understand the types of Searching

• Implement algorithms of various Searching methods

11.1 Introduction :

Large amounts of data are often stored in computer systems and individuals
use this data by retrieving records according to various search criteria. Therefore,
storing data efficiently in order to facilitate quick searches is a vital element.

This section lays emphasis on the investigation of the performance of
some searching algorithms and the data structures which they use.

11.2 Sequential or Linear and Binary Search :

The sequential search or linear search is an algorithm that is utilized
to search through a list of data in order to find a particular value.

The search initiates with matching values of the array. Initially, the first
element is compared with the element to be searched then with the second
element and so on, continuing this process till the end of the array. That is,
it operates by checking every element of a list one at a time in sequence until
a match is found.

It is an easy and straightforward method for searching data in an array.
The search shall initiate at the beginning of the data collection gradually moving
forward until either the desired target has been found or the search space has
exhausted. In order to employ this method, one must be aware of the size of

SEARCHING TECHNIQUES
Unit

11

134

Data Structure Using C the area to search and the start of the data collection. Alternatively, a unique
value could be used to signify the end of the search space. This method is
commonly applied to such an array data structure that's upper and lower bounds
are known.

For Example,

Consider the given array in which a total of 10 elements are stored and
we want to search a particular element say, 15 in it. The Linear search can
be illustrated on this set of data as given below :

12, 43, 25, 65, 11, 78, 42, 92, 6, 76

Now the same can be stored in the array as :

12 43 25 65 11 78 42 92 6 76

0 1 2 3 4 5 6 7 8 9

Now as 15 is to be searched in the above array, so we will start from
the 0th position and compare the element present at that position with 15. As
in this case, element at 0th position is 12, as 12 is not equal to 15, so the
pointer will move to next position, that is, 1 and will compare the element
43 with 15, which is again not equals to 15. This process continues till the
last position in order to search 15, now as 15 is not present in the list, so
after traversing the entire list, a message of "Element not found" is displayed.
If the element to be searched is present in the array then the element along
with its position is displayed.

 Check Your Progress – 1 :
1. In searching algorithm, we compare search element with all

other elements.

[A] Sequential [B] Binary [C] Bubble [D] Radix

2. searching algorithm can be apply on sorted and un–sorted
array.

[A] Radix [B] Heap [C] Binary [D] Linear

Binary Search is one of the most efficient methods of searching a
sequential table without the use of auxiliary indices or tables. Basically, the
key value to be searched is compared with the key of the middle element of
the table. If they are equal, the search ends successfully, otherwise the upper
or lower parts of the table are searched correspondingly.

Basically, the elements of the table are in sorted (ascending/descending)
order. So, to initiate the searching process first the array is divided into two
equal halves and the key value to be searched is compared with the element
present at the middle position. If both of them are equal, then the position
of the search key is returned (turn back) and searching will be terminated,
otherwise, the search key element will be compared with the middle element,
where if the item is greater than the middle key then the item that is searched
shall be placed in the upper half whereas, if it is less then it shall be placed
on the lower half of the array. of the array only. This process is repeated until
the key value is not found.

Now after knowing that the target must be in one half of the array or
the other, the binary search will examine the median value of the half (or from
the half) in which the target must reside. Hence the algorithm narrows the

135

Searching Techniquessearch area by half at each step until it has either found the target data or
the search fails.

This algorithm is easy to remember if you think about a child's guessing
game properly. I am thinking of a number between 1 and 1000 and asked you
to guess the number. Each time you guessed I would tell you "higher" or
"lower". Of course, you would begin by guessing 600, then either 300 or 750
depending on my response. You may continue to refine your choice until you
got the number correct according to your imagination.

For Example, for the above–mentioned set of data if the position of 15
is to be found by means of using binary search technique then there can be
three possibilities :

If the data to be searched is present at the middle position then it can
be explained with the given example,

223 555 666 772 777 885 889 992 996 999

0 1 2 3 4 5 6 7 8 9

Now, suppose the element to be searched is 77, then after applying the
binary search technique (or method),

Lower bound is = 0

Upper bound is = 9

Mid value is = (0 + 9)/2 = 4.5 = 4

223 555 666 772 777 885 889 992 996 999

0 1 2 3 4 5 6 7 8 9

Now, compare with the element 77 which has to be searched with the
element stored at the mid position, you see as in this case the element stored
at mid position is 77 which is equals to the number to be searched from stored.
So, the position of the same can be printed as 4.

Well, the second condition is illustrated as below. If the number to be
searched is 23 then it will be searched in the sub array present to the left
of the mid position from stored.

223 555 666 772 777 885 889 992 996 999

0 1 2 3 4 5 6 7 8 9

Now, by applying the binary search technique, the position of the required
element can be obtained by following the given steps :

Find the mid value by dividing the values of lower and upper bounds,
Mid = (lb + ub)/2

The mid value obtained is 4, now compare the value stored at that position
with the number to be searched that is,23. Now, as 77 is not equals to 23
and is less than 77 so it will be searched to the left of the array, making the
value of lb = 0 and ub = 3.

Now, the value of lb = 0 and ub = 3, find the mid value

Mid = (lb +)/2

(0 + 3)/2 = 1

Now as the value of mid is 1, so compare the element stored at that
position with the element to be found. As 23 is not equals to 55 but is less

136

Data Structure Using C than 55 so it will be searched to the left of the 55, making the value of lb=0
and ub=0.

Now, again find the mid value using the values of lb and ub.

Mid = (lb + ub)/2

(0 + 0)/2 = 0

As the value of mid is 0, so compare the element stored at 0th position
with 23. Now 23 is equals to the number which we are searching, that is,
23. So, the position 0 will be returned and we can say that Search is Successful.

The third situation can be if the number to be searched is greater than
the mid value, that is, suppose we want to search 96 in the given array, then
the steps of finding its position will be as given below :

223 555 666 772 777 885 889 992 996 999

0 1 2 3 4 5 6 7 8 9

Now, by applying the binary search technique, the position of the required
element can be obtained by :

As the value of lb = 5 and ub = 9, the mid value can be obtained by

Mid = (lb + ub)/2 = (5 + 9)/2 = 7

Now, compare the element present at 7th position with the number to
be searched. That is, 92 is not equals to 96. So, 96 will be compared to 92
which is greater than it. Now, 96 will be searched to the right of the array
making the value of lb = 8 and ub = 9.

Obtain the mid value by

Mid = (lb + ub)/2 = (8 + 9)/2 = 17/2 = 8

Now, just compare the element present at the 8th position with the
element to be searched that is, of course 96. Now as both the numbers are
equal, hence, we can say that, Search is very successful.

 Check Your Progress – 2 :
1. In searching algorithm, we compare search element with

middle element of the array.

[A] Sequential [B] Binary [C] Bubble [D] Radix

2. searching algorithm can be applied on sorted array..

[A] Radix [B] Heap [C] Binary [D] Sequential

 Important Points about Binary Search :

Binary Search is Recursive (bin search) : This determines that whether
the search key lies in the lower or upper half of the array from the stored,
by calling itself on the appropriate half.

Termination Condition : The following two conditions are termination
conditions.

If low > high then the partition to be searched definitely has no elements
in it and if there is a match with the element present at the middle position
of the current partition from stored, then the searching can be terminated.

Addition of an element (add_data) : When an element is added, it is
necessary to ensure that each item has been placed at its correct place in the
array. If the process for this is simple then :

137

Searching TechniquesThe array is searched until the correct place is found to insert the new
item.

Shift all the existing items up by one position.

Then insert the new item into the empty position thus it is created.

 Efficiency Analysis of Binary Search :

We know earlier that in the case of Binary, at each step of the algorithm
the block of items is divided and key item will be searched in both halves.
We can divide a set of n items in half at most log2 n times.

Thus, we can say that the running time of Binary search is proportional
to log n and also, we can say that it is O (log n) algorithm.

 Check Your Progress – 3 :
1. The best–case complexity of the linear search algorithm is .

[A] O (n) [B] O (1) [C] O (log n) [D] O (n2)

2. The worst–case complexity of the linear search algorithm is .

[A] O (n) [B] O (1) [C] O (log n) [D] O (n2)

11.3 Algorithms for Sequential and Binary Search :

 Algorithms for Sequential Search :

When data items are stored in a collection such as a list or in the database
files, we say that they have a linear or sequential relationship. Each and every
data item is stored in a position relative to the others (connected). In Python
lists, these relative positions are having the index values of the individual items.
Since these index values are ordered accordingly it is possible for us to visit
them in sequence respectively. This process is obviously giving rise to our first
searching technique, the sequential search.

Clearly shows how this search works. Starting at the first item in the
list, we simply move from item to item (one by one), following the underlying
sequential proper order until we either find what we are looking for or run
out of items. In case if we run out of items, we have discovered that the item
we were searching for was not present.

The Sequential Search of a List of Integers

138

Data Structure Using C Algorithm for Binary Search :

A binary search or half–interval search algorithm finds the position of
a specified input value (the search "key") within an array sorted by key value.
For binary search, the array should be arranged in ascending or descending
order.

In each step, the algorithm compares the search key value with the key
value of the middle element of the array. If the keys match, then a matching
element has been found and its index, or position, is returned. Otherwise, if
the search key is less than the middle element's key, then the algorithm repeats
its action on the sub–array to the left of the middle element or, if the search
key is greater, on the sub–array to the right. If the remaining array to be searched
is empty, then the key cannot be found in the array and a special "not found"
indication is returned.

 Efficiency Analysis of Binary Search :

Here, we will be generally most concerned with the worst–case time,
as calculations (or estimations) based on them can lead to guaranteed performance
predictions.

Now we can suppose that there are n items in our collection, whether
it can be stored as an array or stored as a linked list, then it is obvious in
worst case, when we find no item in the collection with the desired key, then
n comparisons of the keys with keys of the items in the collection will have
to be made (or identified).

See that in case of Binary search, the operation to be performed on the
key values is the comparison (key values), since the search requires n comparisons
in the worst case; then we say this is an O (log2(N) + 1) algorithm. Let see
the best case, in which the first comparison returns a match, requires a single
comparison and is O (1).

The average time depended on the probability that the key will be found
in the collection, sometime this we would not expect to know in the majority
of cases (most of the cases). Hence in most of the cases, estimation of the
average time is of little utility.

 Check Your Progress – 4 :
1. The best–case complexity of the binary search algorithm is .

[A] O (n) [B] O (1) [C] O (log n) [D] O (n2)

2. The worst–case complexity of the binary search algorithm is .

[A] O (n) [B] O (1) [C] O (log n) [D] O (n2)

11.4 Implementation of Linear Search :

To implement the Linear Search algorithm, we need to write following
code in C–Language :

/* Program to implement Linear Search Algorithm, which can be
applied on any type of Array, whether it is sorted or un–sorted */

#include <stdio.h>

void main ()

{

139

Searching Techniquesint x[10];

int i, ser_ele;

/* Accepting values for the Array from the User */

for (i=0; i<10; i++)

{

printf("Enter Value :");

scanf ("%d", &x[i]);

}

/* Accepting Search Element from the user */

printf ("Enter Element to Search :");

scanf ("%d", &ser_ele);

for (i=0; i<10; i++)

{

if (x[i] == ser_ele)

{

printf ("\nValue found on %d position", i+1);

break;

}

}

if (i ==10)

{

printf ("\n Value Does not Exists :");

}

}

11.5 Implementation of Binary Search :

To implement the Binary Search algorithm, we need to write following
code in C–Language :

/* Implementation of Binary Search (Can be used only on Sorted Array) */

#include <stdio.h>

void main()

{

int x[10];

int i, beg, end, mid, ser_ele;

/* Accepting values for the Array from the User */

printf ("Enter Array elements in Sorted order :\n");

for (i=0; i<10; i++)

{

printf ("Enter Value :");

scanf ("%d", &x[i]);

}

140

Data Structure Using C printf ("\n Enter Search Element :");

scanf ("%d",&ser_ele);

/* Searching Array elements in the array using binary search method*/

beg=0;

end=9;

for (mid=(beg+end)/2; beg<=end; mid = (beg+end)/2)

{

if (x[mid] == ser_ele)

{

printf ("\n Value found on %d position :", mid+1);

break;

}

else if (x[mid] < val)

beg = mid+1;

else

end = mid–1;

}

/* If Search Element does not Exists */

if (beg > end)

{

printf ("\n Value does not Exists :");

}

}

11.6 Let Us Sum Up :

This Unit is also important due to the huge use of knowledge management,
Data ware housing and data mining hence importance of this unit becomes
obvious. There is learning related to linear search, the searching begins by
matching the values of the array. Initially, the first element is compared with
the element to be searched then with the second element and so on. The process
continues till the end of the array. That is, it operates by checking every element
of a list one at a time in sequence until a match is found. This method of
searching for data in an array is straightforward and easy to understand. To
find a given item, begin your search at the start of the data collection and
continue to look until you have either found the target or exhausted the search
space. Further there is learning related to binary search.

Binary Search is Recursive (bin search) : This determines that whether
the search key lies in the lower or upper half of the array from the stored,
by calling itself on the appropriate half. There is also Termination Condition
for the search

If low > high then the partition to be searched definitely has no elements
in it and If there is a match with the element present at the middle position
of the current partition from stored, then the searching can be terminated. There

141

Searching Techniquesis also learning related to addition of an element (add_data). We have also
understood about efficiency Analysis of Binary Search

A binary search or half–interval search algorithm finds the position of
a specified input value (the search "key") within an array sorted by key value.
For binary search, the array should be arranged in ascending or descending
order.

In each step, the algorithm compares the search key value with the key
value of the middle element of the array. If the keys match, then a matching
element has been found and its index, or position, is returned. Otherwise, if
the search key is less than the middle element's key, then the algorithm repeats
its action on the sub–array to the left of the middle element or, if the search
key is greater, on the sub–array to the right. If the remaining array to be searched
is empty, then the key cannot be found in the array and a special "not found"
indication is returned.

11.7 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

1. [A] 2. [D]

 Check Your Progress 2 :

1. [B] 2. [C]

 Check Your Progress 3 :

1. [B] 2. [A]

 Check Your Progress 4 :

1. [B] 2. [C]

11.8 Glossary :

1. Binary Search – A binary search or half–interval search algorithm finds
the position of a specified input value (the search "key") within an array
sorted by key value

2. Sequential Search – Sequential search that is suitable for searching a
list of data for a particular value.

11.9 Assignment :

1. Write the applications of a binary search and a sequential search.

2. Write the advantages of a binary search over sequential search.

11.10 Activities :

1. Write a C–program to find the given element from linked list using a
sequential search.

2. How do we find whether the given data is present in a linked list or
not by using the Binary Search Method ?

11.11 Case Study :

To search the name of a customer from a large number of databases.
if the information of the customer is stored in sorted order then which method
is useful for searching a name with minimum amount of time ?

142

Data Structure Using C 11.12 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahani.

143

UNIT STRUCTURE

12.0 Learning Objectives

12.1 Introduction

12.2 What is Sorting

12.3 Types of Sorting

12.3.1 Internal and External

12.4 Bubble

12.5 Insertion

12.6 Selection

12.7 Quick

12.8 Merge

12.9 Radix Sorting

12.10 Let Us Sum Up

12.11 Suggested Answer for Check Your Progress

12.12 Glossary

12.13 Assignment

12.14 Activities

12.15 Case Study

12.16 Further Readings

12.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand the concept of Sorting

• Understand the difference between Internal and External Sorting

• Understand the different types of Sorting

• Implement the different Sorting methods

12.1 Introduction :

The concept of an ordered set of elements has considerable impact on
our daily lives. Consider, for example, if someone is searching for a book in
a library. As the books are arranged in a specific order, each book is assigned
a specific position relative to the others and can be retrieved in a reasonable
amount of time. Similarly, if we want to search a number in a telephone
directory, then it will be quite easier as the names in the directory are listed
in alphabetical order. So, we can see that sorting plays an important role while
searching for a specific data. In this unit, we will be discussing the different
sorting methods along with their implementations.

SORTING TECHNIQUES
Unit

12

144

Data Structure Using C 12.2 What is sorting ?

Sorting is a method

Sorting is a method of arranging data elements in a particular order. And,
a sorting algorithm is an algorithm that puts elements of a list in a certain
order.

Sorting algorithms are judged by their efficiency and are a vital aspect
of managing data. In this case, efficiency refers to the algorithmic efficiency
as the size of the input grows large and is generally based on the number
of elements to sort. Sorting arranges data in a sequence which makes searching
easier. Every record which is going to be sorted will contain one key. Based
on the key record will be sorted.

 Check Your Progress – 1 :
1. is a method of arranging data elements in a particular order..

[A] Searching [B] Sorting

[C] File [D] None of the above.

2. Records are sorted based on .

[A] File [B] Ascending [C] Descending [D] Key

12.3 Types of Sorting :

Types of Sorting

The sorting method is categorized into two types, internal sorting and
external sorting, depending on the type of memory on which the data to be
sorted is stored.

145

Sorting Techniques12.3.1 Internal and External :
 Internal Sorting :

Any sort algorithm which uses main memory exclusively during the sort
is an example of Internal Sorting.

This assumes high–speed random access to all memory. It is independent
of time to read/write a record and it also takes input only which can be fit
into its memory i.e. it takes small input.

For Example : Bubble Sort, Insertion Sort

 External Sorting :

External sorting is an important activity especially in large business. It
is thus crucial that it is performed efficiently. External sorting is applied to
sort records of files which are too large to fit in the main memory of the
computer. This sorting is applied to larger collection of data which rests on
secondary devices. Time required to access is considered significant in external
sorting. External sorting depends on device type and the number of such devices
that can be used at a time. These sorting methods lay equal emphasis on the
system aspect as well as on the algorithm aspect.

The most popular method for sorting on external storage device is Merge
sort.

This method consists of two distinct phases. First, segments of the input
file are sorted using a good internal sort method. These sorted segments are
known as runs, which are written out onto external storage as they are generated.
Second, the runs generated in phase one are merged together.

This will be clear by following example,

Let us consider a file F containing 6000 records to be sorted. The main
memory is capable of sorting 1000 records at a time. The file F is stored on
one disk and we have in addition another scratch disk, the block length of
file is 500 records. File could be treated as 6 sets of 1000 records each.

Phase 1 – In this phase, each set is to be sorted by internal sorting
method and stored on the scratch disk as a 'run'.

Phase 2 – The 6 runs will merge as follows :

Allocate 3 blocks of memory each capable of holding 500 records. Two
buffers B1 and B2 will be treated as input buffers and third B3 as output buffer.
Now, the method of merging is as follows :

1. 6 runs R1, R2….. R6 on the scratch disk

2. 3 buffers B1,B2,B3

(a) Read 500 records from R1 into B1.

(b) Read 500 records from R2 into B2

(c) Merge B1 and B2 and write into B3.

(d) When B3 is full, write it out to the disk as run R11. Similarly,
merge R3 and R4 to get R12 and so on.

Thus from 6 runs of size 1000 each, we have now 3 runs each of size
2000. The above steps are repeated for step R11 and R12 to get a run of size
4000. This run is merged with R13 to get a single sorted run of size 6000.

146

Data Structure Using C Difference between Internal and External Sorting :

 Check Your Progress – 2 :
1. sorting is done on secondary/ auxiliary memory..

[A] Internal [B] External [C] Sequential [D] Linear

2. sorting is done in the main memory..

[A] Internal [B] External [C] Sequential [D] Linear

3. Identify the Internal sorting method(s) from the given options :

[A] Bubble sort [B] Insertion sort

[C] Selection sort [D] All of the above

4. From the given below options, which sorting algorithm is not type of
Linear time.

[A] Bubble sort [B] Counting sort

[C] Radix sort [D] Bucket sort

5. From the given below options, identify sorting algorithm whose complexity
is O (log n).

[A] Bubble sort [B] Counting sort

[C] Radix sort [D] Merge sort

12.4 Bubble :

Bubble

The first type of sorting which we are going to discuss is Bubble Sort
which is very well known among beginners of programming. The Bubble sort

Internal Sorting

(1) If the sorting occurs on records
which is in main memory then it
is called internal sorting.

(2) It is applied on small collection
of data which reside in main
memory.

(3) Time is not required to read or
write.

(4) It is simple sorting method.

External Sorting

(1) External sorting is that sorting in
which records are stored in
auxiliary storage devices.

(2) It is applied to larger collection
of data which resides on
secondary memory.

(3) Time required to read or write is
considered significant.

(4) External sorting is more complex
than internal sorting.

147

Sorting Techniquesmethod is easy to understand and implement and of all the sorts it is considered
as least efficient.

This works by continuously several time stepping through the list to be
sorted, in which each pass consists(having) of comparing each element in the
file with its descendant (successor), x[i] and x[i+1] and just interchanging the
two elements if they are not in proper order (correct order). The pass through
the list is repeated until no swaps are needed, this indicates that the list is
sorted (registered). This method is called bubble sort because each number
slowly "bubbles" up to its proper position in stored.

For Example, consider the given set of elements in an array which has
to be sorted :

22, 56, 45, 39, 11, 99, 82, 32

The following comparisons are made on the first pass :

x[0] with x[1] (22 with 56) No Interchange

x[1] with x[2] (56 with 45) Interchange

x[2] with x[3] (56 with 39) Interchange

x[3] with x[4] (56 with 11) Interchange

x[4] with x[5] (56 with 99) No Interchange

x[5] with x[6] (99 with 82) Interchange

x[6] with x[7] (99 with 32) Interchange

Thus, after the first pass, the file is in the order

22, 45, 39, 11, 56, 82, 32, 99

Notice, that after the first pass, the largest element (i.e. 99) is in its
proper position within the array. Now, after the second pass the elements will
be in the given order :

22, 39, 11, 45, 56, 32, 82, 99

Notice that 82 is at second highest position. Since each iteration places
a new element into its proper position, a file of n elements requires no more
than n–1 iterations.

The complete set of iterations is as follows :

Iteration 0(Original file) 22 56 45 39 11 99 82 32

Iteration 1 22 45 39 11 56 82 32 99

Iteration 2 22 39 11 45 56 32 82 99

Iteration 3 22 11 39 45 32 56 82 99

Iteration 4 11 22 39 32 45 56 82 99

Iteration 5 11 22 32 39 45 56 82 99

Iteration 6 11 22 32 39 45 56 82 99

Iteration 7 11 22 32 39 45 56 82 99

We have seen that n–1 passes are sufficient to sort the file of size n.
But, in the above example, where 8 elements were present, the file was sorted
after five iterations, making the last two iterations unnecessary. So, to eliminate
the unnecessary passes we should detect that the file is already sorted. Under
this method, if the file can be sorted in fewer than n–1 passes, the final pass
makes no interchanges.

148

Data Structure Using C Algorithm for Bubble Sort :

Procedure bubblesort (A : list of sortable items)

do

swapped := false

for each i in 0 to length (A) – 2 inclusive do :

if A[i] > A [i+1] then

swap (A[i], A [i+ 1])

swapped := true

end if

end for

while swapped

end procedure

 Complexity of Bubble Sort :

Bubble sort method has n–1 passes and n–1 comparisons on each pass.
Then in the first pass we can see the largest element gets place at the last
position. There are n–2 comparisons in the second step, which places the second
largest element in the next to last position and so on. Thus,

f(n) = (n – 1) + (n – 2) +…………. + 2 + 1 = n(n – 1)/2

= n2/2 + O (n) = O(n2)

Thus, the Bubble Sort has worst–case and average complexity both O
(n2), where n is the number of items being sorted.

 Check Your Progress – 3 :
1. In the sorting algorithm two nearby elements are compared :

[A] Selection [B] Quick [C] Merge [D] Bubble

2. Complexity of the Bubble sort algorithm is .

[A] O (1) [B] O (n) [C] O (n2) [D] O (log n)

3. Identify the sorting algorithm in which nested loops are used.

[A] Bubble [B] Quick

[C] Merge [D] None of the above

12.5 Insertion :

Insertion Sort is a simple sorting algorithm, in which the sorted array
is built one entry at a time. It is much less efficient on large lists. However,
it provides several advantages :

Simple Implementation

Efficient for small sets of data

Adaptive, that is, efficient for data sets that are already substantially
sorted.

Stable, that is, does not change the relative order of elements with equal
keys.

In–place, that is, only requires a constant amount of additional memory
space.

149

Sorting TechniquesSuppose an array A with n elements is in memory then the insertion
sort algorithm scans the array from first position to the last position, inserting
each element into its proper position in the previously sorted subarray.

For Example,

Suppose an array A contains 8 elements as follows :

75, 32, 45, 12, 84, 23, 64, 57

Now, the given figure illustrates the insertion sort algorithm. The coloured
element indicates the number with which the other elements will be compared
and the arrow indicates the proper place of inserting the element to be compared.

 Pseudo code for Insertion Sort :

InsertionSort (array A)

begin

for K := 1 to length[A] do

begin

value := A[K];

j := K–1;

while j>= 0 and A[j] > value do

begin

A[j + 1] := A[j];

A[j] := value;

j := j–

1; end;

end;

end;

 Complexity Analysis :

Worst Case : In this case, array is in reverse order and the inner loop
must use the number k–1 of comparisons. Hence,

f(n) = 1 + 2 +……………………+ (n – 1) = n(n – 1)/2 = O(n2)

Average Case : In this case there will be approximately (k – 1)/2
comparisons in the inner loop. Accordingly, for the average case,

f(n) = 1/2 + 2/2 +…………… (n – 1)/2 = n(n – 1)/4 = O(n2)

150

Data Structure Using C Insertion sort's overall complexity is O (n2) on average, regardless of
the method of insertion. Number of writes is O (n2) on average, but number
of comparisons may vary depending on the insertion algorithm. It is O (n2)
when shifting or swapping methods are used and O (n log n) for binary insertion
sort.

 Check Your Progress – 4 :
1. How many nesting of loop is needed to implement insertion sort algorithm.

[A] 2 [B] 1 [C] 4 [D] 3

2. Complexity for insertion sort is .

[A] O (1) [B] O (n) [C] O (n2) [D] O (log n)

3. What will be the number of passes to sort the elements using insertion
sort ?

14, 12,16, 6, 3, 10

[A] 6 [B] 7 [C] 5 [D] 1

4. For the following question, how will the array elements look like after
second pass in Insertion sort algorithm ?

34, 8, 64, 51, 32, 21

[A] 8, 21, 32, 34, 51, 64 [B] 8, 32, 34, 51, 64, 21

[C] 8, 34, 51, 64, 32, 21 [D] 8, 34, 64, 51, 32, 21

12.6 Selection :

Selection

The Selection Sort method completely consists of a selection phase in
which the smallest (lowest) element of the array is selected (identified) and
is positioned (placed) at the first place. In the second pass, next smallest element
is selected and is placed at the second position and so on. The process continues
till the end of the array. The initial queue is reduced by one element at each
step. At the end of n – 1 selections, the entire array gets sorted.

For Example,

Suppose an array A contains 8 elements as follows :

75, 32, 45, 12, 84, 23, 64, 57

Now, applying the selection sort algorithm to A, we will receive the
elements as shown in the given figure. The coloured elements indicate the
elements which are to be exchanged.

151

Sorting TechniquesPASS X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7]

I=0 J=1 75 32 45 12 84 23 64 57

J=2 32 75 45 12 84 23 64 57

J=3 32 75 45 12 84 23 64 57

J=4 12 75 45 32 84 23 64 57

J=5 12 75 45 32 84 23 64 57

J=6 12 75 45 32 84 23 64 57

J=7 12 75 45 32 84 23 64 57

I=1 J=2 12 75 45 32 84 23 64 57

J=3 12 45 75 32 84 23 64 57

J=4 12 32 75 45 84 23 64 57

J=5 12 32 75 45 84 23 64 57

J=6 12 23 75 45 84 32 64 57

J=7 12 23 75 45 84 32 64 57

I=2 J=3 12 23 75 45 84 32 64 57

J=4 12 23 45 75 84 32 64 57

J=5 12 23 45 75 84 32 64 57

J=6 12 23 32 75 84 45 64 57

J=7 12 23 32 75 84 45 64 57

I=3 J=4 12 23 32 75 84 45 64 57

J=5 12 23 32 75 84 45 64 57

J=6 12 23 32 45 84 75 64 57

J=7 12 23 32 45 84 75 64 57

I=4 J=5 12 23 32 45 84 75 64 57

J=6 12 23 32 45 75 84 64 57

J=7 12 23 32 45 64 84 75 57

I=5 J=6 12 23 32 45 57 84 75 64

J=7 12 23 32 45 57 75 84 64

I=6 J=7 12 23 32 45 57 64 84 75

 Sorted Array 12 23 32 45 57 64 75 84

 Pseudocode of Selection Sort :

If AR is the name of the array and small and pos are the variables which
will hold the smallest element and its position in the array, then the pseudocode
for the same can be written as :

152

Data Structure Using C for (i=0; i<MAX; i++)

{

for (j=i+1; j<MAX; j++)

{

If (X[j] < X[i])

{

tmp=X[i];

X[i] = X[j];

X[j] = tmp;

}

}

}

 Complexity of Selection Sort :

The number f(n) of comparisons in the selection sort algorithm is
independent of the original order of the elements. There are n–1 comparisons
during pass1 to find the smallest element, there are n–2 comparisons during
pass2 to find the second smallest number and so on. Accordingly,

f(n) = (n – 1) + (n – 2) + (n – 3) +……………. 3 + 2 + 1

= n(n – 1)/2 = O (n2)

 Check Your Progress – 5 :
1. The given array is arr = {3, 4, 5, 2, 1}. The number of iterations in

bubble sort and selection sort respectively are,

[A] 5 and 4 [B] 4 and 5 [C] 2 and 4 [D] 2 and 5

2. What is the worst–case complexity of selection sort ?

[A] O (1) [B] O (n) [C] O (log n) [D] O (n2)

3. How many iterations will take inner loop for each iteration of outer loop
in selection sort ?

14, 12, 16, 6, 3, 10

[A] 6 [B] 5 [C] 7 [D] 1

4. For the following question, how will the array elements look like after
second pass in Selection sort algorithm ?

34, 8, 64, 51, 32, 21

[A] 8, 21, 32, 34, 51, 64 [B] 8, 32, 34, 51, 64, 21

[C] 8, 21, 64, 51, 32, 34 [D] 8, 34, 64, 51, 32, 21

12.7 Quick :

The Quick Sort method is also called partition exchange sort. It is a
very efficient sorting algorithm invented by C.A.R Hoare. It has two phases :

The Partition Phase

The Sort Phase

The majority of the work is done in the partition phase, that is, it works
out where to divide the work and the Sort phase simply sorts the two smaller

153

Sorting Techniquesproblems that are generated in the partition phase. That is why we say that
Quick Sort is a good example of Divide and Conquer strategy for solving
problems. As, we divide the array of items to be sorted into two partitions
and then call the quicksort procedure recursively to sort the two partitions,
that is, we divide the problem into two smaller ones and conquer by solving
the smaller ones.

The above can be achieved by choosing a pivot element and arranging
all the items in the lower part which are less than the pivot and all those
in the upper part greater than it. As, in most of the cases we do not know
anything about the items to be sorted, so any choice of the pivot element will
do, the first element can be a convenient one.

Let us illustrate this with the help of an example, if the initial array
is given as :

24 55 46 32 12 95 87 36

If the first element 24 is chosen as pivot number and is placed in its
proper position, the resulting array will be :

12 24 55 46 32 12 95 87 36

Now, at this point 24 is at its proper position, each element below 24
is less than or equal to 24 (12), and each element above that position (55,
46, 32, 12, 95, 87, 36) is greater than or equal to 24.

(12) 24 (55 46 32 12 95 87 36)

Now, as 24 is at its proper position, the elements present to its left and
right are yet to be sorted. Repeating the above process of choosing a pivot
number and dividing the array into smaller part, that is, let's choose the pivot
number as 57 and applying the above steps to it, we'll yield :

12 24 (46 36 32) 55 (95 87)

Now, 55 is at its proper position, and again there are two subarrays,
specified in brackets (46, 36, 32) and (95, 87) which need to be sorted again
using the above concept, that is, by choosing a pivot number. Now, repeating
the above process and further repetitions yield :

12 24 (36 32) 46 55 (95 87)

12 24 (32) 36 46 55 (95 87)

12 24 32 36 46 55 (95 87)

12 24 32 36 46 55 (87) 95

12 24 32 36 46 55 87 95

Now, the final array is sorted.

 Algorithm for partition of quicksort :

Algorithm partition (S, p) :

Input–sequence S, position p of pivot

Output–subsequence L, E, G of the elements of S less than, equal to,or
greater than the pivot, respectively.

L, E, G empty sequences

x S.remove(p)

while S.isEmpty()

154

Data Structure Using C y S.remove(S.first())

if y < x

L.insertLast(y)

else if y = x

E.insertLast(y)

else { y > x }

G.insertLast(y)

return L, E, G

 Complexity of Quicksort :

Quick Sort is unstable because efficiency of quick sort depends upon
the type of storage file/array. Quick sort has different efficiencies for unsorted
array/file and sorted file/array. This can be well defined by the following proof :

1. In case of Unsorted Array :

Let array size n is some power of 2, say

n = 2m and m = log2n

Let position of pivot is exactly in the middle of the subarray. So, in
first pass, there are n comparisons. In second pass, there are n/2 comparisons
and in third pass n/8 comparisons and so on, up to m subarrays.

After having subfiles/subarray of m times, there are n files of size 1.
Hence total no. of comparisons should be :

n + 2 * n/2 + 4 * n/4 + 8 * n/8 +……… n * n/n

= n + n + n + n………n (m times)

= O (n * m) but m = log2n = O (n log2 n)

That is, the efficiency of unsorted array is O (n log2 n).

2. In case of Sorted array :

Let array is sorted. Suppose X[lb] is in its proper place, the original
file/array is split into subfiles of size 0 and n – 1.

If the above process continues, a total of n – 1 subfiles are sorted.

size of first array = n

size of second array = n – 1

size of third array = n – 2 and so on.

Let K comparisons are required to rearrange a file of size K, the total
no. of comparisons to sort the entire array is :

n + (n – 1) + (n – 2) …… + (n – i) + …. 3 + 2

= O(n2)

That is, the efficiency for sorted array is O (n2).

In worst case, efficiency is O (n2), but it is easy to avoid the worst
case. On an average, its efficiency is O (n log n).

 Check Your Progress – 6 :
1. Which if the following algorithm is fastest.

[A] Merge sort [B] Quick sort [C] Insertion sort[D] Shell sort

155

Sorting Techniques2. What is the worst–case complexity of Quick sort ?

[A] O (1) [B] O (n) [C] O (log n) [D] O (n2)

3. What is the average running time of a quick sort algorithm ?

[A] O (n2) [B] O (n log n) [C] O (log n) [D] O (n)

12.8 Merge :

Suppose consider A is sorted list with n elements and consider B is a
sorted list with m elements. Then the operation that combines the elements
of A and B into a single sorted list C with s = m + n elements is called as
merging. One good way to merge is to place the elements of B after the elements
of A and then use some sorting algorithm on the entire list.

Suppose consider, an array with 14 elements is in memory and are to
be sorted by merge sort algorithm, let us illustrate the same with the help of
the given example,

Each pass of the merge sort algorithm starts at the beginning of the array
A and merge pairs of sorted subarrays as follows :

65, 32, 45, 23, 57, 89, 60, 12, 80, 21, 50, 43, 76, 34

Pass 1. Merge each pair of elements to obtain the following list of sorted
pairs :

32, 65 23, 45 57, 89 12, 60 21, 80 43, 50 34, 76

Pass 2. Merge each pair of pairs to obtain the following list of sorted
quadruplets :

23, 32, 45, 65 12, 57, 60, 89 21, 43, 50, 80 34, 76

Pass 3. Merge each pair of sorted quadruplets to obtain the following
two sorted subarrays :

12, 23, 32, 45, 57, 60, 65, 89 21, 34, 43, 50, 76, 80

Pass 4. Now, merge the two sorted subarrays to obtain the single sorted
array

12, 23, 32, 34, 43, 45, 50, 57, 60, 65, 76, 80, 89

Now, finally the array A is sorted.

The merge sort algorithm has an important property, after pass k, the
array will be partitioned into subarrays where each subarray except the possibly
the last, will contain exactly L=2k elements.

Hence the algorithm requires at most log n passes to sort an n–element
array A.

 Algorithm for merge sort :

functionmerge_sort(m)

var list left, right, result

if length(m) ? 1

return m

var middle = length(m) / 2 – 1

for each x in m up to middle

add x to left

156

Data Structure Using C for each x in m after middle

add x to right

left = merge_sort(left)

right = merge_sort(right)

ifleft.last_item>right.first_item

result = merge(left, right)

else

result = append(left, right)

return result

 Complexity of Merge Sort Algorithm :

Let f(n) denote the number of comparisons needed to sort an n–element
array A using the merge sort algorithm. The algorithm requires at most log
n passes. Moreover, each pass merges a total of n elements and on the
complexity of merging each pass will require at most n comparisons. Accordingly,
for both the worst case and average case,

f(n) <= n log n

The main drawback of merge sort is that it requires an auxiliary array
with n elements. So, from the above we can say that the merge sort has
complexity of O (n log n) in worst case, O (n log n) in average case.

 Check Your Progress – 7 :
1. Merge sort uses which of the following technique to implement sorting ?

[A] Backtracking [B] Greedy algorithm

[C] Divide and Conquer [D] Dynamic programming

2. Which of the following method is used for sorting in merge sort ?

[A] Merging [B] Partitioning [C] Selection [D] Exchanging

3. What is the average running time of a merge sort algorithm ?

[A] O (n2) [B] O (n log n) [C] O (log n2) [D] O (n log n2)

4. Which of the following is not a stable sorting algorithm ?

[A] Quick sort [B] Cocktail sort [C] Bubble sort [D] Merge sort

12.9 Radix Sorting :

Radix Sorting

Radix sort is one of the linear sorting algorithms for integers. It functions
by sorting the input numbers on each digit, for each of the digits in the numbers.
However, the process adopted by this sort method is somewhat counterintuitive,
in the sense that the numbers are sorted on the least–significant digit first,
followed by the second–least significant digit and so on till the most significant
digit.

157

Sorting TechniquesThe time complexity of the algorithm is as follows : Suppose that the
n input numbers have maximum k digits. Then the Counting Sort procedure
is called a total of k times. Counting Sort is a linear, or O(n) algorithm. So,
the entire Radix Sort procedure takes O(kn) time. If the numbers are of finite
size, the algorithm runs in O(n) asymptotic time.

Consider the list of integers :

36, 9, 0, 25, 1, 49, 64, 16, 81, 4

n is 10 and the numbers all lie in (0, 99). After the first phase, we will
have :

Bin 0 1 2 3 4 5 6 7 8 9

Content 0 1 – – 64 25 36 – – 9

81 4 16 49

Note that in this phase, we placed each item in a bin indexed by
the least significant decimal digit.

Repeating the process, will produce :

Bin 0 1 2 3 4 5 6 7 8 9

0

Content 1 16 25 36 49 – 64 – 81 –

4

9

In this second phase, we used the leading decimal digit to allocate items
to bins, being careful to add each item to the end of the bin.

We can apply this process to numbers of any size expressed to any
suitable base or radix.

12.10 Let Us Sum Up :

In this Unit we have confirmed our learning about sorting which is a
method of arranging data elements in a particular order. And, a sorting algorithm
is an algorithm that puts elements of a list in a certain order. There are various
types of sorting namely Internal Sorting and External Sorting

Internal Sorting : Any sort algorithm which uses main memory exclusively
during the sort is an example of Internal Sorting. For Example : Bubble Sort,
Insertion Sort

External Sorting : External sorting is an important activity especially
in large business. It is thus crucial that it is performed efficiently. External
sorting is applied to sort records of files which are too large to fit in the main
memory of the computer. This sorting is applied to larger collection of data
which rests on secondary devices. The most popular method for sorting on
external storage device is Merge sort. Let us recapitulate the difference between
Internal and External Sorting

Internal Sorting

(1) If the sorting occurs on records
which is in main memory then
it is called internal sorting.

External Sorting

(1) External sorting is that sorting in
which records are stored in
auxiliary storage devices.

158

Data Structure Using C

There is also learning about Insertion Sort which is a simple sorting
algorithm, in which the sorted array is built one entry at a time. It is much
less efficient on large lists. However, it provides several advantages.

12.11 Suggested Answers For Check Your Progress :

 Check Your Progress 1 :

1. [A] 2. [D]

 Check Your Progress 2 :

1. [B] 2. [A] 3. [D] 4. [A] 5. [D]

 Check Your Progress 3 :

1. [D] 2. [C] 3. [A]

 Check Your Progress 4 :

1. [A] 2. [C] 3. [C] 4. [D]

 Check Your Progress 5 :

1. [A] 2. [D] 3. [B] 4. [C]

 Check Your Progress 6 :

1. [B] 2. [D] 3. [B]

 Check Your Progress 7 :

1. [C] 2. [A] 3. [D] 4. [A]

12.12 Glossary :

1. Pivot Element – Element in array which is compared with all other
elements.

2. Sorting – Sorting is a method of arranging data elements in a particular
order. The arrangement of the data is either lower element to higher
(Ascending) or higher element to lower (Descending).

3. Internal Sorting – If the sorting occurs on records which is in main
memory then it is called internal sorting.

4. External Sorting – External sorting is that sorting in which records are
stored in auxiliary storage devices.

5. Radix sort – Radix sort is one of the linear sorting algorithms for
integers.

6. Bubble sort – Bubble sort is a sorting algorithm, which sorts the data
by comparing two near by data element. The worst–case complexity of
the bubble sort algorithm is O (n2).

(2) It is applied on small collection
of data which reside in main
memory.

(3) Time is not required to read or
write

(4) It is simple sorting method.

(2) It is applied to larger collection
of data which resides on
secondary memory.

(3) Time required to read or write is
considered significant.

(4) External sorting is more complex
than internal sorting.

159

Sorting Techniques7. Selection sort – Selection sort is a sorting algorithm, which sorts the
data by comparing all other element with selected data element. The
worst–case complexity of selection sort algorithm is O (n2).

8. Searching – Searching is the process of finding the position of particular
element in the array. To search a data element into the Array there are
two method are there : [1] Linear search and [2] Binary search.

9. Linear search – Linear search is the simplest algorithm in which we
compare the search element with all other elements. The time complexity
of Linear search is higher (O (n)). Therefore, it is slower algorithm. It
can be applied on any kind of array, whether it is sorted or unsorted.

10. Binary search – Binary search is a searching method in which, we are
comparing search element directly to the element situated at the middle
of the array. If the value is smaller than the element at the middle then
it might be from 0 to mid–1. If it is greater than it might be between
mid+1 to upper bound of the array. It can be applied on the sorted array
only. It is faster than Linear search as the complexity of binary search
is O (log n).

12.13 Assignment :

1. Do the complexity analysis of Quick, Merge and Insertion Sort for worst,
average and best cases in about 100–150 words.

2. Show the tracing of the following data using Selection sort, Bubble sort
and Insertion sort :

64, 34, 8, 51, 21, 32

3. Show the tracing of the following data using Quick sort algorithm.

11, 2, 9, 13, 57, 25, 17, 1, 90, 3

4. Show the tracing of the following data using Merge sort algorithm.

45, 9, 28, 39, 11, 20, 50, 41

12.14 Activities :

1. What are the types of Exchange sorts ? Explain algorithms with examples.

2. What is Pivot ?

3. What is stable sorting ?

12.15 Case Study :

To apply sorting on data this is present in industry related to stock details
of product. Which Algorithm is suitable to sort product details on basis of
demands from customer ?

12.16 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahani.

4. Data Structures : An Advanced Appraoch Using 'C' by Esakov and Weises.

5. Data Structures and 'C' Programming by Cristopher J. Vanwyk.

160

UNIT STRUCTURE

13.0 Learning Objectives

13.1 Introduction

13.2 File Structure – Concept of Fields

13.3 Files and Records

13.4 Sequential and Index File Organizations

13.5 Hashing Techniques

13.6 Let Us Sum Up

13.7 Suggested Answer for Check Your Progress

13.8 Glossary

13.9 Assignment

13.10 Activities

13.11 Case Study

13.12 Further Readings

13.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand file structure – concept of fields

• Understand files and Records

• Understand sequential and Index file organizations

• Understand hashing Techniques

13.1 Introduction :

This chapter is mainly concerned with the way in which file structures
are used. There is one important distinction that must be made at the outset
when discussing file structures. And that is the difference between the logical
and physical organisation of the data. On the whole a file structure will specify
the logical structure of the data that is the relationships that will exist between
data items.

FILE STRUCTURE
Unit

13

161

File Structure13.2 File Structure – Concept of Fields :

File Structure

 File Operations :

Operations on database files can be classified into two categories broadly.

Update Operations and Retrieval Operations

Update operations or function change the data values by insertion, deletion
or update. Retrieval operations (or function) on the other hand do not alter
(or change) the data but retrieve them after optional conditional filtering. In
both types of operations, selection operation plays significant role. Other than
creation and deletion of a file, there are several operations, which can be done
on files.

• Open – This operation takes care of file open and can be opened in
one of two modes (forms/manners), read mode or write mode. In read
mode, operating system does not allow anyone to alter data (change)
it is solely for reading purpose. Files opened in read mode can be shared
among several entities. Another mode is 'write' mode, in which, data
modification is allowed. Files opened in write mode can be read also
but cannot be shared.

• Locate – Each and every file has a file pointer (indicator), which tells
the current position where the data is to be read or written. This pointer
can be adjusted accordingly. Using the find (seek) operation it can be
moved forward or backward.

• Read – By default (automatically), when files are opened in read mode
(operation) the file pointer points to the beginning of file. There are
options where the user can tell the (OS) operating system to where the
file pointer to be located (to put on) at the time of file opening. The
very next data to the file pointer is read.

162

Data Structure Using C • Write – In this operation user can select to open files in write mode,
which enables them to edit the content of file. It can be deletion, insertion
or modification. The file pointer can be located at the time of opening
or can be dynamically changed if the operating system allowed doing
so.

• Close – This operation is also most important operation from operating
system point of view. When a request to close a file is generated, the
operating system removes all the locks (if in shared mode) and (store
or register) saves the content of data (if altered) to the secondary storage
media and release all the buffers and file handlers associated with the
file.

The organization of data content (records) inside the file plays a major
role here. Seeking or locating the file pointer to the desired record inside file
behaves differently if the file has records arranged sequentially or clustered,
and so on.

 Check Your Progress – 1 :
1. Read are Write are the modes of file operation.

[A] Locate [B] Open

[C] Close [D] None of the above

2. file operation, writes all file blocks to the secondary memory
and release all the buffers.

[A] Create [B] Locate [C] Open [D] Close

3. To set the file position in forward or backward directions,
function is called.

[A] seek [B] peek

[C] read [D] All of the above

13.3 Files and Records :

Files and Records

A record is a sequence of values or a sequence of characters. There are
three kinds of FORTRAN records, as follows :

• Formatted – A record containing (consists of) formatted data that requires
translation from internal to external form. The formatted I/O statements
have explicit format specifies (which can specify list–directed formatting)

163

File Structureor name list specifies (for name list formatting). Only formatted I/O
statements can read formatted data.

• Unformatted – A record containing unformatted data (in a file) that is
not translated from internal form. An unformatted record can also contain
no data. The internal representation of unformatted data is processor–
dependent. Only unformatted I/O statements can read unformatted data.

• Endfile – This indicator for last record of a file. An endfile record can
be explicitly written to a sequential file by an ENDFILE statement

A file is a sequence of records (having various entities). There are two
(forms) types of Fortran files, as follows :

• External – In an operation a file that exists in a medium (such as
computer disks or terminals) external to the executable program.

Records in an external file must be either all formatted or all unformatted
(as per the). There are three ways (methods of operation) to access records
in external files : sequential, keyed access (VMS only), and direct access.

In sequential access operation, records are processed in the order in which
they appear in the file. In direct access operation, records are selected
by record number, so they can be processed in any order. In keyed access,
records are processed by key–field value.

• Internal – Memory or internal storage behaves like a file. This type
of file provides a way to transfer and convert data in memory from one
format to another (one form to the other form). The contents of these
files are stored as scalar character variables.

 Check Your Progress – 2 :
1. The organization of data, into the file is called .

[A] field [B] record [C] file [D] table

2. A record containing data (in a file) that is not translated from
internal form.

[A] formatted [B] external [C] unformatted [D] internal

3. From the given below which is not a method of accessing records from
external files :

[A] Sequential [B] Keyed (VMS only)

[C] Direct [D] Formatted

13.4 Sequential and Index File Organizations :

Sequential and Index File Organizations

164

Data Structure Using C It is a method of mapping file records to disk blocks defines file
organization, i.e., how the file records are organized. The following are the
types of file organization

• Sequential File Organization – mostly every file record contains a data
field (attribute) to uniquely identify that record. In sequential file
organization mechanism, records are placed in the file in some sequential
order based on the unique key field or search key. Practically, it is not
possible to store all the records sequentially in physical form some time
it should be kept as per the requirement of the record to be processed.

• Sequential Files – A sequential file is the most primitive (modern) of
all file structures. It has no directory and no linking pointers. The records
are generally organized in lexicographic order (one after the other) on
the value of some key (assigning a key to it). In other words, a particular
attribute is chosen whose value will determine the order of the records
(in the manner of the arrangement). On some occasion when the attribute
value is constant for a large number of records a second key is chosen
to give an order when the first key fails to discriminate.

For the implementation of this file structure requires the use of a sorting
routine operation.

• The main advantages are :

(1) Easy to implement;

(2) It provides fast access to the next record (In order) using lexicographic
order.

• Its disadvantages :

(1) It is difficult to update(operation) – inserting (operation) a new record
may require moving a large proportion of the file;

(2) Extremely slow in case of Random access.

• Few times a file is considered to be sequentially organized despite the
fact that it is not ordered according to any key. Perhaps the date of
acquisition is considered to be the key value (on the basis of date); the
newest entries are added to the end of the file and hence pose no difficulty
to updating.

• Indexed files – The file is made of "data cells", it is not necessary that
it should be of the same size, and contain "indexes", lists of "pointers"
to these cells arranged by some order.

• Index–sequential files – When we talk about an index–sequential file
then it is an inverted file in which for every keyword Ki, we have ni
= hi = 1 and a11 <a21 . . . <am1. In this case we can only arise if
each record has just one unique keyword (no duplication), or one unique
attribute–value. In practice these set of records may be order sequentially
by a key. Each and every key value appears (in list) in the directory
with the associated address of its record. The record number will be an
obvious interpretation of a key of this kind would be the record number.
In this example none of the attributes would do the job except the record
number.

165

File Structure Check Your Progress – 3 :
1. A file is the most primitive (modern) of all file structures.

[A] Direct [B] Index–sequential

[C] Sequential [D] None of the above

2. In file, the records are generally organized in lexicographic
order (one after the other) on the value of some key (assigning a key
to it).

[A] Sequential [B] Direct

[C] Index–sequential [D] All of the above

3. file, has no directory and no linking pointers

[A] Sequential [B] Direct

[C] Index–sequential [D] All of the above

4. file has unique keywords (no duplication), or one unique
attribute–values.

[A] Data [B] Index [C] Program [D] Driver

13.5 Hashing Techniques :

We must access an index structure to locate data, or must and should
use binary search, and that results in more I/O operations (function). Space
taken by index structure.

Hashing allows us to avoid (to leave) accessing an index structure.

We obtain (get) the address of the disk block containing a desired record
directly by computing a function on the search–key value of the record.

Now Bucket is a unit of storage (memory) that can store one or more
records.

A bucket can be said as atypical disk block, can be chosen to be smaller
or larger than a disk block.

• A hash function h is a function from K to B.

h – hash function

Ki – search key

Bi = h(Ki)

If h(K7) = h(K5)

bucket h(K5) contains records with search–key values K5 and records
with search–key values K7

• The worst possible hash function maps all search–key values to the same
bucket

• An ideal hash function distributes the stored keys uniformly across all
the buckets, so that every bucket has the same number of records

• We want to choose a hash function that assigns search–key values to
buckets

 Linear hashing :

Linear hashing can be viewed on as a dynamic version of hashing with
separate chaining : the overflows are chained together in a separate overflow

166

Data Structure Using C area, but the size of the file grows (or shrinks) incrementally accordingly, page
by page, keeping the file density approximately constant. In the following
illustrations, records are represented by letters x, y, z,, the blocking factor
y = 3 (i.e., three records per page), the file density is = n/m = 2/3, where
n is the number of records in the file, m is the file capacity (in records).

1. Initial situation :

basic allocation (always a power of 2) is p0 = 8 pages (file depth d
= 3), current allocation p1 equal to basic allocation, n = 16 records in the
file, (= 16/24 = 2/3).

g

0 1 2 3 4 5 6 7

xyz d h i j l m n o q s ef

p0 = p1

Split pointer

The hash function values (pseudo–keys) of records a, b, c has suffix
(i.e., low order bits) 000, for record d – suffix 001, for records g, h, i, j
– suffix 010, etc. The suffix determines the address of page where the record
is stored. The length of the suffix is equal to the file depth.

Page No 2 has already overflown.

The "split pointer" points at the next page to be split.

The file grows from p1 to p1 + 1 pages every · y = (2/3) · 3 = 2
insertions. Linear hashing (2)

2. After record r with pseudo key suffix 0100 has been inserted :

g r

0 1 2 3 4 5 6 7 8

xyz D h i j l m n o q s ef z

p0 p1

As the file density would exceed 2/3, so :

• the new page is allocated to the file,

• the page pointed at by the split pointer (the page with address p1–p0)
is split,

• Current allocation p1 increases by one : p1 = 9,

• The file depth increases by one,

• The records from the split page (x, y, z) are rehashed with the pseudo
key extended by one bit to the left : records x, y that have suffix 0000,
remain on page 0; record z, that has suffix 1000, is moved to the newly
allocated page 8.

3. After next 2 insertions : record k (suffix 0011) and w (suffix 0110), the
next page (address 1) is split.

The record d has the pseudo–key suffix 0001, so it remained on page
1. In this case the newly allocated page 9 is empty at the moment. Linear
hashing (3)

167

File Structure4. After next 2 insertions : record f (suffix 1001) and t (suffix 0101), the
next page (address 2) together with its overflow page is split.

The process continues until p1 becomes 2 · p0. Then, the whole process
starts anew with the value of p0 doubled and the file depth increased by one :

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

xy d g h k l m n q s w x z f i j

p0 = p1

Note that the split pointer points at page 0 again. Linear hashing (4)

For the linear hashing scheme to work properly, the hashing function
KAT must dynamically modify according to the current file depth d. For a
given key k, KAT produces an address in the range 0...2 · p0 – 1, so that
always d bits are available.

Then, the generated address is reduced to the current range 0...p1 – 1 :

address : = KATd(k)

IF address > p1 – 1 THEN address : = address – p0

The records from the split page (possibly – with overflow pages) have
either the original address ("0" on the extra bit) and they stay in their home
page, or have the new address p1 ("1" on the extra bit), referring to the new
page.

When the file has grown to twice its size (p1 = 2 · p0), KAT is modified
to produce another bit with the low order bits remaining the same, the values
of p0 and p1 are doubled and the process continues starting with p1 = p0.

If there are deletions (erase of record), the whole procedure can work
the other way round, with merging appropriate pages instead of splitting.

Performance of linear hashing may be estimated in a similar way as for
separate chaining. The cost of accessing a record is 1 access (address calculated by
KAT) plus expected cost of traversing the overflow chain. S+ = 1 + /2.

 Check Your Progress – 4 :
1. method is used to access the record directly into the file.

[A] Hashing [B] Indexed

[C] Sequential [D] None of the above

2. A can be said as atypical disk block, can be chosen to be
smaller or larger than a disk block

[A] Field [B] Record [C] Track [D] Bucket

3. In basic allocation for hashing, if file has depth d=3 then how many
pages will be there in the file ?

[A] 3 [B] 6 [C] 8 [D] 9

4. In a hash function, Bi = h(Ki), The Ki indicates .

[A] Index key [B] Search Key

[C] Hash function [D] Record address

13.6 Let Us Sum Up :

In this Unit, the high level of understanding relating to File Organization
which has to be implemented as per the organization / company requirement

168

Data Structure Using C so that data retrieval speed gets minimum so by using efficient method we
can store it on disk.

There is understanding related to file and its operations, Operations on
database files can be classified into two categories broadly :

Update Operations and Retrieval Operations change the data values by
insertion, deletion or update. Retrieval operations (or function) on the other
hand do not alter (or change) the data but retrieve them after optional conditional
filtering. In both types of operations, selection operation plays significant role.
To carry out these operations there are having some important basic operations
need to be performed like Open, Locate, Read, Write, Close

Now further we have learnt about a record. A record is a sequence of
values or a sequence of characters. There are three kinds of FORTRAN records,
such as Formatted, Unformatted, Endfile. After this we have continue
understanding about a file which is a sequence of records. There are two types
of Fortran files as external and Internal

There is also learning related to Hashing which allows us to avoid
accessing an index structure. We obtain the address of the disk block containing
a desired record directly by computing a function on the search–key value of
the record Bucket is a unit of storage that can store one or more records. A
bucket is typically a disk block, but could be chosen to be smaller or larger
than a disk block. In mean time we understood about Linear hashing.

Linear hashing can be viewed on as a dynamic version of hashing with
separate chaining : the overflows are chained together in a separate overflow
area, but the size of the file grows (or shrinks) incrementally, page by page,
keeping the file density approximately constant.

13.7 Suggested Answer for Check Your Progress :

 Check Your Progress 1 :

1. [B] 2. [D] 3. [A]

 Check Your Progress 2 :

1. [B] 2. [C] 3. [D]

 Check Your Progress 3 :

1. [C] 2. [A] 3. [A] 4. [B]

 Check Your Progress 4 :

1. [A] 2. [D] 3. [C] 4. [B]

13.8 Glossary :

1. Hashing – Hashing a technique to calculate direct location of data record
on the disk without using index structure.

2. Linear hashing – Linear hashing can be viewed on as a dynamic version
of hashing with separate chaining

3. Separate chaining – the overflows are chained together in a separate
overflow area, but the size of the file grows (or shrinks) incrementally,
page by page, keeping the file density approximately constant.

4. Split pointer – The "split pointer" points at the next page to be split.

169

File Structure13.9 Assignment :

Do the sequential indexing on 1000 no. of records present in database.

13.10 Activities :

1. What is mean by Indexed Sequential files ?

2. Write methods to implement hashing using static and dynamic hashing.

13.11 Case Study :

Consider data stored in college database which is used by committee
for checking the progress of college for last 20 years then how could we find
the records of all last year student details which are gets passed through this
college.

1. Which organization of files is using full to perform searching on Class
of students ?

13.12 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures and Program Design in "C" by Robert L. Kruse.

3. Fundamentals of Data Structures by Horowitz and Sahani.

4. Data Structures : An Advanced Appraoch Using 'C' by Esakov and Weises.

5. Data Structures and 'C' Programming by Cristopher J. Vanwyk.

170

PROGRAMS OF SEARCHING
AND SORTING

Unit

14
UNIT STRUCTURE

14.0 Learning Objectives

14.1 Introduction

14.2 Programs of Searching & Sorting

14.2.1 Write a Program to Implement Linear Search

14.2.2 Write a Program to Implement Binary Search

14.2.3 Write a Program to Implement Selection Sort

14.2.4 Write a Program to Implement Bubble Sort

14.2.5 Write a Program to Implement Insertion Sort

14.2.6 Write a Program to Implement Quick Sort

14.2.7 Write a Program to Implement Merge Sort

14.3 Let Us Sum Up

14.4 Suggested Answers For Check Your Progress

14.5 Glossary

14.6 Assignment

14.7 Activities

14.8 Case Study

14.9 Further Readings

14.0 Learning Objectives :

After learning this unit, you will be able to :

• Understand difference between Linear search and Binary search

• Understand How to implement Linear and Binary search algorithms
practically

• Understand implementation of various sorting algorithms

14.1 Introduction :

In the first two units of this block, we have discussed the algorithms
to implement various searching and sorting techniques. We have tried to explain
each sorting and sorting algorithm in brief with some examples, whenever it
is needed. In this unit, we are discussing how to implement all these algorithms
practically using C-Language. We hope that, practical implementation will give
you clear idea to understand each searching and sorting algorithm and also
you can easily distinguish linear search with binary search and any sorting
algorithm with other sorting algorithms.

171

Programs of Searching
and Sorting

14.2 Programs of Searching & Sorting :

14.2.1 Write a Program to Implement Linear Search
#include<stdio.h>

void main()

{

int x[10];

int i,se;

// Accepting values for the Array from the User

for(i=0;i<10;i++)

{

printf("Enter Value :");

scanf("%d",&x[i]);

}

// Taking Search Element from the user

printf("Enter Search Element :");

scanf("%d",&se);

for(i=0;i<10;i++)

{

if(x[i]==se)

{

printf("\nValue found on %d position", i+1);

break;

}

}

if(i==10)

{

printf("\nValue Does not Exists :");

}

}

14.2.2 Write a Program to Implement Binary Search
#include<stdio.h>

void main()

{

int x[10];

int i,beg,end, mid,val;

// Accepting values for the Array from the User

printf("Enter Array elements in Sorted order :\n");

for(i=0;i<10;i++)

{

172

Data Structure Using C printf("Enter Value :");

scanf("%d",&x[i]);

}

printf ("\nEnter Search Element :");

scanf ("%d", &val);

//Searching Array elements in the array

beg=0;

end=9;

for(mid=(beg+end)/2; beg<=end; mid=(beg+end)/2)

{

if(x[mid]==val)

{

printf ("\nValue found on %d position :", mid+1);

break;

}

else if (x[mid]<val)

{

beg=mid+1;

}

else

{

end=mid–1;

}

}

//If value does not Exists

if (beg > end)

{

printf("\nValue does not Exists:");

}

}

14.2.3 Write a Program to Implement Selection Sort
#include<stdio.h>

void main()

{

int x[5];

int i, j, tmp;

// Accepting values for the Array from the User

for (i=0; i<5; i++)

{

173

Programs of Searching
and Sorting

printf ("Enter Value :");

scanf ("%d", &x[i]);

}

//Printing unsorted array

printf ("\n Array Before Sorting :\n");

for (i=0; i<5; i++)

printf ("\t%d", x[i]);

//Sorting an array

for (i=0; i<4; i++)

{

for (j=i+1; j<5; j++)

{

If (x[i]>x[j])

{

//If Ith element is Greater than Jth element then swap the
value

tmp = x[i];

x[i] = x[j];

x[j] = tmp;

}

}

}

//Printing Sorted Array

printf ("\n Array After Sorting:\n");

for (i=0 ;i<5; i++)

printf ("\t%d", x[i]);

}

14.2.4 Write a Program to Implement Bubble Sort
#include<stdio.h>

void main ()

{

int x[5];

int i, j, tmp;

// Accepting values for the Array from the User

for (i=0; i<5; i++)

{

printf ("Enter Value:");

scanf ("%d",&x[i]);

}

174

Data Structure Using C //Printing unsorted array

printf ("\n Array Before Sorting:\n");

for (i=0 ;i<5; i++)

printf ("\t%d", x[i]);

//Sorting an array using Bubble sort algorithm

for (i=0; i<5; i++)

{

for (j=0; j<5–i; j++)

{

if (x[j] > x[j+1])

{

//If Jth element is Greater than J+1th element then swap
the value

tmp = x[j];

x[j] = x[j+1];

x[j+1] = tmp;

}

}

}

//Printing the Sorted Array

printf ("\n Array After Sorting :\n");

for (i=0; i<5; i++)

printf ("\t%d", x[i]);

}

14.2.5 Write a Program to Implement Insertion Sort
#include<stdio.h>

void main ()

{

int x[5];

int i, j, tmp;

// Accepting values for the Array from the User

for (i=0; i<5; i++)

{

printf ("Enter Value:");

scanf ("%d", &x[i]);

}

//Printing an unsorted array

printf ("\n Array Before Sorting :\n");

for (i=0; i<5; i++)

175

Programs of Searching
and Sorting

printf ("\t%d", x[i]);

/*Sorting an array using Insertion sort (Remember the loop of I
starts from 1) */

for (i=1; i<5; i++)

{

//Copying x[i] element to variable tmp

tmp = x[i];

/* If J is greater than 0 and x[J–1]th element is greater than
tmp then bring J–1th element to Jth position.Remember the loop
of J starts from I and J will be decremented on every iteration.
*/

for (j=i; j>0 && x[j–1]>tmp; j––)

x[j] = x[j–1];

//place tmp to proper position that is Jth position

x[j] = tmp;

}

//Printing Sorted Array

printf ("\n Array After Sorting :\n");

for (i=0; i<5; i++)

printf ("\t%d", x[i]);

}

14.2.6 Write a Program to Implement Quick Sort
#include <stdio.h>

//Prototype declaration of split and quicksort functions

int split (int*, int, int);

void quicksort (int *, int, int);

//Main function

void main ()

{

int arr[10] = { 11, 2, 9, 13, 57, 25, 17, 1, 90, 3 } ;

int i ;

printf ("\nArray before sorting :\n");

for (i = 0 ; i <= 9 ; i++)

printf ("%d\t", arr[i]);

/*Calling quicksort function and passing base address of the array, start
and end index of the array */

quicksort (arr, 0, 9);

printf ("\nArray after sorting :\n");

for (i = 0; i <= 9; i++)

printf ("%d\t", arr[i]);

}

176

Data Structure Using C /* Function Quick Sort */

void quicksort (int *a, int lower, int upper)

{

int i;

if (upper > lower)

{

i = split (a, lower, upper);

quicksort (a, lower, i – 1);

quicksort (a, i + 1, upper);

}

}

/*Function Split */

int split (int a [], int lower, int upper)

{

int pivot, p, q, t;

p = lower + 1;

q = upper;

pivot = a[lower];

/* Variable I which is initialized as 0th element is a pivot element.
Start loop of P variable from 1 and loop of Q from 9 */

while (q >= p)

{

//if Pth element is smaller than pivot element then continues the
loop

while (a[p] < pivot)

p++;

//If Qth element is greater than pivot element then continues the
loop

while (a[q] > pivot)

q––;

//When program comes out of both loop swap Pth and Qth
elements

if (q > p)

{

t = a[p];

a[p] = a[q];

a[q] = t;

}

}

//Finally swap Qth element with pivot element and return the
value of Q

177

Programs of Searching
and Sorting

t = a[lower];

a[lower] = a[q];

a[q] = t;

return q;

}

14.2.7 Write a Program to Implement Merge Sort
#include<stdio.h>

// Prototype declaration for function mrg and merge_sort

void mrg (int *, int, int, int);

void merge_sort (int *, int, int);

//Main function

void main ()

{

int x[10], i, j, k, n;

printf ("Enter Number of Elements you want to Enter :");

scanf ("%d", &n);

for (i=0; i<n; i++)

{

printf ("Enter Element for X[%d]:", i);

scanf ("%d", &x[i]);

}

printf ("\nArray Before Sorting:\n");

for (i=0; i<n; i++)

printf ("\t%d", x[i]);

//Sorting an array

merge_sort (x, 0, n–1);

printf ("\nArray After Sorting:\n");

for (i=0; i<n; i++)

printf ("\t%d", x[i]);

}

void merge_sort (int *x, int beg, int end)

{

int mid;

if (beg < end)

{

mid = (beg + end) / 2;

//After calculating mid split the array recursively

merge_sort (x, beg, mid);

merge_sort (x, mid+1, end);

178

Data Structure Using C //After completing split start merge process

mrg (x, beg, mid, end);

}

}

void mrg (int *x, int beg, int mid, int end)

{

int i=beg, j=mid+1, k=beg, temp[10];

/* Array1 is an array from beg to mid, Array2 is an Array from
mid+1 to end Compare Ith element of the Array1 to Jth element
of Array2 and copy the smaller element to the temp array at Kth
position. */

while((i<=mid) && (j<=end))

{

if (x[i] < x[j])

{

temp[k] = x[i];

i++;

}

else

{

temp[k] = x[j];

j++;

}

k++;

}

if (i > mid)

{

//Copying all remaining elements of Array2 to temp array

while (j <= end)

{

temp[k] = x[j];

k++;

j++;

}

}

else

{

//Copying all remaining elements of Array1 to temp array

while (i <= mid)

{

179

Programs of Searching
and Sorting

temp[k] = x[i];

i++;

k++;

}

}

//Copy temp array to original array X

for (i=beg; i<k; i++)

{

x[i] = temp[i];

}

}

 Check Your Progress – 1 :
1. Which searching algorithm compares the search element with the middle

element of an array ?

[A] Linear [B] Binary [C] Bubble [D] Quick

2. In which sorting algorithm we compare Jth element with (J+1)th element ?

[A] Bubble [B] Selection

[C] Insertion [D] None of the above

3. Which sorting algorithm(s) is/are recursive ?

[A] Quick [B] Merge

[C] Both A and B [D] Insertion

4. Which sorting algorithm is based on divide and conquer principle ?

[A] Linear [B] Bubble [C] Insertion [D] Merge

5. In which sorting algorithm, we choose an element to be a Pivot element?

[A] Selection [B] Insertion [C] Quick [D] Heap

14.3 Let Us Sum Up :

In this Unit we have seen that the Linear search is perform by comparing
each element of the array. For 'n' size of array, 'n' comparisons are needed
in worst case. Therefore, Linear search is slow compare to Binary search
method. Linear search can be applied on any type of array whether it is sorted
or unsorted. Binary search algorithm on other hand can be applied on sorted
array only. Here the element is compared with the middle element of the array,
and based on the search value is smaller or bigger, the array is spitted. Each
comparison of binary search will remove (n/2 + 1) elements (where the search
element is not possible) and reduce the size of the array by n/2 – 1.

In the Bubble sort algorithm, we are comparing jth and (j + 1)th elements.
If (j + 1)th element is smaller than jth element we exchange (swap) the values.
In each iteration of variable 'i' we get the higher element at the end of the
array.

In Selection sort algorithm, we are comparing ith and jth element. If
jth element is smaller than ith element than we exchange (swap) the values.
In this algorithm, we get the smallest element at ith place of the array after
completion of each iteration of the loop of variable 'i'.

180

Data Structure Using C Insertion sort algorithm, is based on the inserting a smaller value (at
proper position) by shifting greater elements towards right side.

Quick sort algorithm is a recursive process, in which we choose pivot
element and shifting all the elements of the array so that smaller values
(compare to pivot element) come at left side and bigger values of the array
(compare to pivot element) come to the right side of the pivot element.

Merge sort algorithm is split the array recursively and then merge the
array by sorting the small arrays

14.4 Suggested Answers For Check Your Progress :

 Check Your Progress 1 :

1. [B] 2. [A] 3. [C] 4. [D] 5. [C]

14.5 Glossary :

1. stdio.h : It is standard input output header file, which includes functions
like printf(), scanf() etc.

2. conio.h : It is console input output header file, which includes functions
like getch(), clrscr() etc.

3. Array : Array is a homogeneous (same type of data) collection of data,
stored in conjunctive memory locations.

14.6 Assignment :

Implement each searching and sorting program using either Turbo C,
Borland C or CodeBlocks.

14.7 Activities :

Make a table in which 4 columns are there. 1st column shows name
of searching and sorting algorithm and rest of the 3 columns shows their Best,
Average and Worst-case complexities. Find these complexities for each program
we have discussed in this chapter.

14.8 Case Study :

Consider the following data for an array given in the table below and
show the tracing (how data will be sorted) for each algorithm given in the
1st column of the table :

Selection Sort 57 23 75 19 10

Bubble Sort 57 23 75 19 10

Insertion Sort 57 23 75 19 10

Quick Sort 11 2 9 13 57 25 17 1 90 3

Merge Sort 11 2 9 13 57 25 17 1 90 3

14.9 Further Reading :

1. Data Structures Using "C" by Tanenbaum.

2. Data Structures Using "C" by Yashwant Kanetkar.

3. Data Structures and Program Design in "C" by Robert L. Kruse.

4. Fundamentals of Data Structures by Horowitz and Sahani.

BLOCK SUMMARY :

All the Units of this Block are extremely important learning as Unit No.
11 is important due to the huge use of knowledge management, Data ware
housing and data mining hence importance of this unit becomes obvious. There
is learning related to linear search, the searching begins by matching the values
of the array. Initially, the first element is compared with the element to be
searched then with the second element and so on. The process continues till
the end of the array. That is, it operates by checking every element of a list
one at a time in sequence until a match is found. This method of searching
for data in an array is straightforward and easy to understand. To find a given
item, begin your search at the start of the data collection and continue to look
until you have either found the target or exhausted the search space. Further
there is learning related to binary search.

Binary Search is Recursive (bin search) : This determines that whether
the search key lies in the lower or upper half of the array from the stored,
by calling itself on the appropriate half. There is also Termination Condition
for the search

If low>high then the partition to be searched definitely has no elements
in it and If there is a match with the element present at the middle position
of the current partition from stored, then the searching can be terminated. There
is also learning related to addition of an element (add_data). We have also
understood about efficiency Analysis of Binary Search. A binary search or half–
interval search algorithm finds the position of a specified input value (the search
"key") within an array sorted by key value. For binary search, the array should
be arranged in ascending or descending order.

Unit No. 12 Gives lot of learning related to the types of sorting which
is a method of arranging data elements in a particular order. And, a sorting
algorithm is an algorithm that puts elements of a list in a certain order. There
are various types of sorting namely Internal Sorting and External Sorting

Internal Sorting : Any sort algorithm which uses main memory exclusively
during the sort is an example of Internal Sorting. For Example : Bubble Sort,
Insertion Sort

External Sorting : External sorting is an important activity especially
in large business. It is thus crucial that it is performed efficiently. External
sorting is applied to sort records of files which are too large to fit in the main
memory of the computer. This sorting is applied to larger collection of data
which rests on

The Unit No. 13 gives great detail of learning about File Organization
which has to be implemented as per the organization / company requirement
so that data retrieval speed gets minimum so by using efficient method we
can store it on disk.

There is understanding related to file and its operations, Operations on
database files can be classified into two categories broadly :

Update Operations and Retrieval Operations change the data values by
insertion, deletion or update. Retrieval operations (or function) on the other
hand do not alter (or change) the data but retrieve them after optional conditional
filtering. In both types of operations, selection operation plays significant role.
To carry out these operations there are having some important basic operations
need to be performed like Open, Locate, Read, Write, Close 181

182

Data Structure Using C Now further we have learnt about a record. A record is a sequence of
values or a sequence of characters. There are three kinds of FORTRAN records,
such as Formatted, Unformatted, and End file. After this we have continue
understanding about a file which is a sequence of records. There are two types
of Fortran files as external and Internal

There is also learning related to Hashing which allows us to avoid
accessing an index structure. We obtain the address of the disk block containing
a desired record directly by computing a function on the search–key value of
the record Bucket is a unit of storage that can store one or more records. A
bucket is typically a disk block, but could be chosen to be smaller or larger
than a disk block. In mean time we understood about linear hashing.

At the end of this block there is also Linear hashing which can be viewed
on as a dynamic version of hashing with separate chaining : the overflows
are chained together in a separate overflow area, but the size of the file grows
(or shrinks) incrementally, page by page, keeping the file density approximately
constant.

BLOCK ASSIGNMENT :

 Short Questions :

1. Write a note on internal and external sorting with help of example ?

2. Which sorting method is more efficient ?

3. What is indexed file structure ?

4. Discuss the efficiency of linear and binary search ?

5. What is bucket sort ?

 Long Questions :

1. Explain hashing technique ?

2. How to Calculate Hash Function ?

3. Write algorithm for Quick Sort ?

BIBLIOGRAPHY :

http://www.studiesinn.com/learn/Programming–Languages/Data–Structure–
Theory/Linear–Search.html

http://java2novice.com/java–search–algorithms/binary–search–recursion/

http://www.tutorialspoint.com/dbms/dbms_file_structure.htm

http://scc.qibebt.cas.cn/docs/compiler/intel/11.1/Intel%20Fortran%
20Compiler%20for%20Linux/main_for/lref_for/source_files/rfjrec.htm

183

184

Data Structure Using C Enrolment No. :

1. How many hours did you need for studying the units ?

Unit No. 11 12 13 14

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

3. Any other Comments

...

...

...

...

...

...

...

...

DR.BABASAHEB AMBEDKAR

OPEN UNIVERSITY
'Jyotirmay' Parisar,

Sarkhej-Gandhinagar Highway, Chharodi, Ahmedabad-382 481.
Website : www.baou.edu.in

	Page 1
	Title
	1-3
	1
	2
	3
	4-7
	4
	5
	6
	7
	8-10
	8
	9
	10
	11-14
	11
	12
	13
	14
	Page 2

