
Rela�onal Database
Management System

MSCIT - 102
Master of Science
Informa�on Technology

Relational Database
Management
System

2021

Dr. Babasaheb Ambedkar Open University

Relational Database Management System

Course Writer

Dr. Amit Bardhan

Assistant Professor,
Computer Science Department,
Som Lalit Education and Research Foundation,
Ahmedabad

Dr. Badal Kothari

Assistant Professor,
Department of Computer Science,
Hemchandracharya North Gujarat University,
Patan

Dr. Vinod Desai

Assistant Professor,
Gujarat Vidhyapith,
Ahmedabad

Content Reviewer

Prof. (Dr.) Amit Ganatra Dean, Faculty of Technology and Engineering
School of Computer Science,
Charotar University of Science and Technology,
Changa

Content Editor

Prof. (Dr.) Nilesh K. Modi Professor & Director,
School of Computer Science,
Dr. Babasaheb Ambedkar Open University

Copyright © Dr. Babasaheb Ambedkar Open University – Ahmedabad. 2021

ISBN- 978- 81- 942146- 1-8

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad
While all efforts have been made by editors to check accuracy of the content, the
representation of facts, principles, descriptions and methods are that of the
respective module writers. Views expressed in the publication are that of the authors,
and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open
University. All products and services mentioned are owned by their respective
copyrights holders, and mere presentation in the publication does not mean
endorsement by Dr. Babasaheb Ambedkar Open University. Every effort has been
made to acknowledge and attribute all sources of information used in preparation of
this learning material. Readers are requested to kindly notify missing attribution, if
any.

iv

Dr. Babasaheb
Ambedkar Open
University

MSCIT-102

Relational Database Management System
Block-1: Fundamental of Database Management
 System

UNIT-1
Basic Concepts of DBMS 07

UNIT-2
Architecture of DBMS 17

UNIT-3
Data Models 26

UNIT-4
Database Design 40

Block-2: Relational Data Model and Introduction to
 Oracle Server

UNIT-1
Functional Dependency and Normalization 64

UNIT-2
Oracle Database Architecture 90

UNIT-3
Distributed Database Architecture 116

UNIT-4
Database Backup 139

v

Block-3: Oracle Server and SQL

UNIT-1
Structured Query Language 160

UNIT-2
Stored Procedures and Functions 193

UNIT-3
Package and Trigger 212

UNIT-4
Managing User Privileges & Roles and User Profile 239

Block-4: Introduction to PL/SQL

UNIT-1
Introduction to PL/SQL 260

UNIT-2
Cursor 276

UNIT-3
Locking 293

UNIT-4
Exception Handling 301

 6

 Block-1

Fundamental of Database

Management System

 7

Unit 1: Basic Concepts of DBMS

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Basic Concepts

1.4. Data

1.5. Database

1.6. Database systems

1.7. Database management system

1.8. Purpose and advantages of database management system

1.9. DBMS Functions

1.10. Disadvantages of database systems

1.11. Check Your Progress

1

 8

1.1 LEARNING OBJECTIVE

By the end of this unit you should be able to:

• Differentiate between data and information.

• Understand the importance of database and DBMS.

1.2 INTRODUCTION

In today’s competitive environment data and its proficient administration is the

most significant business objective of any firm. The fact is we are in an era where

people are bombarded with huge amount of information explosion. Due to this it

becomes difficult to fetch correct information at right time to make decisions properly.

Therefore success of every business is highly dependent on how the data is collected,

stored and processed for timely decision making.

Any information system like online shopping websites, inventory management systems,
clinic management software, online trading applications etc. needs database to store

and retrieve the data at regular intervals. DBMS acts as backend for all the different

web based and desktop based applications. We cannot imagine a single sector were

DBMS is not being used. For example banking, e-governance, logistics, universities,

airlines agencies, ticket booking, accounting & filing and every other kind of human

endeavor. The management of data in all these systems is done by the means of a

general purpose software package called a database management system.

A database management system is a tool to manage the data and perform various
activities that include:

 Creating different databases.

 Craft required table structures.

 Inserting records in the tables.

 Retrieving information from the different tables based on criteria.

 Deleting the records based on various conditions.

 Updating the records wherever and whenever necessary.

 Changing the table structure if required. Etc.

 9

Apart from the above mentioned basic functionalities of the database management

system, there are plenty of other functionality like creating users and assigning roles to

them, security management, transaction management, managing system catalog, data

dictionary management, data backup and recovery etc which are being managed by
DBMS.

The role of the DBMS is to act as an intermediary between the users and the database.

The DBMS interprets and processes client’s requests to fetch the required information

from a database. It serves as an interface in several forms like it can be directly

accessed from a terminal or using some high level language programs for individual or

batch data processing. The request from DBMS to perform various actions is given in

terms of SQL (Structure Query Language), which you will be learning in the upcoming

units. DBMS shields the database users from the complexity of tedious programming
they would have to do to organize data for storage, or to gain access to it once it was

stored. Here are going to learn about Relational Database Management System

(RDBMS) that stores data in the form of associated tables. Most common examples of

RDMS include MySQL, Oracle, PostgreSQL, Microsoft SQL Server etc.

1.3 BASIC CONCEPTS

Storing data, processing it as per requirement and retrieving the required information

has been a necessity in each and every organization today. The term data can be

explained in terms of “A set of isolated an unrelated raw fact with an implicit meaning”.
In simpler terms data is a raw fact. It can be anything such as a name of a person,

designation of an employee, an audio, video, designation of a person etc. After

performing a series of action on the data what we get is an meaningful information.

Thus information can defined as data with some fixed and definite meaning. For

example, “The cost of the book for programming in python is 750 Rs” is an example of

information.

Generally data is what goes into a data processing system and information is the

processed data that comes out of the data processing unit.
Limitations of the File based Systems:

 10

• Separation and isolation of data

• Duplication of data

• Structural and data dependence

• Extreme programming effort

• Cannot execute ad hoc queries

• Security features are likely to be insufficient

• System management is complex and complicated

1.4 DATA

 Data is nothing but a raw fact from which information is generated. Data alone

does not have any meaning unless it is organized or arranged in some logical manner.

A user must ensure that only valid and significant data must go into the system else the

information obtained may not be that trustworthy for the purpose of decision making.
The smallest piece of data that a computer understands is a single character, for an

example letter ‘S’, or a number ‘6’ or a special character ‘$’. A single character requires

one byte of storage.

A character or a group of character that has some specific meaning is called a field. A

field name uniquely identifies each field.

A logically related set of one or more fields that describe an entity or real world object is

called a record. For example the fields that constitute bank account record are account

number, name, address, pincode, account type, opening date, mode of operation etc.
A collection of related records is called a table. An example of department table is given

below:

Figure 1: Department Table

 11

1.5 DATABASE

A database is a collection of well organized data in the computer’s storage systems that

can be used by the application software for some given enterprise. The stored data can

be accessed, processed and presented by DBMS to serve a specific purpose. The term

enterprise can thought in terms of any individual or large body like a university, bank,
logistics company, warehouse etc.

In general database is a shared, collective system construction that stores a collection

of:

• End user data. i.e. the raw facts

• Metadata or data about the data.

Here the metadata provides a detailed explanation of the data, its distinctiveness and

set of associations or relationships that links the data. Given the uniqueness of

metadata, database can be described as a “collection of self-describing data.”

1.6 DATABASE SYSTEMS

A database system is principally an automated record maintenance system whose

overall reason is to store information and to permit the users to manipulate the

information as per requirement. Here we are using the term data to refer to what is in

point of fact stored in the database and information to refer to the meaning of data as

understood by the client.
Database system is obtainable on all the machines that range from the smallest

handheld devices to PC’s to large main frame computers.

1.7 DATABASE MANAGEMENT SYSTEM

A database management system (DBMS) is a compilation of programs that manages
the database structure and controls access to the data stored in the database. DBMS

serves as a mediator between the client and database by hiding all the complexities

from the end user.

 12

1.8PURPOSE AND ADVANTAGES OF DATABASE
MANAGEMENT SYSTEM

The DBMS receives the entire applications request and translates them into the

complex operations that are required to fulfill those requests. It also hides the internal

complexity from the application programs and users. The applications programs can be

written in any language like Python, Java, C++ etc.

Figure-2 DBMS managing the functions between the client and the database

DBMS also allows the data to be shared among the multiple applications or clients and

helps in merging many different views of data into single data repository. In particular

DBMS provides the following advantages over the files system:

• Better data sharing capabilities: The DBMS helps to generate an
environment in which the end users locally or globally can have access to

the data for quick decision making.

• Enhanced data security: DBMS provides a structure to implement data

privacy and security policies. Different categories of roles can be created

for special users and rights can be given accordingly.

 13

• Superior data integration facilities: Wider admittance to well managed data

promotes an incorporated view of the organizations operations and a

apparent view of the complex picture.

• Reduced data inconsistency: It exists when different versions of same
data appear in diverse locations. For example data inconsistency exits

when the name in your bank account and the name on your cheque book

differ. This possibility can be reduced by properly designing the database.

• Faster data access: When dealing with huge amount of data DBMS

makes it possible to produce quick answers to any queries by using SQL.

Example queries can be how people have deposited notes of 500

denominations at the time demonetization in ABC branch.

• Improved decision making: If the data is managed properly and faster data

access is done it makes probable to produce enhanced superiority

information, based on which better decisions can be taken.

• Improved end user productivity: The ease of use of data, shared with the

tools that alter data into usable information, allow end users to make rapid,

knowledgeable decisions.

1.9 DBMS FUNCTIONS

 A DBMS performs quite a lot of significant functions that promises the reliability

and uniformity of the data in the database. Few of the important functions are

mentioned below:

 Data transformation and presentation: The DBMS converts the entered data to

confirm with the required data structures; therefore it relieves you from the task
of making distinction between logical and the physical format. For example the

 14

date the format in INDIA is DD/MM/YYYY, but in MySQL is YYYY-MM-DD, so

transformation in to the required format can be easily made.

 Multiuser access control: To provide data steadiness DBMS uses classy
algorithms to make sure that multiple users can access the database in parallel

without compromising the integrity of the database.

 Security Management: DBMS enforces user security at different levels in order

to provide which data operations a group of users or a particular user can

perform. DBMS assigns access privileges for various database components.

 Data dictionary management: DBMS stores definitions of data elements and
their metadata. It uses data dictionary to come across up the necessary data

constituent structures and its associations.

 Data storage management: A modern DBMS provides storage not only for the

facts but also for associated data entry forms, report definitions, data validation

regulations, formations to handle audio and video formats and so on. It actually

stores the database in multiple physical data files.

 Backup and recovery management: To provide data safety and integrity DBMS

provides backup and recovery control. It basically deals with the recovery of bad

sector in the disk and also data recovery at the time power failures.

 Data integrity management: DBMS supports and implement integrity regulations,

thus minimizing data repetition and increasing consistency.

 Database access languages and API: DBMS make available data access
through a query language called SQL. Structured Query Language (SQL) is a de

facto query language supported by majority of the DBMS vendors. Apart from

 15

that DBMS also provides application programming interfaces to main

programming languages like Python, C#, Java, Magento, PHP etc.

 Database communication interface: DBMS provides admittance to the database
via command line terminals, via web browsers (GUI) etc.

1.10 Disadvantages of Database System

DBMS do carry significant disadvantages as mentioned below:

• Increased cost: Database system needs sophisticated hardware and software

and extremely capable expert to manage it. Thus the cost of managing the
people, software and hardware and providing training, licensing add an extra

overhead to cost.

• Management Complexity: Database system boundary with many diverse

technologies and are can become more and more complex in order to handle

day to day transactions.

• Maintaining currency: To make the most of the database it is required to keep

your systems current. That leads to frequent upgrades and increased in training
cost.

• Vendor Dependence: The end users are heavily vendor dependent since they

are storing each and every information into the database. On the contrary the

vendors are less likely to offer pricing point reward to the existing clients.

Frequent Upgrade cycle: DBMS vendor repeatedly advance their products by

incrementing new functionalities. And many a times those software upgrades requires
new hardware resources.

1.11 Check your progress

1. Define the following terms:

a. Data

 16

b. Information

c. Field

d. Record

2. List and explain the limitations of file based systems.
3. Discuss the purpose and advantages if DBMS.

4. List and explain DBMS functions in detail.

5. Explain the potential cost of implementing a database system.

 17

Unit 2: Architecture Of DBMS

Unit Structure

2.1. Learning Objectives

2.2. Architecture of DBMS

2.3. Various components of DBMS

2.4. Check your Progress

2

 18

2.1 LEARNING OBJECTIVE

By the end of this unit you should be able to:

• Understand the basic architecture

• Understand basics components of DBMS

2.2 INTRODUCTION

DBMS is very sophisticated software application that provides reliable management of

large amounts of data. To understand all-purpose database concepts and the structure

and capabilities of a DBMS better, the structural design of a typical DBMS must be

known.

2.3 ARCHITECTURE OF DBMS

The DBMS architecture describes how the data in the database is viewed by the

different users. This architecture provides the data at different levels of the abstraction

to the users by hiding the complexities of its internal management activities.

In this architecture the overall database description can be defined at three levels:

• Internal

• Conceptual

• External levels

For this reason many a times it’s known as three-level DBMS architecture. The
architecture is proposed by ANSI/SPARC (American National Standard Institute/

Standards Planning and Requirement committee).

 19

Figure-3 Three Level DBMS Architecture

External Level:

It is the highest level of abstraction that deals with the user’s view of database and

therefore it’s also known as view level. The external level describes the part of the

database to a specific group of users or to an individual user.
Each view available to the user is customized to their requirements. It may be possible

that same data may be visible to different users through different interfaces. In this way

it also provides a powerful and flexible security mechanism by hiding certain data from

certain users. The data described at this level is independent of both hardware and

software. Generally entity relationship diagram is used to represent the external view as

the data is modeled.
Conceptual Level:

This level of abstraction deals with logical structure of the entire database and is also
known as logical view. The view describes the structure and the type of the data that is

stored in the database along with the relationships among the data.

It describes all the requirements of the users without the description of physical

implementation. It is the overall view of the database keeping in the consideration the

 20

DBMS software that is going to be used. This view is thus dependent on the software

but independent of the hardware.
Internal Level:

This level describes data at the lowest level of abstraction that deals with physical
representation of the database on the computer and is also known as physical level. It

describes how the data is stored and is organized on the physical storage medium.

At this level various aspects are considered to achieve optimal runtime performance

and storage space utilization. This level is dependent on the software (mostly the OS)

as well as hardware.

To understand the three-level database architecture consider the example of Employee

database as shown in the figure 1.4. In this figure two views (View 1 and View 2) of the

Employee database are defined at an external level. Hence different users can see
different external views that they queried. The details about the data type and the size

of the fields are hidden from the users at the external level.

At the conceptual level the employee records are described along with their data types.

The application programmers and the DBA generally work at this level of abstraction. At

the internal level the employee records are described as a block of consecutive

locations such as words or bytes. The database users and the applications

programmers are not aware of these details; however the DBA may be aware of certain

details of the physical organization of the data.
When a user specifies a request to generate a new external view, the DBMS must

transform the request specified at the external level into a request at conceptual level

followed into a request at physical level. If the user requests for data retrieval, the data

extracted from the database must be presented according to the need of the user. This

process of transforming the requests and results between various levels of DBMS

architecture is known as mapping.

 21

Figure-4 Three levels of Employee Database

The main merit of three-level DBMS architecture is that it provides data independence.

Data independence is the ability to change the schema at one level of the database
system without changing the schema at the other levels. Data independence is of two

types:
Logical Data Independence:

The ability to adapt the conceptual level without altering the external level or application

program is known as logical data independence. The conceptual schema can be

changed due to the change in constraints or addition of new features. This change will

have no effect on the external level schema that is already there. Logical data

independence is difficult to achieve as the application programs are always dependent
on the logical structure of the database. Therefore changes in the logical structure of the

database may require change in the application program.
Physical Data Independence:

 22

The ability to change the internal level without changing the conceptual level is known

as physical data independence. The transform in the data storage structure or access

strategy or indexing technique will have no effect on the conceptual schema. This is

because the mapping between the conceptual schema and the internal level is provided
mostly by DBMS and changes are taken care of by mapping. Hence the physical data

independence is easy to achieve.

2.4 VARIOUS COMPONENTS OF DBMS
The database system is composed of five major components, that is:

• Hardware

• Software

• People

• Procedures and

• Data

Let’s take an individual look at the five components:

Figure-5 Database system environment

 23

• Hardware: It refers to all the system’s physical devices that can be storage

devices, network devices, printers, servers, workstations, computer etc. The

computer may range from personal computers to a main frame and it may

include one powerful server depending upon the organizations requirements and

the size of the database.

A good database system requires a database server with a fast processor and

significantly large amount of main memory. It also includes different kind of

peripheral devices to handle various kinds of data. The advancement in
computer hardware technology and development of powerful computers has

resulted into increased database technology development and its application.

• Software: There are basically three types of software needed:

◦ Operating System: It manages all the hardware components and makes it
possible for the software to run on the computer. Most commonly used

operating systems are LINUX, WINDOWS, MAC etc.

◦ DBMS: DBMS software manages the data in the database. Some examples

of commonly used DBMS software include- MySQL, Oracle, DB2, MSAccess
etc.

◦ Application programs and utility software: It is used to access and manipulate

data in the DBMS. Applications programs are used to provide an interface to

accept data from the user. They are also used to access data from the
database in order to provide reports, tabulations and other logical information

to the user. Utility software is used to help manage some DBMS components.

• People: It includes all the users who interact with any component of the

database system environment. List of all the users are listed below:

o Database Administrator: DBA is one of the main user responsible for

managing the DBMS and controlling the database of the DBMS. DBA is

mainly responsible for setting up procedures and standards and ensuring

that they are implemented properly.

 24

o System Administrator: System administrator is the one who takes care of

all the computers in the network, and the database systems general

operations.

o Database Designer: They are also called data base architects. They along

with the database administrator design the structure of the database. If the

database design is poor other al components of the database system

environment become helpless.

o System Analyst and Programmers: They design and implement the

application programs. They are responsible for designing the forms and

reports. They may also set up procedures through which end users
access and manipulate the data in the database.

o End User: They are those users who use the application programs to

manage the day-to-day operations of the business. End users include all

employees of the organization starting from the data entry operators to the

decision makers. Some of them enter raw data and some of them process

the raw data and generate information.

• Procedure:Procedures are instructionsand rules that govern the design and use

of the database system. Procedures help to maintain certain level of standards

and ensure that the data entering the system and information generated from the

system are all in well organized manner.

• Data:Data is nothing but raw facts from which the information is generated. Data

actually includes the entire collection of data that goes into the database. Only

valid and significant data must go into the system else the information obtained

may not be reliable for the purpose of decision making.

 25

2.5 Check your progress

1. Explain the 3-level database architecture in detail.

2. What is data independence? Explain in brief logical data independence and

physical data independence.

3. Write a short note on database system environment.

 26

Unit 3: Data Models

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Data modelling

3.4. The hierarchical data model

3.5. Network data model

3.6. Relational data model

3.7. Entity Relationship data model

3.8. Object oriented data model

3.9. Comparison between data model

3.10. Check your Progress

3

 27

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Evaluate different data model and its mapping.

3.2 INTRODUCTION

One of the main objectives of the database systems is data abstraction that is to

highlight only the essential features and to hide the storage and data organization

details from the user. A model is an abstraction process that concentrates on essential

and intrinsic features of the application while ignoring the details that are not important.

A database model provides the necessary means to achieve data abstraction. A data

model allows the conceptualization of the association between entities and its attributes.

A data model is a simple demonstration, generally graphical, of more complex real word

data structures. It consists of a set of data structures and conceptual tools that is used

to describe the structure (Data types, relationships and constraints) of a database.

A data model not only describes the arrangement of the data, it also defines a set of

operations that can be performed on the data. A data model generally consists of data

model theory, which is a formal description of how data may be structured and used,

and data model instance, which is practical data model designed for a particular

application. The process of applying data model theory to create a data model instance
is known as data modeling.

3.3 DATA MODELING

A data model can be very useful communication tool that provides a means of

interaction between the databases designer, application programmer and the end user.

There are different types of data model that are explained in the next section.

 28

3.4 THE HIERARCHICAL DATA MODEL

The hierarchical model was the first proper model developed. Its basic logical structure

is represented by an upside down tree.

Figure-6 Hierarchical Data Model

The hierarchical structure contains levels or segments. A segment is equivalent to a file

system record type. With the hierarchy the top most level or segment is known as a root
node or the parent node. The root node or the parent node is assigned the level – 0 as

shown in the Figure-6. Again within the hierarchy each segment is perceived as a

parent of the segment below it.

In other words, each record is perceived as a parent record of the segment or the child

record below it. As shown in the Figure-6 the segment at level-0 i.e. the root node is the

parent node for the segments at level-1. Similarly the records at level-1 are also parent

records for those records at level-2.

The hierarchical data model is best suitable to represent one-to-many relationship as
shown in figure 1.6. In this model each parent record can have multiple child records

related to it. The limitation of this model is one child record can have only one parent

record. Hence it is difficult to represent many-to-many relationship using this model.

 29

Figure-7 Hierarchical data model relationship

Figure-7 shows a hierarchical data model of a university tree type consisting of three

levels. A single college record at the root level represents one instance of the

department record type. Multiple instances of a given record are used at lower level to
show that a department may consist of many courses and one course may consist of

many subjects.

Merits of Hierarchical Model:
 Simplicity: It is simple and easy to understand and implement as the

relationship between the various layers is logical and always 1:M

 Data Integrity: The parent/child relationship is always there between the layers.

The model promotes data integrity as the child segments are automatically

referenced to its parent segment.

 30

 Efficiency: It is very efficient when the database contains large amount of data

in 1:M relationships and when large number of transaction are required using

data, having relationship fixed over time.

 Data Sharing: Data sharing becomes practical as all the data are held in a

common place.

Demerits of Hierarchical Model:
 Implementation complexity: It is quiet complex to implement as the DBMS

requires the knowledge of physical level of data storage and the database

designers should have a very good knowledge of the physical data storage

characteristics.

 Implementation limitation: The model does not allow one child record to be

related to multiple parent record types. This poses great difficulty in representing

many-to-many relationship.

 Inflexibility: The changes in the new relation or segments often yield very

complex management task. The deletion of one segment will cause all other

segments below it to be deleted.

 Database Management problems: If any changes are made to the database

structure, it becomes essential to change all the application programs that

access the database.

 No standards: There are no laid down set standards on how to implement the

model.

 31

3.5 NETWORK DATA MODEL

The network model was created to represent complex data relationship more effectively

then the hierarchical model, to improve database performance, and to impose a

database standard.

The network model is similar to the hierarchical data model except that a record can
have multiple parents. This model has three basic components such as record type,

data items and links.

A relationship is called a set in which each set is composed of at least two record types-

owner record (same as parent record) and member record (same as child record). The

connection between an owner and a member is identified by a link to which a set name

is assigned.

The set name is used to retrieve and manipulate data. The link between the owners and

their members indicate access paths in the network model and are typically
implemented with pointers. In network data model, member can appear in more than

one set and thus may have several owners, and hence it facilitates many-to-many

relationship. A set represents a one-to-many relationship between the owner and the

member.

Figure-8 Network Data Model

In the above diagram a sample network data model is represented. As shown the

member ‘B’ has only one owner ‘A’, whereas member ‘E’ has two owners ‘B’ and ‘C’.

 32

The figure-9 it demonstrates a distinctive network model representation for sales

process. The model represents five record types namely- Sales_person, Customer,

Item, Sales_order, Billing and Order_detail. Here the entity Sales_order has two owners

Sales_person and Client. Similarly Order_detail has two owners Item and Sales_order.
In this model eack link between two record types represents a one-to-many relationship

between them.

Figure-9 Network Model for Sales Process

Merits of Network Model:
 Simplicity: Same as hierarchical model network model is also simple and easy

to understand.

 Facilitating more relationship types: The network model is able to handle

many-to-many relationship as a member can have multiple owners. This helps in

modeling real life situations in a much better way.

 Superior Data Access: An application can access an owner record and all the

member record within the set. Hence the data access and flexibility found in this

model are much better as compared to the hierarchical model.

 Database Integrity: It enforces integrity and does not allow a member to exist

without an owner.

 33

 Support for DBMS: It includes Data Definition Language (DDL) and Data

Manipulation Language (DML) in DBMS.

 Database Standards: It is based on universal standards formulated by DBTG

(Database task group) / CODASYL (Conference on data system languages) and

improved by ANSI/SPARC.

Demerits of Network Model:
 System Complexity: Network models are difficult to design and use properly.

The navigational access mechanism accesses only one record at a time and

hence makes the system implementation very complex. Knowledge of the

internal data structure is required to take the advantage of this model.

 Absence of Structural Independence: If changes are made to database

structure, all subschema descriptions have to be updated before any application

program can access the data.

3.6 RELATIONAL DATABASE MODEL

The relational data model was originally commenced by Dr. E.F. Codd. It is

implemented through a very sophisticated relational database management system

(RDBMS). IT not only performs the same basic functions that are there in hierarchical

and network model but also provides the ability to hide the complexities of the relational

model from the end user. Table is a matrix consisting of series row/column intersections
related to each other through sharing a common entity characteristic. Relational

diagram is a representation of relational database’s entities, attributes within those

entities, and relationship between those entities. Relational table stores a collection of

related entities and resembles a file. Relational table is purely a logical structure and

how data are physically stored in the database is of no concern to the user or the

designer.

 34

In relational data model, tables are related to each other through the sharing of common

attribute. For example the Subject table in the given Figure 1.10 contains Faculty_id

field and the same filed also exists in the Faculty table.

Figure-10 Relational Data Model

The common field between Faulty and the Subject tables allows a subject to match with
the details of the faculty who is teaching it. Here although the tables are independent of

each other, the data between the two tables can be easily associated. The relational

database provides the least amount of redundancy.

Merits of Relational Data Model:

 Conceptual Simplicity: The tabular view of storing and managing the data

improves conceptual simplicity, thereby encouraging easier database blueprint,
implementation, administration and usage.

 Structural Independence: The relational data model does not depend on the

navigational data access and hence the changes in the table structure do not

affect the data access.

 35

 Flexible and powerful query capability: It provides very powerful, flexible and

easy to use querying facilities. IT has SQL to execute the required data

operations and manipulations.

 RDBMS support: The availability of powerful RDBMS isolates the end user from

the physical-level details and improves execution and administration ease.

Demerits of Relational Data Model:

 Hardware Overhead: This model requires a fast processor along with a large

capacity and high speed secondary storage devices to perform the assigned

tasks. Now-a-days this is not that big disadvantage as the computing speed is
getting doubles every eighteen months and the cost of storage devices are

getting reduced to a great extent.

 Poor Design by untrained professionals: Because of ease of use many a

times it is managed by untrained professional to develop the required queries. So

queries and reports written without proper logical thinking results in slower

system and performance degradation.

3.7 ENTITY RELATIONSHIP DATA MODEL (ER MODELS)

The Entity relationship model was initially projected by Peter Chen in 1976. It is a

graphical representation of database structure using entities and relationship among

entities. The ER Model matched the relational data model very satisfactorily. The

combination provides a very good database design.

The ER model is has following components mentioned below:
Entity Set: It is a real world object for which data are collected and stored. It is just one

instance of an entity set. The term entity and entity set are different but can be used

interchangeably. An entity set is represented by a rectangle in an ER diagram. The

 36

name of the entity is generally noun and singular. Examples of entity are Department,

Course, Student etc.
Attributes: The characteristics of an entity is called an attribute. One entity can have

multiple attributes like an entity Course can have Course_id, Course_name, Duration
etc are the attributes.
Relationships: It describes an connection between two entities. There are three types

of possible relationships between the entities , they are one-to-one (1:1), one-to-many

(1:M) and many-to-many(M:N).

Figure-11 Sample ER Diagram using Crow’s Foot Notation

 The above figure illustrates 1: M relationship between the entities Country, State,

City and Area. The idCountry attribute from the Country table is referenced in State
table. Therefore it represents one-to-many (1:M) relationship between the entity Country

and State, which means one country can have many states. Similarly there is one-to-

many relationship between State entity and City, and 1:M relationship between City and

Area entity.

 37

Merits of ER Model:

 The ER model is a graphical demonstration of entities which results in complete

clarity and simplicity in understanding.
 ER model also goes in combination with the relational model data model and with

help of some tools like MySQL Workbench conversion.

Demerit of ER Model:

 Depending upon different logical perceptions many a times it’s not possible to
specify most of the constraints.

3.8 OBJECT ORIENTED DATA MODEL (OODM)

The object oriented data model is a logical data model that is based on the concept of

object oriented programming. It has come into existence to meet the increasingly

complex real world applications which are not being easily solved by other model. A
class represents both object attributes as well as the behavior of the entity. The

instance of the class- object contains both data as well as their relationship. An object

includes information about the relationship between the facts within the object as well as

information about relationship with other objects. Objects also contain all operations that

can be performed on it.

The object-oriented data model is differently proposed by different researchers and has

no single common database structure like the other data models. OODM forms the

basis for the object-oriented database management system (OODBMS). They are
mainly used in engineering and design, financial services, telecommunications etc. This

model is represented by UML (Unified Modeling Language) class diagrams.

The main advantage of OODM is that it is closer to the real word and hence is able to

deal with more complex problems very easily. The main demerit of OODM is no

established standards and hence is not that much widespread accepted.

 38

3.9 COMPARISON BETWEEN DATA MODEL

We have discussed all the entire data models and based on some specialized

characteristics and some merits and demerits we compare all the models. The table

given below shows the comparison:

Data Model
Characteri

stics
Organizati

on
Identi

fy

Access
Langua

ge

Data
Independe

nce

Structural
Independe

nce

Hierarchical Best

suitable for

1:M

relationshi

p

File,

Records

Recor

d

based

Procedu

ral

Yes No

Network Ability to

handle all

types of

relationshi

p, including

M:N

File,

Records

Recor

d

based

Procedu

ral

Yes No

Relational Conceptual

Simplicity,

easier

database

design.

Tables Value

based

Non-

Procedu

ral

Yes Yes

Entity

Relationship

Visual

representat

ion makes

it very easy

to
understand

Entity

Sets/

Objects

Value

based

Non-

Procedu

ral

Yes Yes

 39

Object
Oriented

No
standardiz

ed method

available to

represent

the model.

Objects Recor
d

based

Procedu
ral

Yes Yes

Table-1 Comparison between data model

3.10Check your progress

1. Explain the importance data model.
2. Define entity, attributes and relationships.
3. Discuss hierarchical model in detail.
4. Explain in detail the network model.
5. Write a short note on ER model.

 40

Unit 4: Database Design

Unit Structure

4.1. Learning Objectives

4.2. Introduction

4.3. Characteristics of a table

4.4. Keys

4.5. Integrity policies

4.6. Relational set operators

4.7. Attributes

4.8. Relationships contained in relational database

4.9. Connectivity and cardinality

4.10. Relationship Strength

4.11. Relationship degree

4.12. Database design process

4.13. Anomalies in database

4.14. Check your progress

4

 41

4.1 LEARNING OBJECTIVES

After studying this unit student should be able to:

• decide an entity and its attributes.

• understand database design process and the commonly occurred anomalies in it.

4.2 INTRODUCTION

A table is viewed as a two dimensional organization consisting of rows and columns. A

table many a times is also called a relation because the relational model architect

composed of rows and columns. A table consists of a collection of associated entity
occurrences that is an entity set. For example a DESIGNATION table contains the entity

occurrences, each representing a separate designation of an employee.

With the help of table view of data it makes it easy for a database designer to design the

database.

4.3 CHARACTERISTICS OF A RELATIONAL TABLE

The eight characteristics of a relational table are mentioned below:

1. A table is perceived as a two-dimensional arrangement structure of rows and

columns.

2. Tuple corresponds to a single entity event contained in the entity set.

3. Every relational table column represents an attribute, which should have a

distinct name.

4. The intersection of a row and column represents a single value in the table.

5. Every value in the column must correspond to the same data type and format.
6. Each column can have a definite range of values know as attribute domain.

7. The sequence of rows and columns is irrelevant in DBMS.

8. Every table must have an attribute or its combination that can distinctively

identify a tuple.

 42

Table: DESIGNATION

Desig_id Desig_name

1 CEO

2 Manager

3 Supervisor

4 Technician

5 Officer

Desig_id= Designation ID, Desig_name= Designation name

Table-2 DESIGNATION table attribute values

i. The DESIGNATION table is viewed as a two dimensional arrangement
consisting of two columns and five rows.

ii. Each row in the DESIGNATION table illustrates a single entity occurrence within

the entity set. For example as shown in the figure-12 here any Desig_id=4,

represents the other characteristics that’s designation name in the given table,

the designation name in this case is Technician which denotes a record.

iii. Here each column is viewed as an attribute and should have unique name.

iv. As shown in the given figure the entire attribute in a given column must have a

same data type. Like designation name field has a data type as character.
v. Here the designation ID has a range of possible values that are between 1 to 5,

which is known as range of domain values.

vi. The series of rows and columns is irrelevant in DBMS.

vii. Each table in RDBMS must have a column/attribute which contains set of unique

values and that attribute can be assigned as a Primary Key (PK). Assigning a

PK attribute to a field, does not allow the field to remain either empty or repeated.

 43

4.4 KEYS

Keys in RDMS are significant as they are used to ensure that each tuple in a table is
uniquely identifiable. A key consists of one or more attributes that determine other

attributes. For example an Designation ID identifies all the field in the designation table.

A primary key plays an important role in the relational environment, where the key’s role

is based on the concept of determination. Each table must have a attribute that is

unique and is able to identify the unique records of the table.

Similarly the foreign key contains either matching values (primary key of another table)

or nulls. The table that makes use of that foreign key is said to exhibit referential

integrity. In simple words referential integrity means that if the foreign key contains a
value, that value should refer to an existing valid record in another relation.

In the context of database table, the statement “A determines B”, indicates that if you

know the value of attribute A, you can look up into the value of B. For example the

knowing the Student_ID in the STUDENT table we are able to look up his/her name,

score, mobile number etc. Therefore attributes of the student table can be represented

by the statement “Student_ID determines name, score, sem, mobile”. This statement

can be simply denoted by:

Student_ID -> Name, Score, Sem, Mobile_num
The concept of determination is important as it used in the definition of a central

relational database concept known as functional dependency. The functional

dependency can be defined most easily this way: “The attribute A determines B if all the

rows in the table that agree in the value for attribute A also agree in value for attribute

B”.

Also “If an attribute B is functionally dependent on a composite key A but not on any

subset of that composite key, the attribute B is fully functionally dependent on A”.

Composite key is a combination of 2 more attributes that is used to uniquely identify a
record in a given table. Within the broad key classification special keys can be defined

as given the figure 1.14

Key Type Definition

Super key An attribute that uniquely identifies each row in a table

 44

Candidate
key

A minimal (irreducible) superkey.

Primary key A candidate key that is selected to uniquely identify all other

attributes in a column and does not contain a null value

Secondary

key

An attribute used strictly for data retrieval purposes.

Foreign key An attribute in one table whose value must match the primary key

in another table.
Table-3 Relational Database Keys

4.5 INTEGRITY POLICIES

For a good relational database design integrity rules are very significant and they must

be followed. Several RDMS implement integrity rules without human intervention but

care should be taken that any application design must match the referential integrity

rules which are summarized in the figure 1.15:
Entity
Integrity

Description

Requirement

Purpose

All primary keys are unique and cannot be null

Each row will have a unique identity and the foreign key can reference
primary key values. E.g. No Student ID can be duplicated as well as it

cannot be null.

Referential
Integrity

Description

Requirement

Purpose

A foreign must match with the primary key value in a table to which it is

related, or sometimes may have a null entry.

It may be possible for an attribute NOT to have a corresponding value,

but an invalid entry is not possible. E.g. An AGENT has yet not assigned

any CUSTOMER.
Table-4 Integrity rules

 45

As shown in the Table-5, the STUDENT table does not contain a repeated Student_ID

as well as does not contain null which represents entity integrity.
Student_ID Name Sem Score MOB

S001 Amit I 75 9898989898

S002 Neha II 83 9090909090

S003 Hem I 87 7878568923
Table-5Sample STUDENT table

Similarly the tables AGENT and CUSTOMER are shown in the Table-6, where the

agent Ramesh and Joy has yet not assigned any customer, and Agent_ID attribute in

the Customer table is null for the customer named sumit and harsh.
Agent_ID A_name MOB

1 Nilanshu 7539518526

2 Shyam 4567891236

3 Ramesh 3216549875

4 Joy 3578529631

Customer_ID C_Fname C_Lname City Agent_id

1 Sumit Verma Ahmedabad

2 Nancy Joseph Surat 1

3 Jenny Shah Rajkot 2

4 Harsh Modi Surat
Table-6 Sample AGENT and CUSTOMER table

4.6 RELATIONAL SET OPERATORS

The data in the RDBMS are of limited worth until we can manipulate to generate useful

information. In this section we will be describing about eight relational set operators
populated by relational algebra to implement various operations. The operators that we

are going to discuss are: UNION, INTERSECT, DIFFERENCE, PRODUCT, SELECT,

PROJECT, JOIN and DIVIDE.

 46

UNION: This operation combines all the rows from two tables, excluding the rows which

are having duplicate records. Here both the table must have the same fields and also

share same number of columns. The example of union operation is shown in the figure-

12:
Pro_i
d

P_nam
e

Pric
e

1 P1 250

2 P2 300

3 P3 350

UNION

Pro_id P_name Price

4 P4 400

5 P5 450

1 P1 250

Figure 12 (a) Figure 12 (b)
Pro_id P_name Price

1 P1 250

2 P2 300

3 P3 350

4 P4 400

5 P5 450
Figure 12 UNION operation

INTERSECT: This operation displays only the records that are common on both the

tables. The result of the intersection operation is given below:
FNAME

Tarun

Ravi

INTERSECT

FNAME

Tarun

Sam

OUTPUT

FNAME

Tarun

Figure-13Intersect operation

DIFFERENCE: It displays all the records in one table that are not found in another

table. The result of the difference operation is shown below:

 47

Product

Pen

Pencil

Ruler

DIFFERENCE

OUTPUT

Figure-14DIFFERENCE operation

PRODUCT: The product operation results in all the possible pair of rows from the two

tables. This operation is also known as Cartesian product operation. For example if one

table has 3 records and another table has 2 records the product operation will yield 6

records. The output of product operation is shown below, where product operation is

performed between Product table and Supplier table:
Pro_i
d

P_nam
e

Pric
e

P1 A 250

P2 B 300

P3 C 350

PRODUCT

Pro_id P_name Price SUP_id S_Name CITY

P1 A 250 S1 RKT AHM

P1 A 250 S2 MBD AHM

P2 B 300 S1 RKT AHM

P2 B 300 S2 MBD AHM

P3 C 350 S1 RKT AHM

P3 C 350 S2 MBD AHM
Figure -15The result of PRODUCT operation

SELECT: This operations displays all the records from the given table that satisfies a

given criteria. This operation is also known as RESTRICT operation. For example

suppose we want to list all the records from the above table where the price of the
product is greater than 350, then the output of select operation is shown in the figure

17.

Product

Pen

Pencil

Product

Ruler

SUP_id S_Name CITY

S1 RKT AHM

S2 MBD AHM

 48

Pro_i
d

P_nam
e

Pric
e

P1 A 250

P2 B 300

P3 C 350

P4 D 400

P5 E 450

SELECT ALL(Price>350)

Pro_id P_name Price
P4 D 400

P5 E 450

Figure -16SELECT operation
PROJECT: This operation yields all the values for the selected attributes, which is a

vertical subset of a given table. The result of PROJECT operation is shown in the figure

17:

Pro_i
d

P_nam
e

Pric
e

P1 A 250

P2 B 300

P3 C 350

P4 D 400

P5 E 450

PROJECT Price Yields

Price
250
300
350
400
450

Figure -17PROJECT operation

JOIN: Join allows information to be combined from two or more tables. There are

several forms of join that are explained below.

 A natural join links the tables by selecting only those rows with the common values in

their common attribute, which is a three step process. First a PRODUCT operation is

implemented among the tables included in the join. Secondly a SELECT operation is

performed on the output to get the rows for which foreign key is present. And finally

PROJECT operation is performed on the results of second operation to get the selected

attributes and eliminate the duplicate tuples. The ultimate outcome of the natural join
produces a set of a record that does not include matchless pairs and offer only the

copies of the matches. Example of natural join and its operations are explained in the

figures given below:

 49

CUSTOMER TABLE
CUST_ID NAME PINCODE A_ID

C001 Sanjay 382330 A001

C002 Rahul 382421 A002

C003 Pankti 358965 A003

C004 Prachi 365898 A001

AGENT TABLE
A_ID A_NAME

A001 Hari

A002 Jay

A003 Om

Table-7 Sample tables considered for join illustrations

CUST_ID NAME PINCODE CUSTOMER.A_ID AGENT. A_ID A_NAME

C001 Sanjay 382330 A001 A001 Hari

C001 Sanjay 382330 A001 A002 Jay

C001 Sanjay 382330 A001 A003 Om

C002 Rahul 382421 A002 A001 Hari

C002 Rahul 382421 A002 A002 Jay

C002 Rahul 382421 A002 A003 Om

C003 Pankti 358965 A003 A001 Hari

C003 Pankti 358965 A003 A002 Jay

C003 Pankti 358965 A003 A003 Om

C004 Prachi 365898 A001 A001 Hari

C004 Prachi 365898 A001 A002 Jay

C004 Prachi 365898 A001 A003 Om

Table-8Natural Join, Step 1: PRODUCT

The next operation performed in the natural join is a SELECT operation that is shown in

the Table-9
CUST_ID NAME PINCODE CUSTOMER.A_ID AGENT. A_ID A_NAME

C001 Sanjay 382330 A001 A001 Hari

C002 Rahul 382421 A002 A002 Jay

C003 Pankti 358965 A003 A003 Om

C004 Prachi 365898 A001 A001 Hari
Table-9 Natural Join, Step 2: SELECT

 50

Finally the last operation implemented in natural join is PROJECT that is shown in the

Table-10
CUST_ID NAME PINCODE AGENT. A_ID A_NAME

C001 Sanjay 382330 A001 Hari

C002 Rahul 382421 A002 Jay

C003 Pankti 358965 A003 Om

C004 Prachi 365898 A001 Hari
Table-10 Natural Join, Step 2: PROJECT

Another form of join is known as equijoin that links the tables on the basics of equality

condition that compares specific attributes of each table. Here the output does not

eliminate the duplicate column values. The equijoin takes the name from the operator

that it uses, if any other comparison operator is used, the join is called a theta join.

Lastly the outer join, in which the matched pairs would be retained and any unmatched

values in the other table would be left null.
DIVIDE: This operation uses one single-column table as the divisor and one two

attribute table as the dividend. The tables used in this operation must have an attribute
in common.

Key Location
A 34
B 45
C 25
C 36
D 25
D 72
C 12

DIVIDE

Key
C
D

 51

Location
25

Figure 18 Location Table is the outcome of the DIVIDE operations

Here the first table is divided by second table, where both the tables share a common

attribute “KEY” and does not share LOCATION. The output yields only the value that is

associated with both “C” and “D”.

4.7 ATTRIBUTES

Attributes are considered to be the characteristics of the entities. For example the

CUSTOMER entity consists of many attributes like CUST_ID, NAME, PINCODE, EMAIL
etc. Here in this section we will discuss about various points to be kept in mind while

deciding the attributes in a given entity.
Required and Optional attributes: A required attribute is an filed that must have a

value or which cannot be left null. For example CUST_ID and NAME are required

attributes in the CUSTOMER table. On the contrary a customer may have an email or

may not so the field EMAIL in the CUSTOMER table is an optional attribute as it can be

left null.
Domains: All the attributes have their domain, which means a set of possible values

that can be accepted by that particular filed. For example minimum and maximum value

for semesters in the MSc(IT) course can be between one and four. So the domain of

possible values for the field semester is either 1/2/3/4.
Primary key: Primary key is the identifier that is used to identify each record or tuple

uniquely. Also it cannot be null. For example CUST_ID in the CUSTOMER table is a

primary key that uniquely identifies each customer’s record and which cannot be null.
Composite keys: When we use more than one identifier or primary key to uniquely

identify a record in a table, it is known as a composite key. For example CUST_ID and
ACCOUNT_NUM can be combined to create a composite key as a customer may have

different types of account in a bank,

 52

Composite and simple attributes: A composite attribute is not be baffled with

composite key. It is an attribute that can be further sub divided to yield additional

attributes. For example an attribute FULL_NAME can be further sub divided into

FIRST_NAME, MID_NAME and LAST_NAME. A simple attribute cannot be further sub
divided. For example gender, age etc.
Single-valued attributes: An attribute that can have only single value is known as

single valued attribute. For example AADHAR number of any Indian citizen is

considered to be a single-valued attribute.
Multivalued attributes: Those attributes that can have multiple values for example

color of a car, degree of a student, area of interest of a candidate, hobbies etc are

considered to be the multivalued attributes.
Derived attributes: An attributes value that can be calculated from other attributes

value is known as derived attribute. For example the attribute AGE can be derived from

the date of birth field. Similarly amount of GST to be paid, percentage of a student etc

are the examples of derived attributes.

4.8 RELATIONSHIPS CONTAINED IN RELATIONAL
DATABASE
Relationships that are defined in relational database are of three types:

• One-to-many (1:M)

• One-to-one (1:1)

• Many-to-many (M:N)

The 1:M relationship: The 1:M relationship is the relational database standard. To this

how this relationship is modeled and implement let us consider a simple example of

COUNTRY and STATE entity.

 53

Figure-19:M relationship between Country and State table

As shown the figure 19 the one COUNTRY can have many STATES, so there is a one-

to-many relationship between two tables.

The 1:1 relationship: This relationship represents that one entity can be related to only

one another entity and vice versa. For example one department chair-a professor-can
chair only one department and one department can have only one department chair.

Figure-20 1:1 relationships between Professor and Department

The M:N relationship: A M:N relationship is not directly supported in the relational

database environment. A sample example of M:N relationship can be considered

between MOBILE and FEATURES tables. Here one MOBILE can have many features,

also the same feature can be there in many MOBILES.

The way to implement M:N relationship in relational database environment is to change

the M:N relationship to two 1:M relationship. This can be done by adding a third
associative entity or a bridge table between two tables. Figure 1.31 represents the

solution to the given problem. Here the bridge table is “Mobile_has_feature”, which

specifies which mobile has which features.

 54

Figure-21 Changing the M:N relationship to two 1:M relationship

4.9 CONNECTIVITY AND CARDINALITY
Cardinality signifies the minimum and the maximum number of entity occurrences

associated with one occurrence of the related entity. In entity relationship modeling it is

represented by using the format (n,m), where the first parameter represents minimum
number of linked entities and the second parameter represents the maximum number of

entity occurrences. The below figure shows the example of PROFESSOR and CLASS

entity.

Figure-22 Connectivity and Cardinality

4.10 RELATIONSHIP STRENGTH

The notion of relationship strength is based on how the primary key of a related entity is

defined. There are basically two types of relationship strength weak and strong

relationships which are discussed below:

 55

Weak Relationships: It is also known as Non-identifying relationship. It exists when

primary key of a related entity does not contain a primary key component of the parent

entity. By default relationships are recognized by having the primary key of the parent

entity appear as a foreign key on the related entity. For example, suppose that the
COURSE and CLASS entities are defined as:
COURSE (CRS_CODE, DEPT_CODE, CRS_DESC, CRS_CREDIT)

CLASS (CLASS_CODE, CRS_CODE, CLASS_SECTION, PROF_ID,CLASS_TIME)

In this case a weak relationship exists between the above two entities because the

CRS_CODE in CLASS entity is only an foreign key.
Strong Relationships: A strong relationship is also known as identifying relationship. It

exists when the primary key of a related entity contains primary key component of a

parent entity. For example if we consider the COURSE and CLASS entities as:
COURSE (CRS_CODE, DEPT_CODE, CRS_DESC, CRS_CREDIT)

CLASS (CRS_CODE, CLASS_SECTION, PROF_ID, CLASS_TIME)

This indicates a strong relationship exists between the entities COURSE and CLASS,

because the CLASS entity contains a composite primary key of CRS_CODE and

CLASS_SECTION.

4.11 RELATIONSHIP DEGREE
A relationship degree specifies the number of entities that are associated with a

relationship. They are of several types like unary, binary, ternary and higher degree

relationship that are discussed below:
Unary relationships: An example of the unary relationship is shown in the figure 1.33,

where an Employee entity is a supervisor for one or more workers who are again
employees within that entity. Such a relationship is also known as recursive

relationships. Recursive relationships exits between the occurrences of the same entity

set.

 56

Figure-23 Unary relationship

Binary relationships: A binary relationship exists when there are two entities that are

related with each other as shown in the figure 1.34. It is the most frequent relationship

that exists in the relational database. A basic example of two Entities CITY and AREA

table is shown below that are having one-to-many relationship.

Figure-24 Binary relationship

Ternary and Higher degree relationships: A ternary relationship involves relationship

among three different entities. Let’s take an example of three entities DOCTOR,

PATIENT and MEDICINE. Here the doctor gives one or more prescriptions to the

patients. Patients can visit one or more doctors and get different prescriptions. One

medicine can be there in one or more prescriptions that are given by doctor to patients.

An example of ternary relationship is as shown in figure 1.35

 57

Figure-25 Ternary relationship

4.12 DATABASE DESIGN PROCESS

Database design is a procedure of creating a complete data model of a database

consisting of all the logical and physical design alternatives and physical storage

considerations needed to create a design of a database. It should always reflect the

information system and should undergo evaluation and revision within a framework

known as Database life cycle. There are two methods of database design:
 Top-down vs. Bottom-up design

Figure-26 Top-down vs. Bottom-up design

 58

In top down approach we identify the dataset and define the data elements. In

bottom-up approach we identify the data elements first and then we group them

into datasets.

 Centralized vs. Decentralized design

Figure-27 A centralized design approach

 In centralized database design is conducted by a single person or a small team

as shown in the figure 1.37 on the contrary in decentralized database design large

number of relationship and complex relations exits and are spread across multiple sites

as shown in the figure 1.38

Figure-28 A decentralized design approach

 59

DATABASE LIFE CYCLE (DBLC):
Phase 1: Database Initial Study: In the initial study we analyze the organization

structure and its operating environment. We define the problem and list all the

constraints. We need to also state the main objectives of the proposed system along
with its scope and boundaries.

Figure-29 Phases in DBLC

Phase 2: Database Design: It is the most critical phase where the DBA has to focus on

data requirements create a conceptual design, Select the DBMS software, create a

logical design and create a physical design.
Conceptual Design: In conceptual design we map the database with the real world

entities. Here we perform data analysis and requirements, develop and ER and

normalize to its required forms and lastly we verify the data model that is developed.

DBMS Software selection: The factors that must be considered at the time of DBMS

software selection are:

 Underlying model of database

 DBMS features and tools

 60

 DBMS hardware requirements

 Portability of the DBMS

 COST

Logical Design: The logical design translates the conceptual design into internal model.

Here the logical model design components are Tables, Indexes, Views, Transactions

etc.

Physical Design: In physical design we need to specify the data storage and access

characteristics because this becomes very difficult in case of distributed systems.
Phase 3: Implementation and coding: This phase includes creation of special storage

constructs for the end user tables. It also gives solution to other issues like

performance, security, backup and recovery, maintaining industry standards and

managing concurrency controls.
Phase 4: Testing and evaluation: In this phase the database is tested and fine tuned

for performance, integrity, concurrent access and security constraints. This phase is

implemented in parallel with application programming. If the testing fails then following

actions are taken:
 Fine tuning based on reference models

 Alterations in the logical design

 Updating in the physical design

 Modernize or change the DBMS software or hardware in which its implemented

Phase 5: Operation: In this phase database is considered to be operational and the

process of system evaluation begins. During this phase some unforeseen problems

may occur and demand for a change.
Phase 6: Maintenance and Evaluation: In this phase we implement different

maintenance techniques like preventive maintenance, corrective maintenance, adaptive

maintenance, assignment of access permission, producing database statistics for

monitoring performance, conducting security audits based on system-generated

statistics.

 61

4.13 ANOMALIES IN DATABASE

Anomalies are in fact troubles that can arise in poorly designed, non-normalized
databases. Non-normalized databases are those databases which don’t follow database

standard rules in order to design and develop it. There are several categories of

anomalies that can exist while referencing attributes in the related tables. Suppose we

consider here two entities as STUDENT and COURSE and the sample records are

shown below:

STUDENT_ID NAME EMAIL AGE

S001 Vivek v@gmail.com 25

S002 Abhi ab@ymail.com 27

S003 Aniket an@yahoo.com 32
Figure 1.40 Student table

COURSE_ID NAME STUDENT_ID

C1 Python Programming S001

C2 Networking S003

C3 Java Programming S001

Figure 1.41 Course table
Insertion anomaly: If a record is inserted in a referenced attribute and the

corresponding foreign key is not present in the primary table (STUDENT), it will result in

insertion anomaly. For example if we try to insert S005 in the COURSE table, it will not
permit.
Deletion and updation anomaly: If a record is deleted or edited from referenced

relation and referenced field value is used by referencing attribute in associated relation,

it will not permit deleting the record from referenced association. For example if we try

to delete the record from the STUDENT table where STUDENT_ID is S003, it will not

permit to delete the record. In order to avoid such a situation we can use CASCADE

UPDATE and CASCADE DELETE while query processing.

4.14Check your progress

 62

1. Define table and explain its characteristics by giving examples.

2. List and explain the importance of integrity policies in relational DBMS.

3. Discuss relational set operators in detail.

4. What are the points to be kept in mind while deciding the attributes for a given
entity?

5. Write a short note on relationship degree.

6. Discuss the database design process.

7. List and explain the anomalies faced in the database.

 63

 Block-2

Relational Data Model

 and

Introduction to Oracle

 Server

 64

Unit 1: Functional Dependency
and Normalization

Unit Structure

2.1. Learning Objectives & Outcomes

2.2. Introduction

2.3. Functional Dependency

2.4. Decomposition

2.5. Closer Set of Functional Dependencies

2.6. Normalizations

2.7. Let Us Sum Up

2.8. Check your progress:Possible Answers

2.9. Assignments

2.10. Further Reading

1

 65

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To learn and understand Dependencies and how to define it.

• To understand the Armstrong’s Axioms of FDs.

• To understand the decomposition process of database relation.

• To learn normalization process and different normal forms.

Outcome:

At the end of this unit,

• Students will be completely aware with process of Dependencies and its different
types like Function Dependencies, Fully Functional Dependencies, Multivalued

Dependencies,Join Dependencies etc.

• Students will come to know the decomposition process and its types.

• Students will come to know normalization and different normal forms.

1.2 INTRODUCTION

Functional dependencies (FDs) play a key role in differentiating good database

designs from database design. A functional dependency is a type of constraint that is

a generalization of the notion a key Functional dependencies. FD's are constraints on

well-formed relations and represent formalism on the infrastructure of relation. The

determination of functional dependencies is an important part of designing databases

in the relational model, and in database normalization and de normalization. The

functional dependencies, along with the attribute domains, are selected so as to

generate constraints that would exclude as much data inappropriate to the user
domain from the system as possible.

Normalization (NF) is a systematic way of ensuring that a database structure is

suitable for general-purpose querying and free of certain undesirable characteristics

like insertion, update, and deletion anomalies; that could lead to a loss of data

 66

integrity. The normal forms of relational database theory provide criteria for

determining a table's degree of vulnerability to logical inconsistencies and anomalies.

The normal forms are applicable to individual tables; to say that an entire database is

in normal form n is to say that all of its tables are in normal form n.

1.3 FUNCTIONAL DEPENDENCY

A functional dependency (FD) is a relationship between two attributes, typically

between the PK and other non-key attributes within a table. For any relation R,

attribute Y is functionally dependent on attribute X, if for every valid instance of X, that

value of X uniquely determines the value of Y. This relationship is indicated by the
representation below:

X Y Or X à Y

The left side of the above FD diagram is called the Determinant (X), and the right side

is the Dependent (Y).

X Y X Y

1 1 1 1

2 4 2 4

3 9 3 9

4 16 4 16

2 4 2 10

7 9 7 9

Table: A Table: B

Above Table: A illustrates that X  Y, since for each value of X there is associated

one and only one value of Y. While Table: B illustrates that X does not functionally

determine Y, since for X = 2 there is associated more than one value of Y (4, 10).

Example: Consider the database having following tables.

 67

SNo SName Status City

S1 Nilesh 20 Ahmedabad

S2 Vinod 10 Patan

S3 Rahul 20 Ahmedabad

S4 Jayesh 20 Surat

Table: Supplier

Here, if we know the value of SNo, We can obtain value of SName, Status and City.

So, we can say that SName, Status and City are functionally depends on SNo. FD is
represented as: SNo { SName,Status,City}

SNo PNo Qty

S1 P1 270

S1 P2 300

S1 P3 700

S2 P1 270

S2 P2 450

S3 P2 280

Table: Shipment

In this case Qty is FD on combination of SNo and PNo, because each combination of
SNo and PNo results only one Qty. FD is represented as: {SNo, PNo}  Qty

1.3.1. FULLY FUNCTIONAL DEPENDENCY (FFD)

Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on attribute X, if

it is FD on X and not FD on any proper subset of X. For example, in relation Supplier,

different cities may have the same status. It may be possible that cities like

Ahmedabad, Surat may have the same status 20. So, the City is not FD on Status.

 68

But, the combination of SNo, Status can give only one corresponding City, because

SNo is unique. Thus,
{SNo, Status}  City

It means city is FD on composite attribute (SNo, Status) however City is not fully

functional dependent on this composite attribute, which is explained below:
{SNo , Status}  City

 X Y

Here Y is FD on X, but X has two proper subsets SNo and Status; city is FD on one
proper subset of X. SNo  City

According to FFD definition Y must not be FD .on any proper subset of X, but here

City is FD in one subset of X i.e. SNo, so City is not FFD on (SNo, Status)

1.3.2. ARMSTRONG’S AXIOMS OF FUNCTIONAL DEPENDENCIES
(INFERENCE RULES)

A set of rules that may be used to infer additional dependencies was proposed
by William W. Armstrong in 1974. These rules (or axioms) are a complete set of rules

in· that all possible functional dependencies may be derived from them. Below given

are the three most important rules for FD:

• Reflexive Rule: If X is a set of attributes and Y is subset of X, then X
holds a value of Y.

• Augmentation
Rule:

When x  y holds, and c is attribute set, then ac  bc

also holds. That is adding attributes which do not change

the basic dependencies.

• Transitivity Rule: This rule is very much similar to the transitive rule in

algebra. if x y holds and y  z holds, then x  z

also holds.

 69

Further axioms may be derived from the above although the above three axioms

are sound and complete in that they do not generate any incorrect functional

dependencies (soundness) and they do generate all possible functional
dependencies that can be inferred from F (completeness). The most important

additional axioms are:

a. Union Rule: If X  Y and X  Z hold, then X  YZ holds.

b. Decomposition Rule: If X  YZ holds, then so do X  Y and X  Z.

A. Trivial Functional Dependency

The Trivial dependency is a set of attributes which are called a trivial if the set of

attributes are included in that attribute. So, X  Y is a trivial functional dependency if

Y is a subset of X.

Example: Consider a Employee table

EmpId EmpName EmpContact

1001 Jayesh

Patel

8625610860

1002 Viral Vyas 7300456780

1003 Chirag

Prajapati

6625674610

Table: Employee

{EmpId,EmpName}  EmpName is a trivial functional dependency as a EmpName is

a subset of {EmpId,EmpName}. If we knows the value of EmpId and EmpName then

the value of EmpId can be uniquely determined. Also, EmpId EmpId & EmpName

 EmpName are trivial dependencies too.

B. Non-Trivial Functional Dependency

 70

If a functional dependency X  Y holds true where Y is not a subset of X then this

dependency is called Non-Trivial functional dependency.

Example: Consider a Employee table. Following functional dependencies are Non-

trivial.
EmpId  EmpName (EmpName is not a subset of EmpId)
EmpId  EmpContact (EmpContact is not a subset of EmpId)

If a functional dependency X  Y holds true where X intersection Y is null then this
dependency is called completely Non-Trivial FD.

C. Transitive Functional Dependency

Transitive Functional Dependency happens when it is indirectly formed by two

functional dependencies. This dependency can only occur in a relation with minimum

three attributes.

Example: Consider a Employee table

EmpId  EmpName (If we know EmpId, we know its Name)
EmpName  EmpContact (If we know EmpName, we know its Contact)

Therefor as per rule of transitive dependency; EmpId  EmpContact should hold,

that make sense if we know the EmpId, we can know his Contact.

1.4 DECOMPOSITION

A functional decomposition is the process of breaking down the functions of an

organization into progressively greater levels of detail. The decomposition of a

relation scheme R consists of replacing the relation schema by two or more relation

schemas that each contain a subset of the attributes of R and together include all

 71

attributes in R. Decomposition helps in eliminating some of the problems of bad

design such as redundancy, inconsistencies and anomalies.

Lossy Decomposition: The decomposition of relation R into R1 and R2
is lossy

Lossless Join Decomposition: The decomposition of relation R into R1 and R2
is lossless when the join of R1 and R2 yield the same relation as in R. A
relational table is decomposed into two or more smaller tables, in such a way
that the designer can capture the precise content of the original table by joining
the decomposed parts. This is called lossless-join (or non-additive join)
decomposition. Spurious tuples are not generated when a natural joined is

applied to the relations in the decomposition.

 when the join of R1 and R2 does not yield the same relation as in R. One
of the disadvantages of decomposition into two or more relational schemes (or
tables) is that some information is lost during retrieval of original relation or
table. Spurious rows are generated when a natural join is applied to the

relations in the decomposition.

Dependency-Preserving Decomposition: The dependency preservation

decomposition is another property of decomposed relational database schema D in

which each functional dependency X -> Y specified in F either appeared directly in

one of the relation schemas Ri in the decomposed D or could be inferred from the
dependencies that appear in some Ri.

Decomposition D = { R1 , R2, R3,,.., ,Rm} of R is said to be dependency-preserving

with respect to F if the union of the projections of F on each Ri , in D is equivalent to

F. The dependencies are preserved because each dependency in F represents a

constraint on the database. If decomposition is not dependency-preserving, some

dependency is lost in the decomposition.

 72

1.5 CLOSURE SET OF FUNCTIONAL DEPENDENCIES

A Closure is a set of FDs is a set of all possible FDs that can be derived from a given
set of FDs. It is also referred as a complete set of FDs. If F is used to donate the set

of FDs for relation R, then a closure of a set of FDs implied by F is denoted by F+.

Let's consider the set F of functional dependencies given below:

F = {A -> B, B -> C, C -> D}

from F, it is possible to derive following dependencies.

A -> A ...By using Rule-4, Self-Determination.
A -> B ...Already given in F.

A -> C ...By using rule-3, Transitivity.

A -> D ...By using rule-3, Transitivity.

Now, by applying Union Rule, it is possible to derive A+ -> ABCD and it can be

denoted using A -> ABCD. All such type of FDs derived from each FD of F form a

closure of F.

Steps to determine F+

• Determine each set of attributes

:
 X

• Determine the set

 that appears as a left hand side of some FD

in F.
X+ of all attributes that are dependent on X

•

.

X+ represents a set of attributes that are functionally determined by X based

on F. And, X+ is called the

• All such sets of

Closure of X under F.
X+

Find Candidate Keys

, in combine, Form a closure of F.

A super key is a set of attributes whose closure is the set of all attributes. In other

words, a super key is a set of attributes you can start from, and following functional

dependencies, will lead you to a set containing each and every attribute. A candidate

 73

key is a minimal super key. The first step to finding a candidate keys, is to find all the

super keys.

Example: Given the Relation R with attributes ABCDE. You are given the following

dependencies: A -> B, BC -> E, and ED -> A.

Since we have the functional dependencies: A -> B, BC -> E, and ED -> A, we have

the following super keys:

• ABCDE (All attributes is always a super key)

• BCED (We can get attribute A through ED -> A)

• ACDE (Just add B through A -> B)

• ABCD (Just add E through BC -> E)

• ACD (We can get B through A -> B, and then we can get E through BC -> E)

• BCD (We can get E through BC -> E, and then A from ED -> A)

• CDE (We can get A through ED -> A and then B from A -> B)

We can see that only the last three are candidate keys. Since the first four can all be

trimmed down. But we cannot take any attributes away from the last three super keys
and still have them remain a super key. Thus the candidate keys are: ACD, BCD,
and CDE.

1.6 NORMALIZATIONS

Database Normalization is a technique that helps in designing the schema of the

database in an optimal manner so as to ensure the above points. The core idea of

database normalization is to divide the tables into smaller sub tables and store

pointers to data rather than replicating it.

 74

Normalization results in decomposition of the original relation. It should be noted that

decomposition of relation has to be always based on principles, such as functional

dependence, that ensure that the original relation may be reconstructed from the

decomposed relations if and when necessary. Careless decomposition of a relation
can result in loss of information.

1.6.1 THE FIRST NORMAL FORM (1NF)

Definition: A relation (table) is in 1NF if

1. There are no duplicate rows or tuples in the relation.

2. Each data value stored in the relation is single-valued

3. Entries in a column (attribute) are of the same kind (type).

In a 1NF relation the order of the tuples and attributes does not matter. The first
requirement above means that the relation must have a key. The key may be single

attribute or composite key. The first normal form defines only the basic structure of
the relation and does not resolve the anomalies.

The relation STUDENT is in 1NF. The primary key of the relation is (Sno+Cno).

STUDENT

Sno Sname Address Cno Cname Instructor
Offic

e

101 Viral
Ahmedab

ad

MCIT–

101

OOPS with

Java

Amit

Kumar

10

2

101 Viral
Ahmedaba

d

MCIT–

102
RDBMS

Bhavesh

Patel

10

5

101 Viral
Ahmedaba
d

MCIT-
104

Networking
Jignesh
Patel

10
3

102
Dashrat

h

Ahmedab

ad

MCIT-

104
Networking

Jignesh

Patel

10

3

 75

1.6.2 THE SECOND NORMAL FORM (2NF)

Definition: A relation is in 2NF if it is in 1NF and every non-key attribute is fully

dependent on each candidate key of the relation.

Some of the points that should be noted here are:

• A relation having a single attribute key has to be in 2NF.

• In case of composite key, partial dependency on key that is part of the key is

not allowed.

• 2NF tries to ensure that information in one relation is about one thing

• Non-key attributes are those that are not part of any candidate key.

These FDs of relation STUDENT can also be written as:

Sno

Cno

Instructor







Sname, Address

Cname, Instructor

Office

(1)

(2)

(3)

For the 2NF decomposition, we are concerned with the FDs (1) and (2) as above as

they relate to partial dependence on the key that is (Sno + Cno). To convert the

relation into 2NF, let us use FDs. As per FD (1) the Student number uniquely

determines student name and address, so one relation should be:

STUDENT1 (Sno, Sname, Address)

Sno Sname Address

101 Viral
Ahmedab

ad

102 Dashrat Ahmedab

 76

h ad

We find in FD (2) that Course code attribute uniquely determines the name of

instructor (refer to FD 2(a)). Also the FD (3) means that name of the instructor

uniquely determines office number. This can be written as:

 Cno  Instructor (2 (a)) (without Cname)

 Instructor  Office (3)

 Cno  Office (This is transitive dependency)

Thus, FD (2) now can be rewritten as:

 Cno  Cname, Instructor, Office (2’)

This FD, now gives us the second decomposed relation:

COU_INST (Cno, Cname, Instruction, Office)

Cno Cname Instructor Office

MCIT–

101

OOPS with

Java

Amit

Kumar
102

MCIT–
102

RDBMS
Bhavesh
Patel

105

MCIT-

104
Networking

Jignesh

Patel
103

We have super FDs as, because (Sno + Cno) is the primary key of the relation

STUDENT:

 Sno, Cno  ALL ATTRIBUTES

 77

All the attributes except for the key attributes that are Sno and Cno, however, are

covered on the right side of the FDs (1) (2) and (3), thus, making the FD as

redundant. But in any case we have to have a relation that joins the two decomposed

relations. This relation would cover any attributes of Super FD that have not been
covered by the decomposition and the key attributes. Thus, we need to create a

joining relation as:

COURSE_STUDENT (Sno, Cno)

Sno Cno

101
MCIT–

101

101
MCIT–

102

101
MCIT-

104

102
MCIT-

104

So, the relation STUDENT in 2NF form would be, STUDENT1, COU_INST AND

COURSE_STUDENT.

1.6.3 THE THIRD NORMAL FORM (3NF)

Definition: A relation is in third normal form, if it is in 2NF and every non-key attribute

of the relation is non-transitively dependent on each candidate key of the relation.

Let us reconsider the relation 2NF (b)

COU_INST (Cno, Cname, Instruction, Office)

 78

Assume that Cname is not unique and therefore Cno is the only candidate key. The

following functional dependencies exists

 Cno  Instructor (2 (a)) (without Cname)
 Instructor  Office (3)

 Cno  Office (This is transitive dependency)

The relation is however not in 3NF since the attribute ‘Office’ is not directly dependent

on attribute ‘Cno’ but is transitively dependent on it and should, therefore, be

decomposed as it has all the anomalies. We need to decompose the relation 2NF(b)

into the following two relations:

COURSE:

Cno Cname
Instructo
r

MCIT–101
OOPS with

Java
Amit Kumar

MCIT–102 RDBMS
Bhavesh

Patel

MCIT-104 Networking
Jignesh

Patel

INST:

Instructor Office

Amit Kumar 102

Bhavesh

Patel
105

Jignesh

Patel
103

 79

Two relations and 2NF (a) and 2NF (c) are already in 3NF. Thus, the relation

STUDENT in 3 NF would be:

STUDENT1 (Sno, Sname, Address)
COURSE (Cno, Cname, Instructor)
INST (Instructor, Office)
COURSE_STUDENT (Sno, Cno)

The 3NF is usually quite adequate for most relational database designs. There are

however some situations where a relation may be in 3 NF, but have the anomalies.

For example, consider the relation NEWSTUDENT (Sno, Sname, Cno, Cname)

having the set of FDs:

 Sno  Sname

 Sname  Sno

 Cno  Cname

 Cname  Cno

The relation is in 3NF. All the attributes of this relation are part of candidate keys, but

have dependency between the non-overlapping portions of overlapping candidate
keys. Thus, the 3NF may not eliminate all the redundancies and inconsistencies.

Thus, there is a need of further Normalization using the BCNF.

1.6.4 BOYCE-CODD NORMAL FORM (BCNF)

The relation NEWSTUDENT (Sno, Sname, Cno, Cname) has all attributes

participating in candidate keys since all the attributes are assumed to be unique.

Since the relation has no non-key attributes, the relation is in 2NF and also in 3NF.

Definition: A relation is in BCNF, if it is in 3NF and if every determinant is a

candidate key.

 80

• A determinant is the left side of an FD

• Most relations that are in 3NF are also in BCNF. A 3NF relation is not in BCNF

if all the following conditions apply.

1. The candidate keys in the relation are composite keys.

2. There is more than one overlapping candidate keys in the relation, and
some attributes in the keys are overlapping and some are not overlapping.

3. There is a FD from the non-overlapping attribute(s) of one candidate key to

non-overlapping attribute(s) of other candidate key.

NEWSTUDENT (Sno, Sname, Cno, Cname) Set of FDs:

 Sno  Sname (1)
 Sname  Sno (2)

 Cno  Cname (3)

 Cname  Cno (4)

The relation although in 3NF, but is not in BCNF and can be decomposed on any one

of the FDs in (1) & (2); and any one of the FDs in (3) & (4) as:

STUD1 (Sno, Sname)
COUR1 (Cno, Cname)

The third relation that will join the two relation will be: ST_CO(Sno, Cno)

1.6.5 MULTIVALUED DEPENDENCIES AND 4TH NORMAL FORM

A. Multivalued Dependencies:

If two or more independent relation are kept in a single relation or we can say multivalue

dependency occurs when the presence of one or more rows in a table implies the

presence of one or more other rows in that same table. Put another way, two attributes

 81

(or columns) in a table are independent of one another, but both depend on a third

attribute. A multivalued dependency always requires at least three attributes because it

consists of at least two attributes that are dependent on a third. A functional

dependency is a special case of multivalued dependency. In a functional dependency X
 Y, every x determines exactly one y, never more than one.

For a dependency A  B, if for a single value of A, multiple value of B exists, then the

table may have multi-valued dependency. The table should have at least 3 attributes

and B and C should be independent for A  B multivalued dependency. For example,

 Person Mobile Food_Likes

Viral Vyas 989898009 Burger

Amit Patel 756427523 Pizza

Person  mobile, Person  food_likes

B. Fourth normal form (4NF):

Fourth normal form (4NF) is a level of database normalization where there are no non-
trivial multivalued dependencies other than a candidate key. It builds on the first three

normal forms (1NF, 2NF and 3NF) and the BCNF. It states that, in addition to a

database meeting the requirements of BCNF; it must not contain more than one

multivalued dependency.

Properties:

A relation R is in 4NF if and only if the following conditions are satisfied:
1. It should be in the Boyce-Codd Normal Form (BCNF).

2. the table should not have any Multi-valued Dependency.

A table with a multivalued dependency violates the normalization standard of Fourth

Normal Form because it creates unnecessary redundancies and can contribute to

 82

inconsistent data. To bring this up to 4NF, it is necessary to break this information into

two tables.

Example:

Consider the database table:

Student (Sno,Sname):

Sno Sname

101 Viral Vyas

102 Amit Patel

Course (Cno,Cname)

Cno Cname

2001 MCA

2002 M.Sc.(IT)

When there cross product (Student X Course) is done it resulted in multivalued

dependencies:

Sno Sname Cno Cname

101 Viral Vyas 2001 MCA

101 Viral Vyas 2002 M.Sc.(IT)

102 Amit Patel 2001 MCA

102 Amit Patel 2002 M.Sc.(IT)

Multivalued dependencies (MVD) are:

SID  CID; SID  CNAME; SNAME  CNAME

 83

1.6.6 JOIN DEPENDENCIES AND 5NF / PJNF

The fifth normal form deals with join-dependencies, which is a generalisation of the

MVD. The aim of fifth normal form is to have relations that cannot be decomposed

further. A relation in 5NF cannot be constructed from several smaller relations.

A relation R satisfies join dependency *(R1, R2, ..., Rn) if and only if R is equal to the
join of R1, R2, ..., Rn where Ri are subsets of the set of attributes of R.

A relation R is in 5NF if for all join dependencies at least one of the following holds:

a) (R1, R2, ..., Rn) is a trivial join-dependency.

b) Every Ri is a candidate key for R.

An example of 5NF can be provided by the relation employee that deals with

emp_name, Projects and Programming languages.

emp_name projects languages

VIRAL Proj_A C

AMIT Proj_A Java

VIRAL Proj_B C

AMIT Proj_B C++

The relation above assumes that any employee can work on any project and knows

any of the three languages. The relation also says that any employee can work on

projects Proj_A, Proj_B, Proj_C and may be using a different programming languages

in their projects. No employee takes all the projects and no project uses all the

programming languages and therefore all three fields are needed to represent the

information. Thus, all the three attributes are independent of each other.

The relation above does not have any FDs and MVDs since the attributes

emp_name, project and languages are independent; they are related to each other

 84

only by the pairings that have significant information in them. For example, VIRAL is

working on Project A using C languague. Thus, the key to the relation is (emp_name,

projects, languages). The relation is in 4NF, but still suffers from the insertion,

deletion, and update anomalies. However, the relation therefore cannot be
decomposed in two relations.

(emp_name, project) and (emp_name, language)

The decomposition mentioned above will create tables as given below:

emp_project

emp_name Projects

VIRAL Proj_A

AMIT Proj_A

VIRAL Proj_B

AMIT Proj_B

emp_language
emp_name Languages

VIRAL C

AMIT Java

AMIT C++

On taking join of these relations on emp_name it will produce the following result:

emp_name projects languages

VIRAL Proj_A C

AMIT Proj_A Java

AMIT Proj_A C++

VIRAL Proj_B C

 85

AMIT Proj_B Java

AMIT Proj_B C++

Since the joined table does not match the actual table, we can say that it is a lossy

decomposition. Thus, the expected join dependency expression; *((emp_name,

project), (emp_name, language)) does not satisfy the conditions of lossless

decomposition. Hence, the decomposed tables are losing some important

information.

1.6.7 PROJECT-JOIN NORMAL FORM

PJNFis defined using the concept of the join dependencies. A relation schema R

having a set F of functional, multivalued, and join dependencies, is in PJNF (5 NF), if

for all the join dependencies in the closure of F (referred to as F+) that are of the form

*(R1, R2, . . .,Rn), where each Ri ⊆R and R = R1 ∪R2 ∪. . . ∪Rn, at least one of the

following holds:

• *(R1, R2, . . .,Rn) is a trivial join dependency.

• Every Riis a superkey for R.

PJNF is also referred to as the Fifth Normal Form (5NF). Let us first define the

concept of PJNF from the viewpoint of the decomposition and then refine it later to a

standard form.

Definition 1: A JD *[R1, R2, . . . , Rn] over a relation R is trivial if it is satisfied by

every relation r(R). The trivial JDs over R are JDs of the form *[R1, R2, . . . , Rn]
where for some i the Ri = R.

Definition 2: A JD *[R1, R2, . . ., Rn] applies to a relation scheme R if R = R1 R2

…Rn.

 86

Definition 3: Let R be a relation scheme having F as the set of FDs and JDs over R.

R will be in project-join normal form (PJNF) if for every JD *[R1, R2, . . ., Rn] which

can be derived by F that applies to R, the following holds:

• The JD is trivial, or

• Every Ri is a super key for R.

For a database scheme to be in project-join normal form, every relation R in this

database scheme should be in project-join normal form with respect to F. The

definition of PJNF as given above is a weaker than the original definition of PJNF

given by Fagin. The original definition ensures enforceability of dependencies by

satisfying keys, in addition to elimination of redundancy.

Definition 4: Let R be a relation scheme having F as the set of FDs and JDs over R.

R will be in project-join normal form (PJNF) if for every JD *[R1, R2, . . ., Rn] which

can be derived by F that applies to R, is implied by the key FDs of R.

The following example demonstrates this definition.

Example: Consider a relation scheme R = A B C having the set of dependencies as F

= {A B C, C  A B, *[A B, B C] }. Please note that the R is not in PJNF, although
since A B and B C are the super keys of R, R satisfies the earlier definition of PJNF.

But R does not satisfy the revised definition as given above.

Please note that since every multivalued dependency is also a join dependency,

every PJNF schema is also in 4NF. Decomposing a relation scheme using the JDs

that cause PJNF violations creates the PJNF scheme. PJNF may also be not

dependency preserving.

 Check Your Progress

1. Define Fully Functional Dependency.

 87

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

2. What is Transitivity Rule of Armstrong’s Axioms?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
3. What do you mean by Lossless Join Decomposition?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
4. Define Complete Set of FD?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
5. Explain Merits and Demerits of Normalization.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

1.7LET US SUM UP

In this chapter, we have discussed about dependencies and normalization process of

database. We have explored process of functional dependency with all types. We

have come to know about Inferences Rules of FDs. We have also summarized

Normalization Process in detail with different Normal Forms. After completion of this

chapter student can able to normalize the database into proper forms.

1.8CHECK YOUR PROGRESS:POSSIBLE ANSWERS

 88

1. Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on attribute

X, if it is FD on X and not FD on any proper subset of X. According to FFD

definition Y must not be FD .on any proper subset of X.

2. Transitivity Axioms is similar to the transitivity rule in algebra. If X  Y holds and
Y  Z, then X  Z holds.

3. A relation is decomposed into two or more smaller relations, in a way by which

we can obtain the original relation by joining the decomposed partition of

relation.

4. A complete set or closure set of FDs is a set of all possible FDs that can be

derived from a given set of FDs. If F is used to donate the set of FDs for relation

R, then a closure of a set of FDs implied by F is denoted by F+

5. Merits of Normalization:
.

• More effic ient data structure.

• Avoid redundant fields or columns.

• More flexible data structure.

• Better understanding of data.

• Ensures that distinct tables exist when necessary.

• Easier to maintain data structure.

• Minimizes data duplication.
Demerits of Normalization:

• You cannot start building the database before you know what the user needs.

• On Normalizing the relations to higher normal forms i.e. 4NF, 5NF the
performance degrades.

• It is very time consuming and difficult process in normalizing relations of
higher degree.

• Careless decomposition may leads to bad design of database which may
leads to serious problems.

1.9 Assignments

1. Explain Armstrong’s Axioms of FDs. How can we find Candidate Key using it?
Explain with example.

 89

2. What is Decomposition? Explain different types of decomposition.

3. Describe Multivalued Dependencies and Join Dependencies with proper

Example.

4. Explain Project Join Normal Form With Example.

1.10 Further Reading

1. Database Management Systems, Raghu Ramakrishnan and Johannes Gehrke,

McGraw

 Hill Publication.

2. Database System Concepts, 6th Edition, Abraham Silberschatz, Henry F. Korth, S.

 Sudarshan, McGraw Hill.

 90

Unit 2: Oracle Database
Architecture

Unit Structure

2.1. Learning Objectives & Outcomes

2.2. Introduction

2.3. Database Structures

2.4. Oracle Memory Structures

2.5. Process Structure

2.6. Storage Structure

2.7. Schema and Schema Objects

2.8. Let Us Sum Up

2.9. Check your progress:Possible Answers

2.10. Assignments

2.11. Further Reading

2

 91

2.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To learn and understand Oracle Server and Instance Architecture

• To understand the Oracle Processes

• To understand the memory structure of oracle database.

• To learn different storage structures.

• To learn schema and schema objects.

Outcome:

At the end of this unit,
• Students will be completely aware with Architecture of Oracle Database in detail.

• Students will come to know the background process and its role.

• Students will be able to simplify the different storage structures available in oracle.

• Students will be able to simplify the different schema objects available in oracle.

2.2 INTRODUCTION

Oracle Server is a database management system that provides and open,

comprehensive and integrated approach to information management. In general, an

Oracle server must reliably manage a large amount of data in multi user environment

so that many users can concurrently access the same data. All this must be

accomplished while delivering high performance. An Oracle Server must also prevent

unauthorized access and provide efficient solution for failure recovery. The

architecture includes physical components, memory components, processes, and

logical structures.

 92

Figure 6.1: Complete Oracle Architecture

A. Oracle Server: An Oracle server includes an Oracle Instance and an Oracle

database. You'll notice that the database includes several different types of files:
data files, control files, redo log files and archive redo log files. The Oracle server

also access parameter files and password files. This set of files has several

purposes as follows:

• One is to enable system users to process SQL statements.

• Another is to improve system performance.

• Still another is to ensure the database can be recovered if there is a

software/hardware failure.

B. Oracle Instance: An Oracle Instance consists of two different sets of

components. The first component set is the set of background processes likes

SMON, PMON, DBW0/DBWR, RECO, LGWR, CKPT, D000 and others etc.

Basically each background process is a computer program. These processes

perform input/output and monitor other Oracle processes to provide good

performance and database reliability.

 93

The second component set includes the memory structures that comprise the

Oracle instance. When an instance starts up, a memory structure called the

System Global Area (SGA) is allocated. At this point the background processes

also start. The Oracle Instance provides access to an Oracle database. An
Oracle Instance opens one and only one database.

C. Oracle Database: An Oracle database consists of file sometimes these are

referred to as operating system files, but they are actually database files that

store the database information that a firm or organization needs in order to

operate.

When a user connects to an Oracle server, this is termed a session. The session
starts when the Oracle server validates the user for connection. The session ends

when the user logs out (disconnects) or if the connection terminates abnormally

(network failure or client computer failure). A user can typically have more than one

concurrent session. The limit of concurrent session connections is controlled by the

DBA. This connection enables users to execute SQL statements. A one-to-one

correspondence between the User and Server Processes is called a Dedicated

Server connection. An alternative configuration is to use a Shared Server where

more than one User Process shares a Server Process.

2.3 DATABASE STRUCTURES

Each running Oracle database is associated with an Oracle Instance. When a

database is started on a database server, the Oracle allocated a shred memory area

called the System Global Area (SGA) and starts several Background processes. This

combination of SGA and Oracle Processes is called an Oracle Instance.

 94

Figure 6.2: Basic Structure of Database

After Starting an instance, the Oracle associates the instance with a specific

database. This is called mounting the database. The database is then ready to be

opened, which makes it accessible to authorized users. Multiple instances can
execute concurrently on the same computer, each accessing its own physical

database.

2.4 ORACLE MEMORY STRUCTURES

The basic memory structures associated with an Oracle Instance include the

following:

• System Global Area (SGA): Shared by all the server and background

processes.

• Program Global Area (PGA): Private to each server and background

processes. There is one PGA for each process.

 95

Figure 6.3: Memory Structure

2.4.1 SYSTEM GLOBAL AREA (SGA)

The System Global Area (SGA) is a memory area that contains data and control

information for the instance. This information includes both organizational data and

control information used by the Oracle Server. The size of the SGA is established by

the parameter SGA_MAX_SIZE in the parameter file. The SGA is allocated when an
Oracle instance is started up based on values specified in the initialization parameter

file.

The SGA has the following mandatory memory structures:

 Shared Pool (Includes two Components)

• Library Catch

• Data Dictionary Cache

 Database Buffer Cache

 Redo Log Buffer
 Other structures (for example, lock and latch management, statistical data)

Additional optional memory structures in the SGA include:

 Large Pool

 Java Pool

 96

 Streams Pool

Earlier versions of the Oracle Server used a Static SGA. This meant that if

modifications to memory management were required, the database had to be
shutdown, modifications were made to the init.ora parameter file, and then the

database had to be restarted. After oracle 9i its use a Dynamic SGA. Memory

configurations for the system global area can be made without shutting down the

database instance.

Several initialization parameters are set that affect the amount of random access

memory dedicated to the SGA of an Oracle Instance as follows:

• SGA_MAX_SIZE: This sets a limit on the amount of virtual memory allocated to

the SGA – a typical setting might be 1GB; however, if the value for

SGA_MAX_SIZE in the initialization parameter file or server parameter file is less

than the sum the memory allocated for all components, either explicitly in the

parameter file or by default, at the time the instance is initialized, then the

database ignores the setting for SGA_MAX_SIZE.

• DB_CACHE_SIZE: This is the size of the Database Buffer Cache in standard

database blocks. Block sizes vary among operating systems. We use 8KB block
sizes. The total blocks in the cache defaults to 48 MB on LINUX/UNIX and 52

MB on Windows operating systems.

• LOG_BUFFER: This is the number of bytes allocated for the Redo Log Buffer.

• SHARED_POOL_SIZE: This is the number of bytes of memory allocated to

shared SQL and PL/SQL. The default is 16 MB. If the operating system is based

on a 64 bit configuration, then the default size is 64 MB.

• LARGE_POOL_SIZE: Since this is an optional memory object, the size of the

Large Pool defaults to zero. If the init.ora parameter
PARALLEL_AUTOMATIC_TUNING is set to TRUE, then the default size is

automatically calculated.

 97

• JAVA_POOL_SIZE: This is another optional memory object. The default is 24

MB of memory.

The size of the SGA cannot exceed the parameter SGA_MAX_SIZE minus the

combination of the size of the additional parameters, DB_CACHE_SIZE,
LOG_BUFFER, SHARED_POOL_SIZE, LARGE_POOL_SIZE, and

JAVA_POOL_SIZE.

A. Shared Pool

The Shared Pool is a memory structure that is shared by all system users. It consists

of both fixed and variable structures. The variable component grows and shrinks
depending on the demands placed on memory size by system users and application

programs. It Includes Library Cache and Data Dictionary Cache.

Memory is allocated to the Shared Pool by the parameter SHARED_POOL_SIZE in

the parameter file. You can alter the size of the shared pool dynamically with the

ALTER SYSTEM SET command. You must keep in mind that the total memory

allocated to the SGA is set by the SGA_MAX_SIZE parameter and since the Shared

Pool is part of the SGA, you cannot exceed the maximum size of the SGA.

The Shared Pool stores the most recently executed SQL statements and used data

definitions. This is because some system users and application programs will tend to

execute the same SQL statements often.

I. Library Cache

Memory is allocated to the Library Cache whenever an SQL statement is parsed or a
program unit is called. This enables storage of the most recently used SQL and

PL/SQL statements. If the Library Cache is too small, the Library Cache must purge

statement definitions in order to have space to load new SQL and PL/SQL

 98

statements. Actual management of this memory structure is through a Least-

Recently-Used (LRU) algorithm. This means that the SQL and PL/SQL statements

that are oldest and least recently used are purged when more storage space is

needed.

The Library Cache is composed of two memory subcomponents:
 Shared SQL: This stores/shares the execution plan and parse tree for SQL

statements. If a system user executes an identical statement, then the

statement does not have to be parsed again in order to execute the statement.
 Shared PL/SQL: Procedures and Packages: This stores/shares the most

recently used PL/SQL statements such as functions, packages, and triggers.

II. Data Dictionary Cache

The Data Dictionary Cache is a memory structure that caches data dictionary

information that has been recently used. This includes user account information, data

file names, table descriptions, user privileges, and other information.

The database server manages the size of the Data Dictionary Cache internally and

the size depends on the size of the Shared Pool in which the Data Dictionary Cache
resides. If the size is too small, then the data dictionary tables that reside on disk

must be queried often for information and this will slow down performance.

B. Database Buffer Cache

The Database Buffer Cache is a fairly large memory object that stores the actual data

blocks that are retrieved from data files by system queries and other data

manipulation language commands. A query causes a Server Process to first look in
the Database Buffer Cache to determine if the requested information happens to

already be located in memory – thus the information would not need to be retrieved

from disk and this would speed up performance. If the information is not in the

 99

Database Buffer Cache, the Server Process retrieves the information from disk and

stores it to the cache.

Keep in mind that information read from disk is read a block at a time, not a row at a
time, because a database block is the smallest addressable storage space on disk.

Database blocks are kept in the Database Buffer Cache according to a Least

Recently Used (LRU) algorithm and are aged out of memory if a buffer cache block is

not used in order to provide space for the insertion of newly needed database blocks.

The buffers in the cache are organized in two lists:

 Write List: The write list holds dirty buffers – these are buffers that hold that

data that has been modified, but the blocks have not been written back to disk.

 Least Recently Used (LRU) List: The LRU list holds free buffers, pinned

buffers, and dirty buffers that have not yet been moved to the write list. Free

buffers do not contain any useful data and are available for use. Pinned

buffers are currently being accessed.

When an Oracle process accesses a buffer, the process moves the buffer to the most
recently used (MRU) end of the LRU list – this causes dirty buffers to age toward the

LRU end of the LRU list.

When an Oracle user process needs a data row, it searches for the data in the

database buffer cache because memory can be searched more quickly than hard disk

can be accessed. If the data row is already in the cache (a cache hit), the process

reads the data from memory; otherwise a cache miss occurs and data must be read

from hard disk into the database buffer cache.

Before reading a data block into the cache, the process must first find a free buffer.

The process searches the LRU list, starting at the LRU end of the list. The search

 100

continues until a free buffer is found or until the search reaches the threshold limit of

buffers.

Each time the user process finds a dirty buffer as it searches the LRU, that buffer is
moved to the write list and the search for a free buffer continues. When the process

finds a free buffer, it reads the data block from disk into the buffer and moves the

buffer to the MRU end of the LRU list.

If an Oracle user process searches the threshold limit of buffers without finding a free

buffer, the process stops searching the LRU list and signals the DBW0 background

process to write some of the dirty buffers to disk. This frees up some buffers.

The block size for a database is set when a database is created and is determined by

the init.ora parameter file parameter named DB_BLOCK_SIZE. Typical block sizes

are 2K, 4K, 8K, 16K, and 32K. The size of blocks in the Database Buffer Cache

matches the block size for the database.

C. Redo Log Buffer

The Redo Log Buffer memory object stores images of all changes made to database
blocks. As you know, database blocks typically store several table rows of

organizational data. This means that if a single column value from one row in a block

is changed, the image is stored. Changes include INSERT, UPDATE, DELETE,

CREATE, ALTER, or DROP.

Think of the Redo Log Buffer as a circular buffer that is reused over and over. As the

buffer fills up, copies of the images are stored to the Redo Log Files that are covered

in more detail in a later module.

D. Large Pool

 101

The Large Pool is an optional memory structure that primarily relieves the memory

burden placed on the Shared Pool. The Large Pool size is set with the

LARGE_POOL_SIZE parameter – this is not a dynamic parameter. It does not use

an LRU list to manage memory.

E. Java Pool

The Java Pool is an optional memory object, but is required if the database has

Oracle Java installed and in use for Oracle JVM. The size is set with the

JAVA_POOL_SIZE parameter that defaults to 24MB. The Java Pool is used for

memory allocation to parse Java commands. Storing Java code and data in the Java

Pool is analogous to SQL and PL/SQL code cached in the Shared Pool.

F. Streams Pool

It is sized with the parameter STREAMS_POOL_SIZE. This pool stores data and

control structures to support the Oracle Streams. Oracle Steams manages sharing of

data and events in a distributed environment.

2.4.2 PROGRAM GLOBAL AREA (PGA)

The Program Global Area (PGA) is also termed the Process Global Area (PGA)

and is a part of memory allocated that is outside of the Oracle Instance. The PGA

stores data and control information for a single Server Process or a single

Background Process. It is allocated when a process is created and the memory is

scavenged by the operating system when the process terminates. This is NOT a

shared part of memory – one PGA to each process only.

The content of the PGA varies, but generally includes the following:

 102

 Private SQL Area: Data for binding variables and runtime memory allocations.

A user session issuing SQL statements has a Private SQL Area that may be

associated with a Shared SQL Area if the same SQL statement is being

executed by more than one system user. This often happens in OLTP
environments where many users are executing and using the same application

program.

• Dedicated Server environment: the Private SQL Area is located in the

Program Global Area.

• Shared Server environment: the Private SQL Area is located in the

System Global Area.
 Session Memory: Memory that holds session variables and other session

information.
 Software Code Area: Software code areas store Oracle executable files

running as part of the Oracle instance. These code areas are static in nature

and are located in privileged memory that is separate from other user

programs. The code can be installed sharable when multiple Oracle instances

execute on the same server with the same software release level.

2.5 PROCESS STRUCTURE

When you invoke an application program or an Oracle tool, such as Enterprise

Manager, the Oracle server creates a server process to execute the commands

issued by the application. The Oracle server also creates a set of background

processes for an instance hat interact with each other and with the operating

system to manage the memory structures asynchronously perform I/O to write data

to disk, and perform other required tasks. Which background processes a

represent depends on the features that are being used in the database.

 103

Figure 6.4: Process Structure

Process Structure includes mainly three processes as follows:
 User Process: When a database user requests a connection to the Oracle

Server it’s started.
 Server Process: When user established a session and connects with oracle

instance it will be started.
 Background Process: When Oracle Instance is stated then background

process will started.

A. User Process

In order to use Oracle, you must obviously connect to the database. This must

occur whether you're using SQL*Plus, an Oracle tool such as Designer or Forms,

or an application program.

This generates a User Process that generates programmatic calls through your

user interface that creates a session and causes the generation of a Server

Process that is either dedicated or shared.
B. Server Process

The Server Process is the go-between for a User Process and the Oracle Instance.

In a Dedicated Server environment, there is a single Server Process to serve each

User Process. In a Shared Server environment, a Server Process can serve

several User Processes, although with some performance reduction.
C. Background Processes

 104

As is shown here, there are both mandatory and optional background processes

that are started whenever an Oracle Instance starts up. These background

processes serve all system users. We will cover mandatory process in detail.

Figure 6.5: Oracle Background Process

a. Database Writer (DBWn / DBWR): The Database Writer writes modified

blocks from the database buffer cache to the datafiles. Although one database

writer process (DBW0) is sufficient for most systems, you can configure up to

20 DBWn processes (DBW0 through DBW9 and DBWa through DBWj) in order

to improve write performance for a system that modifies data heavily. The

initialization parameter DB_WRITER_PROCESSES specifies the number of

DBWn processes.

The purpose of DBWn is to improve system performance by caching writes of

database blocks from the Database Buffer Cache back to datafiles. Blocks that

have been modified and that need to be written back to disk are termed "dirty

blocks." The DBWn also ensures that there are enough free buffers in the

Database Buffer Cache to service Server Processes that may be reading data
from datafiles into the Database Buffer Cache. Performance improves

because by delaying writing changed database blocks back to disk, a Server

Process may find the data that is needed to meet a User Process request

already residing in memory.
b. Log Writer (LGWR): The Log Writer (LGWR) writes contents from the Redo

Log Buffer to the Redo Log File that is in use. These are sequential writes

since the Redo Log Files record database modifications based on the actual

 105

time that the modification takes place. LGWR actually writes before the DBWn

writes and only confirms that a COMMIT operation has succeeded when the

Redo Log Buffer contents are successfully written to disk. LGWR can also call

the DBWn to write contents of the Database Buffer Cache to disk.

c. System Monitor (SMON): The System Monitor (SMON) is responsible for

instance recovery by applying entries in the online redo log files to the

datafiles.

If an Oracle Instance fails, all information in memory not written to disk is lost.

SMON is responsible for recovering the instance when the database is started

up again. It does the following:

• Rolls forward to recover data that was recorded in a Redo Log File, but that

had not yet been recorded to a datafile by DBWn. SMON reads the Redo
Log Files and applies the changes to the data blocks. This recovers all

transactions that were committed because these were written to the Redo

Log Files prior to system failure.

• Opens the database to allow system users to logon.

• Rolls back uncommitted transactions.

SMON also does limited space management. It combines adjacent areas of

free space in the database's datafiles for tablespaces that are dictionary
managed. It also de-allocates temporary segments to create free space in the

data files.
d. Process Monitor (PMON): The Process Monitor (PMON) is a cleanup type of

process that cleans up after failed processes such as the dropping of a user

connection due to a network failure or the abend of a user application program.

e. Checkpoint (CKPT): The Checkpoint (CPT) process writes information to the

database control files that identifies the point in time with regard to the Redo

Log Files where instance recovery is to begin should it be necessary. This is

done at a minimum, once every three seconds.

 106

Think of a checkpoint record as a starting point for recovery. DBWn will have

completed writing all buffers from the Database Buffer Cache to disk prior to the

checkpoint, thus those record will not require recovery. This does the following:

• Ensures modified data blocks in memory are regularly written to disk –

CKPT can call the DBWn process in order to ensure this and does so when
writing a checkpoint record.

• Reduces Instance Recovery time by minimizing the amount of work needed

for recovery since only Redo Log File entries processed since the last

checkpoint require recovery.

• Causes all committed data to be written to datafiles during database

shutdown.

If a Redo Log File fills up and a switch is made to a new Redo Log File (this is
covered in more detail in a later module), the CKPT process also writes

checkpoint information into the headers of the datafiles.

Checkpoint information written to control files includes the system change

number (the SCN is a number stored in the control file and in the headers of the

database files that are used to ensure that all files in the system are

synchronized), location of which Redo Log File is to be used for recovery, and

other information. CKPT does not write data blocks or redo blocks to disk – it
calls DBWn and LGWR as necessary.

Optional Background Process:
f. Archiver (ARCn): We cover the Archiver (ARCn) optional background process

in more detail because it is almost always used for production systems storing

mission critical information. The ARCn process must be used to recover from

loss of a physical disk drive for systems that are "busy" with lots of transactions

being completed.

When a Redo Log File fills up, Oracle switches to the next Redo Log File. The

DBA creates several of these and the details of creating them are covered in a

later module. If all Redo Log Files fill up, then Oracle switches back to the first

 107

one and uses them in a round-robin fashion by overwriting ones that have

already been used – it should be obvious that the information stored on the

files, once overwritten, is lost forever. If ARCn is in what is termed

ARCHIVELOG mode, then as the Redo Log Files fill up, they are individually
written to Archived Redo Log Files and LGWR does not overwrite a Redo Log

File until archiving has completed. Thus, committed data is not lost forever and

can be recovered in the event of a disk failure. Only the contents of the SGA

will be lost if an Instance fails.

In NOARCHIVELOG mode, the Redo Log Files are overwritten and not

archived. Recovery can only be made to the last full backup of the database

files.

When running in ARCHIVELOG mode, the DBA is responsible to ensure that
the Archived Redo Log Files do not consume all available disk space! Usually

after two complete backups are made, any Archived Redo Log Files for prior

backups are deleted.
g. Coordinator Job Queue (CJQ0): Coordinator Job Queue – This is the

coordinator of job queue processes for an instance. It monitors the JOB$ table

(table of jobs in the job queue) and starts job queue processes (Jnnn) as

needed to execute jobs The Jnnn processes execute job requests created by

the DBMS_JOBS package.

h. Dispatcher Process (Dnnn): Dispatcher number "nnn", for example, D000

would be the first dispatcher process – Dispatchers are optional background

processes, present only when the shared server configuration is used.

i. Recovery (RECO): The Recovery process is used to resolve distributed

transactions that are pending due to a network or system failure in a distributed

database. At timed intervals, the local RECO attempts to connect to remote

databases and automatically complete the commit or rollback of the local portion

of any pending distributed transactions.

 108

2.6 STORAGE STRUCTURE

An Oracle database consists of file sometimes these are referred to as operating
system files, but they are actually database files that store the database

information that a firm or organization needs in order to operate. Database

Storage Structures divided into two parts as follows:

• Physical Structure

• Logical Structure

2.6.1 PHYSICAL DATABASE STRUCTURE

An Oracle database consists of physical files shown as below figure.

Figure 6.6: Physhical Storage Structure

The files that constitute an Oracle Database are organized into the following:
A. Control Files: Contains data about the database itself. These files are critical

to database. Without it, cannot open data files to access data within the

database. It is used to synchronize all database activities.

B. Data Files: Contain the actual data for the database.

C. Redo Log Files: Contain a record of changes made to the database, and allow

recovery when a database failure occurs. If the database crashes and does

not lose any data files, then the instance can recover the database with the

information in these files.

 109

Other key files as noted above include:
 Parameter file: It used to define how the instance is configured when its start

up. There are two types of parameter files.

• The init.ora file (also called the PFILE): is a static parameter file. It

contains parameters that specify how the database instance is to start up.

For example, some parameters will specify how to allocate memory to the

various parts of the system global area.

• The spfile.ora: is a dynamic parameter file. It also stores parameters to

specify how to startup a database; however, its parameters can be
modified while the database is running.

 Password file: Specifies which special users are authenticated to startup/shut

down an Oracle Instance. Also allows user to connect remotely to the
database.

 Archived redo log files: Contain an ongoing history of the data change

generated by instance. We can say that, it is copy of the redo log files and are

necessary for recovery in an online, transaction-processing environment in the

event of a disk failure.
 Backup files: Are used for database recovery. Typically restore a backup files

when a media failure or user error has damaged or deleted the original file.
 Trace Files: Each server and background process can write to an associated

trace file. When an internal error is detected by a process, the process dumps

information about the error to its trace file. Some of the information written to

trace file is intended for the database administrator.
 Alert Log Files: There are special trace files. They are also known as alert

logs. The alert log of a database is a chronological log of messages and errors.

2.6.2 LOGICAL STRUCTURE
It is helpful to understand how an Oracle database is organized in terms of a logical

structure that is used to organize physical objects.

 110

Figure 6.7: Logical Storage Structure

 Tablespace: An Oracle 10g database must always consist of at least two

tablespaces (SYSTEM and SYSAUX), although a typical Oracle database will

multiple tablespaces tablespaces. A tablespace is a logical storage facility (a

logical container) for storing objects such as tables, indexes, sequences,

clusters, and other database objects.

Each tablespace has at least one physical datafile that actually stores the

tablespace at the operating system level. A large tablespace may have more

than one datafile allocated for storing objects assigned to that tablespace. A

tablespace belongs to only one database. Tablespace can be brought online
and taken offline for purposes of backup and management, except for the

SYSTEM tablespace that must always be online. Tablespaces can be in either

read-only or read-write status.
 Datafile: Tablespaces are stored in datafiles which are physical disk objects.

A datafile can only store objects for a single tablespace, but a tablespace may

have more than one datafile – this happens when a disk drive device fills up

and a tablespace needs to be expanded, then it is expanded to a new disk

drive. The DBA can change the size of a datafile to make it smaller or later.
The file can also grow in size dynamically as the tablespace grows.

 Segment: When logical storage objects are created within a tablespace, for

example, an employee table, a segment is allocated to the object. Obviously a

 111

tablespace typically has many segments. A segment cannot span tablespaces

but can span datafiles that belong to a single tablespace.

 Extent: Each object has one segment which is a physical collection of extents.

Extents are simply collections of contiguous disk storage blocks. A logical

storage object such as a table or index always consists of at least one extent –

ideally the initial extent allocated to an object will be large enough to store all

data that is initially loaded. As a table or index grows, additional extents are

added to the segment. A DBA can add extents to segments in order to tune
performance of the system. An extent cannot span a datafile.

 Data Block: The Oracle Server manages data at the smallest unit in what is

termed a block or data block. Data are actually stored in blocks.

Figure 6.8: Structure of Data Block

A physical block is the smallest addressable location on a disk drive for

read/write operations. An Oracle data block consists of one or more physical

blocks (operating system blocks) so the data block, if larger than an operating

system block, should be an even multiple of the operating system block size,
e.g., if the UNIX operating system block size is 2K or 4K, then the Oracle data

block should be 2K, 4K, 8K, 12K, 16K, etc in size. This optimizes I/O.

The data block size is set at the time the database is created and cannot be

changed. It is set with the DB_BLOCK_SIZE parameter. The maximum data

block size depends on the operating system.

 112

2.7 SCHEMA AND SCHEMA OBJECTS

A schema is a collection of database objects. A schema is owned by a database user

and has the same name as that user. A schema is a collection of schema objects.

Schema objects are logical data storage structures. Schema objects do not have a one-
to-one correspondence to physical files on disk that store their information. However,

Oracle stores a schema object logically within a tablespace of the database. The data of

each object is physically contained in one or more of the tablespace's datafiles. For

some objects such as tables, indexes, and clusters, you can specify how much disk

space Oracle allocates for the object within the tablespace's datafiles.

Different types of objects contained in a user's schema. It includes:

• Tables: Tables are the basic unit of data storage in an Oracle database. Data is

stored in rows and columns.
• Views:A view is a tailored presentation of the data contained in one or more tables.

A view takes the output of a query and treats it as a table; therefore, also known as

virtual table.
• Synonyms:A synonym is an alias for any table, view, snapshot, sequence,

procedure, function, or package. Because a synonym is simply an alias, it requires

no storage.
• Indexes:Indexes are optional structures associated with tables and clusters. It is

used to speed SQL statement execution on a table.
• Clusters: A cluster is a group of tables that share the same data blocks because

they share common columns and are often used together.
• Hash Clusters:A hash cluster stores related rows together in the same data blocks.

Rows in a hash cluster are stored together based on their hash value.

 Check Your Progress

1. List Components of Oracle Instance?

 113

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

2. Which Parameter is used to define size of SGA? Maximum size of SGA

Is?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
3. Which Background Process is Responsible for Instance Recovery?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
4. Explain Archived Redo Log File?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
5. Is there more than One Data files in a single Tablespace?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………

2.8 LET US SUM UP

In this chapter, we have discussed about oracle architecture and instance. We have

also explored memory structure of Oracle Database. We have come to know vital

processes, which is executes during database execution. We have also summarized
storage structures and supported files and architectures. After completion of this

chapter we came to know about schemas and various schema objects.

 114

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Oracle Instance consists of Two components namely Memory Structure and
Background Processes.

2. SGA_MAX_SIZE parameter of Initialization Parameter file is used to define size

of SGA. The size of the SGA cannot exceed the parameter SGA_MAX_SIZE

minus the combination of the size of the additional parameters,

DB_CACHE_SIZE, LOG_BUFFER, SHARED_POOL_SIZE,

LARGE_POOL_SIZE, and JAVA_POOL_SIZE.

3. System Monitor (SMON) is responsible for instance recovery by applying entries

in the online redo log files to the datafiles.
4. Archived Redo Log File is the copy of redo log files and necessary for recovery

in the event of disk failure.

5. Yes, A Large tablespace may have more than one datafiles.

2.10 ASSIGNMENTS

1. Explain SGA in detail.
2. What is Database Buffer Cache? Explain in detail with parameters.

3. Describe all Background Processes.

4. Explain Logical Database Storage Structures.

5. Define Schema and Schema Objects in detail.

2.11 FURTHER READING

1. Expert Oracle Database Architecture, Third Edition, Darl Kuhn & Thomas Kyte,

Apress

 Publishing.

2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

3. Advanced RDBMS Using Oracle, Himanshu Dabir & Dipali Mehar, Vision

Publication.

 115

Unit 3: Distributed Database
Architecture

Unit Structure

4.1. Learning Objectives & Outcomes

4.2. Introduction

4.3. Homogenous Distributed Database Systems

4.4. Heterogeneous Distributed Database Systems

4.5. Client/Server Database Architecture

4.6. Database Links

4.7. Distributed Database Security

4.8. Transaction Processing in a Distributed System

4.9. Distributed Database Application Development

4.10. Let Us Sum Up

4.11. Check your progress: Possible Answers

4.12. Assignments

4.13. Further Reading

3

 116

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is,
• To learn and understand Different Distributed Database Architectures

• To understand the Client/Server Database Architecture.

• To understand Database Links and Users.

• To learn security aspects into the Distributed Database Environment.

• To learn Distributed Database Application Development

Outcome:

At the end of this unit,
• Students will be completely aware with Homogenous and Heterogeneous

Distributed Architectures.

• Students will come to know about different types of Database Links and Restrictions

of Database Links.

• Students will be able to simplify the Remote Procedure Call (RPC) Mechanism.

• Students will be able to simplify Query Optimization in Distributed Environments.

3.2 INTRODUCTION

A distributed database system allows applications to access data from local and

remote databases. In a homogenous distributed database system, each database is

an Oracle Database. In a heterogeneous distributed database system, at least one of

the databases is not an Oracle Database. Distributed databases use

client/server architecture to process information requests. In this chapter will learn

different concepts as follows:

 Homogenous Distributed Database Systems

 Heterogeneous Distributed Database Systems

 Client/Server Database Architecture

 Database Links

https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007551�
https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007606�
https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007639�

 117

 Database Security Aspects

 Distributed Query Optimization

3.3 Homogenous Distributed Database Systems

A homogenous distributed database system is a network of two or more Oracle

Databases that reside on one or more systems. An application can simultaneously

access or modify the data in several databases in a single distributed environment.

You can also create synonyms for remote objects in the distributed system so that users

can access them with the same syntax as local objects. In this way, a distributed system

gives the appearance of native data access. Users on mfg do not have to know that the

data they access resides on remote databases.

Figure 7.1: Homogenous Distributed Database Systems

An Oracle Database distributed database system can incorporate Oracle Databases of
different versions. All supported releases of Oracle Database can participate in a

distributed database system. Nevertheless, the applications that work with the

distributed database must understand the functionality that is available at each node in

the system. A distributed database application cannot expect an Oracle7 database to

understand the SQL extensions that are only available with Oracle Database.

I. Distributed Databases Vs Distributed Processing

 118

The terms distributed database and distributed processing are closely related, yet have

distinct meanings. There definitions are as follows:

• Distributed database: A set of databases in a distributed system that can

appear to applications as a single data source.

• Distributed processing: the operation that occurs when an application

distributes its tasks among different computers in a network. For example, a

database application typically distributes front-end presentation tasks to client

computers and allows a back-end database server to manage shared access to
a database. Consequently, a distributed database application processing system

is more commonly referred to as a client/server database application system.

Distributed database systems employ a distributed processing architecture. For

example, an Oracle Database server acts as a client when it requests data that

another Oracle Database server manages.

3.4 Heterogeneous Distributed Database System

In a heterogeneous distributed database system, at least one of the databases is a non-

Oracle Database system. To the application, the heterogeneous distributed database
system appears as a single, local, Oracle Database. The local Oracle Database server

hides the distribution and heterogeneity of the data.

The Oracle Database server accesses the non-Oracle Database system using Oracle

Heterogeneous Services with an agent. If you access the non-Oracle Database data
store using an Oracle Transparent Gateway, then the agent is a system-specific

application. For example, if you include a Sybase database in an Oracle Database

distributed system, then you must obtain a Sybase-specific transparent gateway so that

the Oracle Database in the system can communicate with it.

 119

Alternatively, you can use generic connectivity to access non-Oracle Database data

stores so long as the non-Oracle Database system supports the ODBC or OLE DB

protocols.

A. Heterogeneous Services

Heterogeneous Services (HS) is an integrated component within the Oracle Database

server and the enabling technology for the current suite of Oracle Transparent Gateway

products. HS provides the common architecture and administration mechanisms for

Oracle Database gateway products and other heterogeneous access facilities. Also, it

provides upwardly compatible functionality for users of most of the earlier Oracle

Transparent Gateway releases.

B. Transparent Gateway Agents

For each non-Oracle Database system that you access, Heterogeneous Services can
use a transparent gateway agent to interface with the specified non-Oracle Database

system. The agent is specific to the non-Oracle Database system, so each type of

system requires a different agent.

The transparent gateway agent facilitates communication between Oracle Database
and non-Oracle Database systems and uses the Heterogeneous Services component in

the Oracle Database server. The agent executes SQL and transactional requests at the

non-Oracle Database system on behalf of the Oracle Database server.

C. Generic Connectivity

Generic connectivity enables you to connect to non-Oracle Database data stores by

using either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE

DB agent. Both are included with your Oracle product as a standard feature. Any data

source compatible with the ODBC or OLE DB standards can be accessed using a
generic connectivity agent.

 120

The advantage to generic connectivity is that it may not be required for you to

purchase and configure a separate system-specific agent. You use an ODBC or OLE

DB driver that can interface with the agent. However, some data access features are

only available with transparent gateway agents.

3.5 CLIENT/SERVER DATABASE ARCHITECTURE

A database server is the Oracle software managing a database, and a client is an
application that requests information from a server. Each computer in a network is a

node that can host one or more databases. Each node in a distributed database system

can act as a client, a server, or both, depending on the situation.

In Figure 7-2, the host for the hq database is acting as a database server when a

statement is issued against its local data (for example, the second statement in each

transaction issues a statement against the local dept table), but is acting as a client

when it issues a statement against remote data (for example, the first statement in each

transaction is issued against the remote table emp in the sales database).

Figure 7.2: An Oracle Database Distributed Database System

https://docs.oracle.com/html/E25494_01/ds_concepts001.htm#i1007648�

 121

A client can connect directly or indirectly to a database server. A direct connection

occurs when a client connects to a server and accesses information from a database

contained on that server.

3.6 DATABASE LINKS

The central concept in distributed database systems is a database link. A database link
is a connection between two physical database servers that allows a client to access

them as one logical database.

A database link is a pointer that defines a one-way communication path from an Oracle

Database server to another database server. The link pointer is actually defined as an

entry in a data dictionary table. To access the link, you must be connected to the local

database that contains the data dictionary entry.

A database link connection is one-way in the sense that a client connected to local

database A can use a link stored in database A to access information in remote

database B, but users connected to database B cannot use the same link to access

data in database A. If local users on database B want to access data on database A,

then they must define a link that is stored in the data dictionary of database B.

A database link connection allows local users to access data on a remote database. For

this connection to occur, each database in the distributed system must have a

unique global database name in the network domain. The global database name

uniquely identifies a database server in a distributed system.

Database links are either private or public. If they are private, then only the user who

created the link has access; if they are public, then all database users have access.

One principal difference among database links is the way that connections to a remote

database occur. Users access a remote database through the following types of links:

Type of Link Description

 122

Type of Link Description

Connected user link Users connect as themselves, which means that they must

have an account on the remote database with the same user

name and password as their account on the local database.

Fixed user link Users connect using the user name and password

referenced in the link.

Current user link A user connects as a global user. A local user can connect

as a global user in the context of a stored procedure, without

storing the global user's password in a link definition.

Create database links using the CREATE DATABASE LINK statement. After a link is
created, you can use it to specify schema objects in SQL statements.

3.6.1 SHARED DATABASE LINKS

A shared database link is a link between a local server process and the remote

database. The link is shared because multiple client processes can use the same link

simultaneously.

When a local database is connected to a remote database through a database link,

either database can run in dedicated or shared server mode. The following table

illustrates the possibilities:

Local Database Mode Remote Database Mode

Dedicated Dedicated

Dedicated Shared server

Shared server Dedicated

Shared server Shared server

 123

A shared database link can exist in any of these four configurations. Shared links differ
from standard database links in the following ways:

• Different users accessing the same schema object through a database link can

share a network connection.

• When a user must establish a connection to a remote server from a particular

server process, the process can reuse connections already established to the

remote server. The reuse of the connection can occur if the connection was

established on the same server process with the same database link, possibly in
a different session. In a non-shared database link, a connection is not shared

across multiple sessions.

• When you use a shared database link in a shared server configuration, a network

connection is established directly out of the shared server process in the local

server. For a non-shared database link on a local shared server, this connection

would have been established through the local dispatcher, requiring context

switches for the local dispatcher, and requiring data to go through the dispatcher.

The great advantage of database links is that they allow users to access another user's

objects in a remote database so that they are bounded by the privilege set of the object

owner. In other words, a local user can access a link to a remote database without

having to be a user on the remote database.

3.6.2. TYPES OF DATABASE LINKS

Oracle Database lets you create private, public, and global database links. These basic

link types differ according to which users are allowed access to the remote database:

Type Owner Description

Private User who created the link. View

ownership data through:

• DBA_DB_LINKS

Creates link in a specific schema of the

local database. Only the owner of a private

database link or PL/SQL subprograms in

 124

Type Owner Description

• ALL_DB_LINKS

• USER_DB_LINKS

the schema can use this link to access

database objects in the corresponding

remote database.

Public User called PUBLIC. View

ownership data through views

shown for private database links.

Creates a database-wide link. All users and

PL/SQL subprograms in the database can

use the link to access database objects in

the corresponding remote database.

Global User called PUBLIC. View

ownership data through views

shown for private database links.

Creates a network-wide link. When an

Oracle network uses a directory server, the

directory server automatically create and

manages global database links (as net

service names) for every Oracle Database

in the network. Users and PL/SQL
subprograms in any database can use a

global link to access objects in the

corresponding remote database.

Note: In earlier releases of Oracle

Database, a global database link referred

to a database link that was registered with

an Oracle Names server. The use of an

Oracle Names server has been
deprecated. In this document, global

database links refer to the use of net

service names from the directory server.

Determining the type of database links to employ in a distributed database depends on
the specific requirements of the applications using the system. Consider these features

when making your choice:

 125

Type of Link Features

Private database link This link is more secure than a public or global link, because

only the owner of the private link, or subprograms within the

same schema, can use the link to access the remote database.

Public database link When many users require an access path to a remote Oracle

Database, you can create a single public database link for all

users in a database.

Global database link When an Oracle network uses a directory server, an

administrator can conveniently manage global database links

for all databases in the system. Database link management is

centralized and simple.

3.6.3. USERS OF DATABASE LINKS

When creating the link, you determine which user should connect to the remote

database to access the data. The following table explains the differences among the
categories of users involved in database links:

User Type Description

Connected user A local user accessing a database link in which no fixed

username and password have been specified.

If SYSTEM accesses a public link in a query, then the connected
user is SYSTEM, and the database connects to

the SYSTEM schema in the remote database.

Note: A connected user does not have to be the user who

created the link, but is any user who is accessing the link.

Current user A global user in a CURRENT_USER database link. The global

user must be authenticated by an X.509 certificate (an SSL-

authenticated enterprise user) or a password (a password-

 126

User Type Description

authenticated enterprise user), and be a user on both databases

involved in the link. Current user links are an aspect of the Oracle

Advanced Security option.

See Oracle Database Advanced Security Administrator's

Guide for information about global security

Fixed user A user whose username/password is part of the link definition. If

a link includes a fixed user, the fixed user's username and

password are used to connect to the remote database.

3.6.4. DATABASE LINK RESTRICTIONS

You cannot perform the following operations using database links:

 Grant privileges on remote objects

 Execute DESCRIBE operations on some remote objects. The following remote

objects, however, do support DESCRIBE operations:
• Tables

• Views

• Procedures

• Functions

 Analyze remote objects

 Define or enforce referential integrity

 Grant roles to users in a remote database

 Obtain non-default roles on a remote database.
 Execute hash query joins that use shared server connections

3.7 DISTRIBUTED DATABASE SECURITY

The database supports all of the security features that are available with a non-
distributed database environment for distributed database systems, including:

 127

• Password authentication for users and roles

• Some types of external authentication for users and roles including Kerberos

version 5 for connected user links.

• Login packet encryption for client-to-server and server-to-server connections

Some important concepts to consider when configuring an Oracle Database distributed

database system:

• Authentication Through Database Links

• Authentication Without Passwords

• Supporting User Accounts and Roles

• Centralized User and Privilege Management

• Database Encryption

A. Authentication Through Database Links

Database links are either private or public, authenticated or non-authenticated. You
create public links by specifying the PUBLIC keyword in the link creation statement.

You create authenticated links by specifying the CONNECT

TO clause, AUTHENTICATED BY

B. Authentication Without Passwords

 clause, or both clauses together in the database link

creation statement. For example, you can issue:

When using a connected user or current user database link, you can use an external

authentication source such as Kerberos to obtain end-to-end security

C. Supporting User Accounts and Roles

. In end-to-end
authentication, credentials are passed from server to server and can be authenticated

by a database server belonging to the same domain.

In a distributed database system, you must carefully plan the user accounts and roles
that are necessary to support applications using the system. Note that:

https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008338�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008383�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008387�
https://docs.oracle.com/html/E25494_01/ds_concepts003.htm#i1008405�

 128

• The user accounts necessary to establish server-to-server connections must be

available in all databases of the distributed database system.

• The roles necessary to make available application privileges to distributed

database application users must be present in all databases of the distributed
database system.

As you create the database links for the nodes in a distributed database system,

determine which user accounts and roles each site must support server-to-server

connections that use the links.

In a distributed environment, users typically require access to many network services.

When you must configure separate authentications for each user to access each

network service, security administration can become unwieldy, especially for large

systems.

D. Centralized User and Privilege Management

The database provides different ways for you to manage the users and privileges
involved in a distributed system. For example, you have these options:

• Enterprise user management: You can create global users who are

authenticated through SSL or by using passwords, then manage these users and

their privileges in a directory through an independent enterprise directory service.
• Network authentication service: This common technique simplifies security

management for distributed environments. You can use the Oracle Advanced

Security option to enhance Oracle Net and the security of an Oracle Database

distributed database system. Windows NT native authentication is an example of

a non-Oracle authentication solution.

E. Database Encryption

The Oracle Advanced Security option also enables Oracle Net and related products to
use network data encryption and check-summing so that data cannot be read or altered.

 129

It protects data from unauthorized viewing by using the RSA Data Security RC4 or the

Data Encryption Standard (DES) encryption algorithm.

To ensure that data has not been modified, deleted, or replayed during transmission,

the security services of the Oracle Advanced Security option can generate a

cryptographically secure message digest and include it with each packet sent across

the network.

3.8 TRANSACTION PROCESSING IN A DISTRIBUTED
SYSTEM

A transaction is a logical unit of work constituted by one or more SQL statements

executed by a single user. A transaction begins with the user's first executable SQL

statement and ends when it is committed or rolled back by that user.

A remote transaction contains only statements that access a single remote node.

A distributed transaction contains statements that access multiple nodes.

The following sections define important concepts in transaction processing and explain

how transactions access data in a distributed database:

• Remote SQL Statements
• Distributed SQL Statements

• Shared SQL for Remote and Distributed Statements

• Remote Transactions

• Distributed Transactions

• Two-Phase Commit Mechanism

• Database Link Name Resolution

• Schema Object Name Resolution

https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008641�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008661�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008684�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008698�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008710�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008726�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008747�
https://docs.oracle.com/html/E25494_01/ds_concepts004.htm#i1008848�

 130

A. Remote SQL Statements

A remote query statement is a query that selects information from one or more remote
tables, all of which reside at the same remote node. A remote update

B. Distributed SQL Statements

 statement is an

update that modifies data in one or more tables, all of which are located at the same

remote node.

A distributed query statement retrieves information from two or more nodes.

A distributed update

C. Shared SQL for Remote and Distributed Statements

 statement modifies data on two or more nodes. A distributed
update is possible using a PL/SQL subprogram unit such as a procedure or trigger that

includes two or more remote updates that access data on different nodes.

The mechanics of a remote or distributed statement using shared SQL are essentially
the same as those of a local statement. The SQL text must match, and the referenced

objects must match. If available, shared SQL areas can be used for the local and

remote handling of any statement or decomposed query.

D. Remote Transactions

A remote transaction contains one or more remote statements, all of which reference a
single remote node.

E. Distributed Transactions

A distributed transaction is a transaction that includes one or more statements that,
individually or as a group, update data on two or more distinct nodes of a distributed

database.

 131

F. Two-Phase Commit Mechanism

A database must guarantee that all statements in a transaction, distributed or non-
distributed, either commit or roll back as a unit. The effects of an ongoing transaction

should be invisible to all other transactions at all nodes; this transparency should be true

for transactions that include any type of operation, including queries, updates, or remote

procedure calls.

The general mechanisms of transaction control in a non-distributed database are

discussed in the Oracle Database Concepts Concepts

The database

. In a distributed database, the

database must coordinate transaction control with the same characteristics over a

network and maintain data consistency, even if a network or system failure occurs.

two-phase commit mechanism guarantees that all

G. Database Link Name Resolution

 database servers

participating in a distributed transaction either all commit or all roll back the statements

in the transaction. A two-phase commit mechanism also protects implicit DML

operations performed by integrity constraints, remote procedure calls, and triggers.

A global object name

• Object name

 is an object specified using a database link. The essential
components of a global object name are:

• Database name

• Domain

Whenever a SQL statement includes a reference to a global object name, the database

searches for a database link with a name that matches the database name specified in

the global object name.

The database performs this operation to determine the path to the specified remote

database.

 132

The database always searches for matching database links in the following order:

1. Private database links in the schema of the user who issued the SQL statement.

2. Public database links in the local database.

3. Global database links (only if a directory server is available).

H. Schema Object Name Resolution

After the local Oracle Database connects to the specified remote database on behalf of

the local user that issued the SQL statement, object resolution continues as if the

remote user had issued the associated SQL statement. The first match determines the
remote schema according to the following rules:

Type of Link Specified Location of Object Resolution

A fixed user database link Schema specified in the link creation statement

A connected user database link Connected user's remote schema

A current user database link Current user's schema

If the database cannot find the object, then it checks public objects of the remote

database. If it cannot resolve the object, then the established remote session remains

but the SQL statement cannot execute and returns an error.

3.9 DISTRIBUTED DATABASE APPLICATION
DEVELOPMENT

Application development in a distributed system raises issues that are not applicable in

a non-distributed system. This section contains the following topics relevant for

distributed application development:

• Transparency in a Distributed Database System

• Remote Procedure Calls (RPCs)

https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009082�
https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009129�

 133

• Distributed Query Optimization

3.9.1 TRANSPARENCY IN A DISTRIBUTED DATABASE SYSTEM

With minimal effort, you can develop applications that make an Oracle Database

distributed database system transparent to users that work with the system. The goal of

transparency is to make a distributed database system appear as though it is a single

Oracle Database. Consequently, the system does not burden developers and users of

the system with complexities that would otherwise make distributed database
application development challenging and detract from user productivity.

The following sections explain more about transparency in a distributed database

system.

A. Location Transparency: An Oracle Database distributed database system has

features that allow application developers and administrators to hide the physical

location of database objects from applications and users. Location

transparency exists when a user can universally refer to a database object such

as a table, regardless of the node to which an application connects. Location
transparency has several benefits, including:

• Access to remote data is simple, because database users do not need to

know the physical location of database objects.

• Administrators can move database objects with no impact on end-users or
existing database applications.

Typically, administrators and developers use synonyms to establish location

transparency for the tables and supporting objects in an application schema.

B. SQL and COMMIT Transparency: The Oracle Database distributed database

architecture also provides query, update, and transaction transparency. For

example, standard SQL statements such as SELECT, INSERT, UPDATE,

and DELETE work just as they do in a non-distributed database environment.

https://docs.oracle.com/html/E25494_01/ds_concepts005.htm#i1009144�

 134

Additionally, applications control transactions using the standard SQL

statements COMMIT, SAVEPOINT, and ROLLBACK.

C. Replication Transparency: The database also provide many features to

transparently replicate data among the nodes of the system. For more

information about Oracle Database replication features, see Oracle Database

Advanced Replication.

3.9.2. REMOTE PROCEDURE CALLS (RPCS)

Developers can code PL/SQL packages and procedures to support applications that

work with a distributed database. Applications can make local procedure calls to

perform work at the local database and remote procedure calls (RPCs) to perform work

at a remote database.

When a program calls a remote procedure, the local server passes all procedure

parameters to the remote server in the call.

In order for the RPC to succeed, the called procedure must exist at the remote site, and
the user being connected to must have the proper privileges to execute the procedure.

When developing packages and procedures for distributed database systems,

developers must code with an understanding of what program units should do at

remote locations, and how to return the results to a calling application.

3.9.3 DISTRIBUTED QUERY OPTIMIZATION

Distributed query optimization is an Oracle Database feature that reduces the amount of

data transfer required between sites when a transaction retrieves data from remote

tables referenced in a distributed SQL statement.

Distributed query optimization uses cost-based optimization to find or generate SQL

expressions that extract only the necessary data from remote tables, process that data

 135

at a remote site or sometimes at the local site, and send the results to the local site for

final processing. This operation reduces the amount of required data transfer when

compared to the time it takes to transfer all the table data to the local site for

processing.

Using various cost-based optimizer hints such as DRIVING_SITE, NO_MERGE, and

INDEX, you can control where Oracle Database processes the data and how it

accesses the data.

 Check Your Progress

6. Define Distributed Database and Distributed Processing?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

7. What is Generic Connectivity in Heterogeneous Distributed Database?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
8. What is Database Links? Explain different types of Database Links.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
9. Explain Distributed Query Optimization.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

 136

3.10LET US SUM UP

In this chapter, we have discussed about oracle architecture and instance. We have

also explored memory structure of Oracle Database. We have come to know vital

processes, which is executes during database execution. We have also summarized

storage structures and supported files and architectures. After completion of this

chapter we came to know about schemas and various schema objects.

3.11CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Distributed database is a set of databases in a distributed system that can

appear to applications as a single data source. While distributed processing is

the operation that occurs when an application distributes its tasks among different

computers in a network.

2. Generic connectivity enables you to connect to non-Oracle Database data stores

by using either a Heterogeneous Services ODBC agent or a Heterogeneous

Services OLE DB agent. The advantage to generic connectivity is that it may not

be required for you to purchase and configure a separate system-specific agent.
You use an ODBC or OLE DB driver that can interface with the agent.

3. A database link is a connection between two physical database servers that

allows a client to access them as one logical database. These basic link types

differ according to which users are allowed access to the remote database:

Type Description

Private Creates link in a specific schema of the local database. Only the

owner of a private database link or PL/SQL subprograms in the

schema can use this link to access database objects in the

corresponding remote database.

Public Creates a database-wide link. All users and PL/SQL subprograms

in the database can use the link to access database objects in the

 137

Type Description

corresponding remote database.

Global Creates a network-wide link. When an Oracle network uses a

directory server, the directory server automatically create and

manages global database links (as net service names) for every

Oracle Database in the network. Users and PL/SQL subprograms in

any database can use a global link to access objects in the

corresponding remote database.

4. Distributed query optimization is an Oracle Database feature that reduces the

amount of data transfer required between sites when a transaction retrieves data

from remote tables referenced in a distributed SQL statement.

3.12ASSIGNMENTS

1. Explain Homogenous and Heterogeneous Distributed Database.
2. Explain Transaction Processing in Distributed Database.

3. Describe Security Aspects in Distributed Database.

4. What is Database Links? Describe different users of Database Links in details.

3.13 Further Reading

1. Expert Oracle Database Architecture, Third Edition, Darl Kuhn & Thomas Kyte,

Apress Publishing.

2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

 138

Unit 4: Database Backup

Unit Structure

4.1. Learning Objectives & Outcomes

4.2. Introduction

4.3. Logical Database Backup

4.4. Physical Database Backup

4.5. Let Us Sum Up

4.6. Check your progress: Possible Answers

4.7. Assignments

4.8. Further Reading

4

 139

4.1 LEARNING OBJECTIVES & OUTCOMES

 The objective of this chapter is to make the students,

• To understand Types of Oracle Backups

• To understand the Logical Backup Plan (Export/Import)

• To understand the Physical Backup & Recovery

Outcome:

At the end of this unit,

• Students will be completely aware with Logical and Physical Backup Strategies of

Oracle database.

• Students will able to Perform Export/Import with its different parameter.

• Students will be aware with different mode of Online and Offline Backup.

• Students will be aware with how to make database ready for physical database

backup.

4.2 INTRODUCTION

A backup is a representative copy of data. This copy can include important parts of a
database such as the control file, redo logs, and datafiles. A backup protects data from

application error and acts as a safeguard against unexpected data loss, by providing a

way to restore original data.

Backups are divided into physical backups and logical backups. Physical backups are

copies of physical database files. The phrase "backup and recovery" usually refers to

the transfer of copied files from one location to another, along with the various

operations performed on these files.

In contrast, logical backups contain data that is exported using SQL commands and

stored in a binary file. Oracle records both committed and uncommitted changes in redo

log buffers. Logical backups are used to supplement physical backups.

 140

Restoring a physical backup means reconstructing it and making it available to the

Oracle server. To recover a restored backup, data is updated using redo records from

the transaction log. The transaction log records changes made to the database after the

backup was taken.

1. Multiplex the online redo logs

Elements of a Backup And Recovery Strategy

Although backup and recovery operations can be intricate and vary from one business

to another, the basic principles follow these four simple steps:

2. Run the database in ARCHIVELOG mode and archive redo logs to multiple

locations
3. Maintain multiple concurrent backups of the control file

4. Take frequent backups of physical datafiles and store them in a safe place,

making multiple copies if possible

As long as users have backups of the database and archive redo logs in safe storage,

the original database can be recreated.

4.3 LOGICAL DATABASE BACKUP

Oracle utility Import/Export are used to perform Logical Database Operation, which

allow us to make exports & imports of the data objects, and transfer the data across

databases that reside on different hardware platforms on different Oracle
versions.Export (exp) and import (imp) utilities are used to perform logical database

backup and recovery. When exporting, database objects are dumped to a binary file

which can then be imported into another Oracle database.

From Oracle 10g, users can choose between using the old imp/exp utilities, or the newly

introduced Data pump utilities, called expdp and impdp. These new utilities introduce

much needed performance improvements, network based exports and imports, etc.

http://www.orafaq.com/wiki/Oracle_10g�

 141

Various parameters are available to control what objects are exported or imported. To

get a list of available parameters, run the exp or imp utilities with

the help=yes parameter.

The export/import utilities are commonly used to perform the following tasks:

• Backup and recovery (small databases only)

• Move data between Oracle databases on different platforms.

• Reorganization of data/ eliminate database fragmentation (export, drop and re-

import tables)

• Upgrade databases from extremely old versions of Oracle

• Detect database corruption. Ensure that all the data can be read

• Transporting tablespaces between databases

A. Different Modes of Export/Import Utility

1. Full Export: The EXP_FULL_DATABASE and IMP_FULL_DATABASE,

respectively, are needed to perform a full export. Use the full export parameter

for a full export.
2. Tablespace: Use the tablespaces export parameter for a tablespace export.

3. User: This mode can be used to export and import all objects that belong to a

user. Use the owner export parameter and the fromuser import parameter for a

user (owner) export-import.
4. Table: Specific tables (and partitions) can be exported/imported with table export

mode. Use the tables export parameter for a table export.

4.3.1 EXPORT UTILITY
This utility can be used to transfer data objects between oracle databases. The objects

and the data in Oracle database can be moved to other Oracle database running even

on a different hardware and software configurations.

http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#exp_full_database�
http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#imp_full_database�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_full#exp_full�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_tablespaces#exp_tablespaces�
http://www.adp-gmbh.ch/ora/admin/objects.html�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_owner#exp_owner�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#exp_tables#exp_tables�
javascript:void(0)�
javascript:void(0)�
javascript:void(0)�

 142

The export utility copies database definitions and actual data into an operating system

file (export file). The export file is an Oracle binary-format dump file (with .dmp), which is

normally created on disk or tape. Before exporting we must ensure that there is enough

space available on the disk or tape used.

Exported dump files can be read only by using the Import utility of Oracle. We cannot

use earlier versions of import utility for importing the data exported using current

version.

EXP command can be used to invoke export utility interactively without any parameters.

Parameters also can be specified in a file called parameter file. We can use more than

one parameter file at a time with exp command.

General Parameters are used with exp command are as:

• Full: Use this parameter to specify full export mode.

• Tablespaces: Use this parameter to specify tablespace export mode.

• Owner: Use this parameter to specify user export mode.

• Tables: Use this parameter to specify table export mode.

• Query: Restricts the exported rows by means of a where clause. The query

parameter can only be used for table export mode. For obvious reasons, it must

be appliable to all exported tables.
• Parfile: Specifies a parfile. Parameter file is a simple text files creating using any

text editor.

There are basically 3 types of exports like Full, Owner, and Table. Full export exports

all the objects, structures and data within the database for all schemas. Owner export
exports only the objects owned by specific user account. Table export exports only

tables owned by a specific user account.

To export a table we can run EXP utility either interactively or by putting all the

parameters for the export on the command line. In interactive mode just type EXP

http://www.adp-gmbh.ch/ora/admin/imp_exp.html#full_export_mode#full_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#tablespace_export_mode#tablespace_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#user_export_mode#user_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#table_export_mode#table_export_mode�
http://www.adp-gmbh.ch/ora/admin/imp_exp.html#table_export_mode#table_export_mode�

 143

before the command prompt and answer the questions when prompted, otherwise the

parameters can be typed on the command line as shown below.

Examples:

1. We want to export EMP table from scott/tiger (username and password

respectively) users and exported data will be stored into dump file namely emp as a

command line parameter.

2. We want to export EMP table from scott/tiger (username and password
respectively) users and exported data will be stored into dump file namely emp in

interactive mode.

EXP scott/tiger file=emp.dmp tables=(EMP)

Figure 8.1: Exporting single table in interactively mode.

 144

3. We want to export emp table with deptno=10 in non-interactive mode.

Figure 8.2: Exporting conditional rows in non-interactively mode.

4.3.2 IMPORT UTILITY

IMP command can be used to invoke import utility interactively without any parameters.

Import utility is used to extract objects from export dump file created using export utility.

We can use more than one parameter file at a time with exp command. Various

parameters of Import Utility are described as follow:

 145

• FFER:The integer specified for BUFFER

• COMMIT:Specifies whether Import should commit after each array insert. By
default, Import commits only after loading each table, and Import performs a
rollback when an error occurs, before continuing with the next object.

 is the size, in bytes, of the buffer
through which data rows are transferred.

• CONSTRAINTS: Specifies whether or not table constraints are to be imported.
The default is to import constraints. If you do not want constraints to be
imported, you must set the parameter value to

• FILE:Specifies the names of the export files to import. The default extension is
.

n.

dmp

• FROMUSER:The parameter enables you to import a subset of schemas from
an export file containing multiple schemas.

, because Export supports multiple export files, you may need to specify
multiple filenames to be imported.

• FULL: Specifies whether to import the entire export dump file.

• GRANTS:Specifies whether to import object grants.

• PARFILE:Specifies a filename for a file that contains a list of Import
parameters. For more information about using a parameter file, see Parameter
Files.

• ROWS:Specifies whether or not to import the rows of table data.

• TABLES:Specifies that the import is a table-mode import and lists the table
names and partition and sub partition names to import. Table-mode import
lets you import entire partitioned or non-partitioned tables.

• TOUSER: Specifies a list of user names whose schemas will be targets for
Import. The user names must exist prior to the import operation; otherwise an
error is returned. The IMP_FULL_DATABASE role is required to use this
parameter. To import to a different schema than the one that originally
contained the object, specify

• USERID: Specifies the

TOUSER.

username/password

 (and optional connect string) of
the user performing the import.

http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�
http://download.oracle.com/docs/cd/B19306_01/server.102/b14215/exp_imp.htm#i1021490#i1021490�

 146

Figure 8.3: Example of Import Utility in Interactive mode.

It is possible to import dump created using an earlier (version 8.1.7 utility) version can

be imported using the later version utility (Version 9.0.1 utility). We should not use later

version utilities to export data from earlier database versions. But an earlier utility can

be used to export later versions of database. For example you can export data from

Oracle9i using 8.1.7 utility and can import that exported file into oracle 8i database

using import utility 8.1.7.

4.4 PHYSICAL DATABASE BACKUP

4.4.1 BACKUP
Backups can be combined in a variety of ways. For example, we can take weekly whole

database backups, to ensure a relatively current copy of original database information,

but take daily backups of the most accessed tablespaces. The DBA can also multiplex
the all important control file and archived redo log as an additional safeguard.
A. Online Database Backup: An online backup or also known as an open backup is a

backup in which all read-write datafiles and control files have not been check

pointed with respect to the same SCN. If the database must be up and running 24

hours a day, 7 days a week, then you have no choice but to perform online backups

of a whole database which is in ARCHIVELOG mode.

 147

B. Offline Database Backup

: In this backup, all datafiles and control files are

consistent to the same point in time - consistent with respect to the same SCN. This

type of backup allows the user to open the set of files created by the backup without
applying redo logs, since the data is already consistent. The only way to perform

this type of backup is to shut down the database cleanly and make the backup while

the database is closed. A consistent whole database backup is the only valid

backup option for databases running in NOARCHIVELOG mode.

Whole Database Backup: The most common type of backup, a whole database

backup contains the control file along with all database files that belong to a

database. If operating in ARCHIVELOG mode, the DBA also has the option of
backing up different parts of the database over a period of time, thereby

constructing a whole database backup piece by piece.

Tablespace Backups: A tablespace backup is a subset of the database.

Tablespace backups are only valid if the database is operating in ARCHIVELOG

mode. The only time a tablespace backup is valid for a database running in

NOARCHIVELOG mode is when that tablespace is read-only or offline-normal.

Datafile Backups: A datafile backup is a backup of a single datafile. Datafile

backups, which are not as common as tablespace backups and are only valid if the

database is run in ARCHIVELOG mode. The only time a datafile backup is valid for

a database running in NOARCHIVELOG mode is if that datafile is the only file in a

tablespace.

Control File Backups: A control file backup is a backup of a database's control file.

If a database is open, the user can create a valid backup by issuing the following
SQL statement: ALTER DATABASE BACKUP CONTROLFILE to 'location'; or use

Recovery Manager (RMAN).

 148

Archived Redo Log Backups: Archived redo logs are the key to successful media

recovery. Depending on the disk space available and the number of transactions

executed on the database, you want to keep as many days of archive logs on disk

and you want to back them up regularly to ensure a more complete recovery.

Configuration Files:

There are basically two types of Backup we can take for Oracle Database.

Configuration files may consist of spfile or init.ora, password

file, tnsnames.ora, and sqlnet.ora. Since these files do not change often, then they

require a less frequent backup schedule. If you lost a configuration file it can be

easily recreated manually. When restore time is a premium, it will be faster to

restore a backup of the configuration file then manually creating a file with a specific

format.

4.4.1.1 Types of Backup

I.

When database is DOWN, no activity running on database, no one accessing the

database, that time taken database backup called OFFLINE BACKUP. It is also known
as offline or consistent database backup.

OFFLINE Backup

Database doesn't require ARCHIVELOG

mode for COLD backup.

II.

 To take offline backup we must need to SHUTDOWN Oracle

Database and stop Database service.

When database is open, user accessing the database that time we taken backup is

called online, hot or inconsistent backup.

ONLINE Backup

Database must require ARCHIVELOG mode
for HOT backup.

 149

Making User-Managed Backups of Online Tablespaces and Datafiles

You can back up all or only specific datafiles of an online tablespace while the database

is open. The procedure differs depending on whether the online tablespace is read/write

or read-only. You should not back up temporary tablespaces.

Making User-Managed Backups of Online Read/Write Tablespaces

You must put a read/write tablespace in backup mode to make user-managed datafile

backups when the tablespace is online and the database is open. The
ALTERTABLESPACE ... BEGINBACKUP statement places a tablespace in backup

mode. In backup mode, the database copies whole changed data blocks into the redo

stream. After you take the tablespace out of backup mode with the
ALTERTABLESPACE...ENDBACKUP or ALTERDATABASEENDBACKUP

When restoring a datafile backed up in this way, the database asks for the appropriate

set of redo log files to apply if recovery be needed. The redo logs contain all changes

required to recover the datafiles and make them consistent.

statement, the database advances the datafile header to the current database

checkpoint.

1. Before beginning a backup of a tablespace, identify all of the datafiles in the

tablespace with the

To back up online read/write tablespaces in an open database:

DBA_DATA_FILES

2. Mark the beginning of the online tablespace backup. For example, the following

statement marks the start of an online backup for the tablespace

 data dictionary view.

users
ALTER TABLESPACE users BEGIN BACKUP;

:

3. Back up the online datafiles of the online tablespace with operating system

commands.
4. After backing up the datafiles of the online tablespace, run the SQL statement

ALTERTABLESPACE with the ENDBACKUP
ALTER TABLESPACE users END BACKUP;

 option.

 150

5. Archive the un-archived redo logs so that the redo required to recover the

tablespace backup is archived.
ALTER SYSTEM ARCHIVE LOG CURRENT;

Making User-Managed Backups of the Control File

Back up the control file of a database after making a structural modification to a

database operating in ARCHIVELOG mode. To back up a database's control file, you

must have the ALTERDATABASE

Backing Up the Control File to a Binary File

 system privilege.

The primary method for backing up the control file is to use a SQL statement to

generate a binary file. A binary backup is preferable to a trace file backup because it
contains additional information such as the archived log history, offline range for read-

only and offline tablespaces, and backup sets and copies (if you use RMAN). Note that

binary control file backups do not include tempfile entries.

• Back up the database's control file, specifying a filename for the output binary file.

To back up the control file after a structural change:

ALTER DATABASE BACKUP CONTROLFILE TO '/disk1/backup/cf.bak' REUSE;
Specify the REUSE

Making User-Managed Backups of Archived Redo Logs

 option to make the new control file overwrite one that currently

exists.

To save disk space in your primary archiving location, you may want to back up

archived logs to tape or to an alternative disk location. If you archive to multiple

locations, then only back up one copy of each log sequence number.

4.4.2 RECOVERY

Basic recovery involves two parts: restoring a physical backup and then updating it with

the changes made to the database since the last backup. The most important aspect of

 151

recovery is making sure all data files are consistent with respect to the same point in

time. Oracle has integrity checks that prevent the user from opening the database until

all data files are consistent with one another.

A.

In every type of recovery, Oracle sequentially applies redo data to data blocks. Oracle

uses information in the control file and datafile headers to ascertain whether recovery is

necessary. Recovery has two parts: rolling forward and rolling back. When Oracle rolls

forward, it applies redo records to the corresponding data blocks. Oracle systematically

goes through the redo log to determine which changes it needs to apply to which

blocks, and then changes the blocks. For example, if a user adds a row to a table, but
the server crashes before it can save the change to disk, Oracle can use the redo

record for this transaction to update the data block to reflect the new row.

Once Oracle has completed the rolling forward stage, the Oracle database can be

opened. The rollback phase begins after the database is open. The rollback information

is stored in transaction tables. Oracle searches through the table for uncommitted

transactions, undoing any that it finds. For example, if the user never committed the

SQL statement that added the row, then Oracle will discover this fact in a transaction
table and undo the change.

RECOVERY PROCESS

• Responding to the Loss of a Subset of the Current Control Files

Use the following procedures to recover a database if a permanent media failure has

damaged one or more control files of a database and at least one current control file

has not

 been damaged by the media failure.

• Copying a Multiplexed Control File to a Default Location

If the disk and file system containing the lost control file are intact, then you can simply
copy one of the intact control files to the location of the missing control file. In this case,

you do not have to edit the CONTROL_FILES

 initialization parameter.

 152

• To replace a damaged control file by copying a multiplexed control file:

If the instance is still running, then shut it down:
SQL> SHUTDOWN ABORT

Correct the hardware problem that caused the media failure. If you cannot repair the

hardware problem quickly, then proceed with database recovery by restoring damaged

control files to an alternative storage device.

Use an intact multiplexed copy of the database's current control file to copy over the

damaged control files.

Start a new instance and mount and open the database.
SQL> STARTUP

• Determining Which Datafiles Require Recovery

You can use the dynamic performance view V$RECOVER_FILE

The following query displays the file ID numbers of datafiles that require media recovery

as well as the reason for recovery (if known) and the SCN and time when recovery

needs to begin:

 to determine which

files to restore in preparation for media recovery. This view lists all files that need to be

recovered, and explains why they need to be recovered.

SELECT * FROM V$RECOVER_FILE;

Query V$DATAFILE and V$TABLESPACE to obtain filenames and tablespace names

for datafiles requiring recovery.

 153

• Restoring Datafiles

If a media failure permanently damages one or more datafiles of a database, then you

must restore backups of these datafiles before you can recover the damaged files. If

you cannot restore a damaged datafile to its original location (for example, you must

replace a disk, so you restore the files to an alternate disk), then you must indicate the
new locations of these files to the control file.

If you are restoring an Oracle file on a raw disk or partition, then the procedure is

basically the same as when restoring to a file on a file system. However, you must be

aware of the naming conventions for files on raw devices (which differ depending on the

operating system), and use an operating system utility that supports raw devices.

1. Determine which datafiles to recover by using the techniques described in

To restore backup datafiles to their default location:

"Determining Which Datafiles Require Recovery".

2. If the database is open, then take the tablespaces containing the inaccessible

datafiles offline.
ALTER TABLESPACE users OFFLINE IMMEDIATE;

3. Copy backups of the damaged datafiles to their default location using operating

system commands.

4. Recover the affected tablespace. For example, enter:
RECOVER TABLESPACE users

5. Bring the recovered tablespace online. For example, enter:
ALTER TABLESPACE users ONLINE;

http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�
http://download-uk.oracle.com/docs/cd/B10501_01/server.920/a96572/osrestore.htm#26852�

 154

Recovering After the Loss of Archived Redo Log Files:

If the database is operating in ARCHIVELOG

 mode, and if the only copy of an archived

redo log file is damaged, then the damaged file does not affect the present operation of

the database. The following situations can arise, however, depending on when the redo
log was written and when you backed up the datafile.

 Check Your Progress

10. Describe Basic Principles for Backup Strategy?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

11. Which role has to grant for Full Database Export/Import?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
12. Which Parameter of Import Utility is used to Prevent rollback when error

occurs ?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
13. What do you mean by Inconsistent Backup?

……………………………………………………………………………………………

……………………………………………………………………………………………
 ……………………………………………………………………………………………
14. How to find File names and Tablespace names for datafile requiring

recovery?

……………………………………………………………………………………………

 155

……………………………………………………………………………………………

 ……………………………………………………………………………………………

4.5 LET US SUM UP

In this chapter, we have discussed about different types or Database Backup

Strategies like Logical Backup and Physical Backup. In which conditions we have to
perform logical backup. We have also learnt different parameters for Import/Export

utility of Oracle. Also we have different types of physical backup like hot and cold

backup and try to describe all the possible aspects of both types of physical backups

and recovery strategies.

4.6 CHECK YOUR PROGRESS: POSSIBLEANSWERS

1. Basic principles follow these four simple steps:

• Multiplex the online redo logs

• Run the database in ARCHIVELOG mode and archive redo logs to multiple

locations

• Maintain multiple concurrent backups of the control file

• Take frequent backups of physical datafiles and store them in a safe place,

making multiple copies if possible

2. The EXP_FULL_DATABASE and IMP_FULL_DATABASE, respectively, are

needed to perform a full export.

3. COMMIT specifies whether Import should commit after successfully execution of

Import.

4. Inconsistent Backup means a backup taken when database is open and

database must require ARCHIVELOG mode for it. It is also known as HOT
Backup.

5. V$DATAFILE and V$TABLESPACE data dictionary is used to obtain filenames

and tablespace names for datafiles requiring recovery

http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#exp_full_database�
http://www.adp-gmbh.ch/ora/misc/users_roles_privs.html#imp_full_database�

 156

4.7 ASSIGNMENTS

1. Explain Different Command line Parameters for EXPORT with example.

2. Explain Different Command line Parameters for IMPORT with example.

3. Define Online Backup? How can we Backup Read/Write Tablespace?

4. Explain Recovery Process in detail.

4.8 Further Reading

1. Oracle Database 11g : Backup and Recovery User’s Guide , Lance Ashdown,

Oracle Press.
2. Oracle Database 10g The Complete Reference, Kevin Loney, Oracle Press.

 157

 Block-3

Oracle Server and SQL

 158

Unit 1: Structured Query
Language

Unit Structure

1.1. Learning Objectives & Outcomes

1.2. Introduction

1.3. Basic Data Types of SQL

1.4. SQL Statements

1.5. Data Definition Statements

1.6. Constraints

1.7. Data Manipulation Statements

1.8. SQL Operators

1.9. Oracle Built-in Functions

1.10. SQL Joins

1.11. Sub Queries

1.12. Sub Views

1.13. SQL Indexes

1.14. SQL Sequence

1.15. Let Us Sum Up

1.16. Check your progress: Possible Answers

1.17. Assignments

1.18. Further Reading

1

 159

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To understand SQL and its Process Architecture

• To learn various types of SQL Statements

• To understand SQL Operators & Functions.

• To learn Joins and Sub Queries in SQL.

• To Understand Views, Index and Sequence.

Outcome:

At the end of this unit,
• Students will be completely aware with Architecture of SQL.

• Students will come to know the SQL statements in detail.

• Students will be able to write queries to retrieve data from tables as per organization

 requirements.

• Students will be able to create different SQL objects like Tables, Views, Indexes etc.

1.2 INTRODUCTION

SQL is an ANSI standard computer language, which is used for storing, manipulating

and retrieving data stored in relational database. SQL is the standard language for

Relational Database System.

SQL Process
When executing an SQL commands, system first determines the best way to carry

out SQL query request and SQL engine figure out how to interpret the task. There are

various components included in the process which is known as Query Dispatcher,

Optimization Engines, Classic Query Engine and SQL Query Engine etc.

 160

Above figure shows that when SQL Query will fire first Query Language Process

parses and optimize SQL query and pass the optimized version into the Database

engine.

1.3 BASIC DATA TYPES OF SQL

Oracle Database provides following basic data types for attributes defined with

CREATE TABLE clause of database.

Data Types Description

Char (N) Fixed Length Character Data. Maximum
size is 2000 bytes. Default or Minimum

Size 1 Byte.

Varchar (N) Variable Length Character Data. Maximum
up to 2000 characters.

Varchar2 (N) Variable Length Character Data. Maximum

SQL Query

Query Language

Processor

Database Engine

Parser + Optimization

File Manager

+
Transaction Manager

Physical Database

Figure-9.1 Simple diagram of SQL

 161

up to 4000 characters.

Nvarchar2 (N) Variable-length Unicode character string

having maximum size is determined by the

national character set definition, with an
upper limit of 4000 bytes.

Number (P,S) Numeric data type for integers and Real
Numbers. P = Overall number of Digits.
Maximum values 38. S = Number of
digits to the right of the decimal point.

FLOAT (p) A subtype of the NUMBER data type.
A FLOAT value requires from 1 to 22
bytes.

LONG Variable Length Character Data (Up to
2GB)

Date Date data type for storing date and time.
The size is fixed at 7 bytes.

BINARY_FLOAT 32-bit floating point number.

BINARY_DOUBLE 64-bit floating point number.

RAW & LONG RAW RAW Binary Data
RAW: Maximum size is 2000 bytes.

LONG RAW: Maximum up to 2GB

CLOB Character Data (Up to 4GB)

NCLOB Character Data containing Unicod
characters. (Up to 4GB)

BLOB Binary Data (Up to 4GB)

BFILE Binary Data stored into external file (Up to
4GB)

ROWID A base-64 number system representing

the unique address of a raw in its table.

UROWID A base-64 number system representing

 162

the logical address of a raw of an indexed
organized table.

DATETIME Data Types

TIMESTAMP Date with Fractional Seconds

INTERVAL YEAR TO MONTH Stored as an interval of years and months.

INTERVAL DAY TO SECOND Stored as an interval of days, hours,

minutes and seconds.

1.4 SQL STATEMENTS

SQL statement includes data insert, query, update and delete, schema creation and

modification and data access control. Based upon that SQL statements are divided

into different categories as described below:
Data Manipulation Language (DML)

SELECT Retrieve certain record from one or more tables or views.

INSERT Create new record into the table.

UPDATE Modify existing record(s).

DELETE Delete existing record(s).

MERGE Conditionally insert or update data depending on its

presence, also known as UPSERT.

Data Definition Language (DDL)

CREATE Create New Objects in Database like Table, View Index,

etc.

ALTER Modify the existing object.

DROP Destroying an existing object.

RENAME Change the name of existing object.

TRUNCATE Deleting an existing object. (Drop and Re-Create)

COMMENT Provides Single line or multi line comment(s).

 163

Data Control Language (DCL)

GRANT Gives different Privileges to the user.

REVOKE Tack back privileges which is previously granted from user.

Transaction Control Language (TCL)

COMMITE Make permanent all changes performed in the transaction.

ROLLBACK Undo all uncommitted works done by the transaction(s).

SAVEPOINT Identify a point in a transaction to which you can later roll

back.

1.5 DATA DEFINITION STATEMENTS

Data Definition Statements of the SQL is used to create different database objects

and manage that objects.

1.5.1. CREATE TABLE

Create Table clause is used to create a new database objects like table, view, index etc.

Syntax:
CREATE TABLE <TABLE NAME>
(
<Column 1><Data type><Size> [not null] [unique] [<column constraint>],
<Column 2><Data type><Size> [not null] [unique] [<column constraint>],

<Column N><Data type><Size> [not null] [unique] [<column constraint>],
 [Table Constraint(s)]
);

 164

For each column, a name and a data type must be specified and the column name

must be unique within table definition. Columns are separated by colons.

1.5.2. ALTER TABLE

ALTER TABLEcommand is used to add, delete or modify columns in an existing

table. You would also use ALTER TABLE command to add and drop various
constraints on an existing table.

Syntax:

ALTER TABLE <TABLE NAME> ADD/MODIFY/DROP column [datatype];

1.5.3. DROP TABLE

It is used to delete remove entire table with structure from the database.

Syntax:

DROP TABLE <TABLE NAME> ;

1.5.4. TRUNCATE TABLE

The TRUNCATE TABLE command is used to delete complete data from an existing

table.

Syntax:

TRUNCATE TABLE <TABLE NAME> ;

Example:
1. Create Salesman Table with Salesman No as a Primary Key and Salesman Name

as a mandatory field.

 165

CREATE TABLE SALESMAN

(

 SNUM NUMBER (4) PRIMARY KEY,

 SNAME VARCHAR2(30) NOT NULL,
CITY VARCHAR2(30),

 COMM NUMBER(4,2)

);

2. Add New Column Mobile No into Salesman Table.

ALTER TABLE SALESMAN ADD (MOBILE NUMBER (10));

3. Remove Customer Table.
DROP TABLE CUSTOMER.

1.6 CONSTRAINTS

Constraints are the rules enforced on data columns on table. These are used to limit

the types of data that can go into the table. Constraint could be applied at column
level or table level. Column level constraints are applied only one column whereas

Table level constraints are applied to the whole table. There are two types of data

constraints that can be applied to data being inserted into the tables.

1.6.1. I/O CONSTRAINTS
This data constraint determines the speed at which data can be inserted or extracted

from a table.
A. PRIMARY KEY
Primary key is a filed in a table which is uniquely identifies each row (or record) in a

database table. Primary key field must be mandatory means can’t have null values

and must be unique values. A table can have only one primary key, which may

consist of single or multiple fields. When Primary key created on single field it is

 166

known as Single Field Primary Key and when Primary key created on multiple fields

it is known as Composite Primary Key.
Examples:
1. Single Field Primary Key at Column Level:

Below example shows the Salesman table with SNUM as Primary key created at

column level.

CREATE TABLE SALESMAN

(
SNUM NUMBER (4) PRIMARY KEY,

SNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

COMM NUMBER(4,2)
);

2. Composite Primary Key at Table Level:

Below example shows the Salesman table with SNUM and BCODE as Composite

Primary key.

CREATE TABLE SALESMAN

(

SNUM NUMBER (4),

BCODE NUMBER (4),
SNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

COMM NUMBER(4,2),
PRIMARY KEY (SNUM,BCODE)

);

B. FOREIGN KEY / REFERENCE KEY

Foreign key (or reference key) is a column or a combination of columns whose values
match a Primary key in a different table. The relationship between tables matches the

primary key in one of the tables with foreign key in other tables. The referencing table

is called the child table, and the referenced table is called the parent table.

 167

Examples:
1. Reference Key at Column Level:

CREATE TABLE CUSTOMER

(
 CNUM NUMBER (4) PRIMARY KEY,

 CNAME VARCHAR2(30) NOT NULL,

 CITY VARCHAR2(30),

 RATTING NUMBER(3),
 SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES SALESMAN

);

In this example, the column SNUM of CUSTOMER table (Child Table) builds the
foreign key namely FK_SNUM and references the Primary key of SALESMAN table

(Parent Table).

2. Reference Key at Table Level:

CREATE TABLE CUSTOMER

(

 CNUM NUMBER (4) PRIMARY KEY,

 CNAME VARCHAR2(30) NOT NULL,
 CITY VARCHAR2(30),

 RATTING NUMBER(3),

 SNUM NUMBER (4),
 CONSTRAINT FK_SNUM FOREIGN KEY (SNUM) REFERENCES SALESMAN
(SNUM)

);

1.6.2. BUSINESS RULE CONSTRAINTS
Business Rule constraints allow application of business rules to table columns. These

rules are applied to data, prior the data is being inserted into the table columns.

 168

A. UNIQUE

The UNIQUE constraint prevents duplicate values in the column. But it permits

multiple NULL values in the column. Same as primary key unique constraint also

create unique index on the field.

Examples:
Unique Key at Column Level:

CREATE TABLE CUSTOMER

(

 CNUM NUMBER (4) PRIMARY KEY,

 CNAME VARCHAR2(30) NOT NULL,

 CITY VARCHAR2(30),
 EMAIL VARCHAR2(30) CONSTRAINT CUST_EMAIL_UK UNIQUE,

 RATTING NUMBER(3),

 SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES

SALESMAN
);

B. NOT NULL

In oracle, by default column can hold NULL values. If you do not want a column to
have a NULL values, then you need to define NOT NULL constraint on that column.

NOT NULL constraints only implemented at column level.

Examples:

CREATE TABLE CUSTOMER

(

CNUM NUMBER (4) PRIMARY KEY,
CNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),
EMAIL VARCHAR2(30) CONSTRAINT CUST_EMAIL_UK

UNIQUE,
RATTING NUMBER(3) NOT NULL,

 169

 SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES

SALESMAN
);

C. CHECK CONSTRAINT

Business Rule validations can be applied to a table column by using check constraint.

Check constraint must be specified as a logical expression that evaluates either to

TRUE or FALSE.

Examples:
Check constraint at Table Level:

 CREATE TABLE CUSTOMER
 (

CNUM NUMBER (4) PRIMARY KEY,

CNAME VARCHAR2(30) NOT NULL,

CITY VARCHAR2(30),

RATTING NUMBER(3),

SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES

SALESMAN,
CONSTRAINT CUST_NAME_CHK CHECK (CNAME = UPPER (CNAME)),
CONSTRAINT CUST_RATTING_CHK CHECK (RATING >= 100)

);

Above example create CUSTOMER table, where Name of customer must be consist

of upper case letters only and minimum ratting of customer is 100.

D. DEFAULT VALUE

The DEFAULT constraint provides a default value to a column when a record is
loaded into the table, and the column is left empty.

Examples:

 170

 CREATE TABLE CUSTOMER

 (

CNUM NUMBER (4) PRIMARY KEY,

CNAME VARCHAR2(30) NOT NULL,
CITY VARCHAR2(30),
RATTING NUMBER(3) DEFAULT 100,

SNUM NUMBER (4) CONSTRAINT FK_SNUM REFERENCES

SALESMAN
);

Above example create CUSTOMER table with RATTING field is set to 100 by default.

1.7 DATA MANIPULATION STATEMENTS

1.7.1. INSERT INTO STATEMENT

Insert Into statement is used to insert records into the database table. The General

syntax of INSERT INTO clause as given below:

INSERT INTO <TABLE NAME> [(Column1, Column2 ..., ColumnN)]
VALUES (Value1, Value2..., ValueN)

Here, column1, column2 ..., columnN are the names of the columns in the table into

which you want to insert data. You may not need to specify the column(s) name in the

SQL query if you are adding values for all the columns of the table.

Example:

1. INSERT INTO SALESMAN VALUES (1001, 'BADAL', 'PATAN', 0.12);

2. INSERT INTO SALESMAN (SNUM, SNAME, COMM) VALUES (1002, 'VIRAL',

0.09);

 171

1.7.2. UPDATE STATEMENT

The UPDATE Query is used to modify the existing records in a table. You can use

WHERE clause with UPDATE query to update selected rows, otherwise all the rows

would be affected. General Syntax of Update Clause as:

UPDATE <TABLE_NAME> SET column1 = value1, column2 = value2....
WHERE [condition];

Example:

1. UPDATE SALESMAN SET CITY = ‘PATAN’ WHERE SNUM = 1002;

1.7.3. DELETE STATEMENT

The DELETE Query is used to delete the existing records from a table. Syntax of

Delete Statement as given below:

DELETE FROM <TABLE_NAME> WHERE [condition];

Example:

1. DELETE FROM SALESMAN WHERE SNUM = 1002;

1.7.4. SELECT STATEMENT

SQL SELECT Statement is used to fetch record(s) from existing database table(s),

which returns the result data in form of table. When we will display selected columns
from the table then it is known as Projection operations.

Syntax:
SELECT [DISTINCT] column1, column2 ... FROM <FROM_CLAUSE>

 172

[WHERE <CONDITION>]
[GROUP BY <EXPRESSION >]
[HAVING <CONDITION>]
[ORDER BY <COLUMN> [ASC|DESC]]

Example:

1. Display all the information of salesman’s in the sequence of City, Name and comm.

SELECT CITY, SNAME, COMM FROM SALESMAN;

1.7.5. WHERE CALUSE IN SQL

WHERE clause in query represents the condition for fetching records from the
table(s), known as SELECTION operation.

Example:
1. Display Num and Name of all customers with salesman number 1001.

 SELECT CNUM, CNAME, SNUM FROM CUSTOMER WHERE SNUM = 1001;

1.7.6. ORDER BY CLAUSE
The SQL Order By

1. List all Salesmen with commission above 10% and result should be in ascending
order of City and reverse order of commission.

Clause is used in SELECT statement to sort the data either in

ascending or descending order, based on one or more columns. Oracle sorts query

results in ascending order by default. If you want to sort the data in descending order,

you must explicitly specify using DESC Keyword follow the column name.
Example

SELECT SNUM,SNAME,CITY,COMM FROM SALESMAN WHERE COMM >
0.10 ORDER BY CITY, COMM DESC;

 173

1.7.7. GROUP BY CLAUSE
The SQL GROUP BY clause establishes data groups based on columns and

aggregates the information within a group only. The grouping criterion is defined by

the columns specified in GROUP BY clause. GROUP BY clause can only be used

with aggregate functions.

A. Arithmetic Operator: Arithmetic operators manipulate numeric operands. Below

Tables shows the list of Arithmetic Operators.

The group by clause should contain all the columns in the

select list expect those used along with the group functions.

Example
1. Display total orders for each salesman.

 SELECT SNUM, SUM (AMOUNT) FROM ORDERS GROUP BY SNUM;

1.7.8. HAVING CLAUSE

The Having Clause enables you to specify conditions that filter which group results

appear in the final results. HAVING clause places conditions on groups created by the

GROUP BY clause. The HAVING clause must follow the GROUP BY clause in a query

and must also precede the ORDER BY clause if used.
Example
1. Display total orders of each salesman having more than single order.

SELECT SNUM, COUNT (ONUM) FROM ORDERS GROUP BY SNUM HAVING

COUNT(SNUM) > 1;

1.8 SQL OPERATORS

An operator is a reserved word used primarily in SQL Statement’s to perform

operation(s). An operator manipulates individual data items and returns a result. The
data items are called operands or arguments.

 174

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

B. Character Operator: Character operators are used in expressions to manipulate

character strings. Below Tables shows the list of Character Operators.

Operator Description

|| Concatenates character strings

C. Comparison Operator: Comparison operators are used in conditions that

compare one value or expression with another. The result of a comparison can be
TRUE or FALSE.

Operator Description

= Equality test.

!=, =̂, <> Inequality test.

> Greater than test.

< Less than test.

>= Greater than or equal to test.

<= Less than or equal to test.

IN "Equivalent to any member of" test. Equivalent to

"= ANY".

ANY/ SOME Compares a value to each value in a list or

returned by a query. Evaluates to FALSE if the

query returns no rows.

NOT IN Equivalent to "!= ANY". Evaluates to FALSE if any

member of the set is NULL.

ALL Compares a value with every value in a list or

 175

returned by a query. Must be preceded by =, !=, >,
<, <=, or >=. Evaluates to TRUE if the query

returns no rows.

EXISTS TRUE if a sub-query returns at least one row.

IS [NOT] NULL Tests for nulls. This is the only operator that

should be used to test for nulls.

D. Range Searching Operator: In order to select data that is within a range of

values, the range searching operator is used.

Operator Description

[Not]

BETWEEN x AND y

[Not] greater than or equal to x and less than or

equal to y.

E. Pattern Matching Operator: Pattern matching operator allows comparison of

one string value with another string value, which is not identical. This is achieved
by using wildcard characters.

Operator Description

LIKE X The character "%" matches any string of zero or

more characters except null. The character "_"

matches any single character.

F. Logical Operator: Logical operators manipulate the results of conditions.

Operator Description

NOT Returns TRUE if the following condition is FALSE.
Returns FALSE if it is TRUE.

AND Returns TRUE if both component conditions are

TRUE. Returns FALSE if either is FALSE.

OR Returns TRUE if either component condition is

TRUE. Returns FALSE if both are FALSE.

 176

G. Set Operator: Set operators combine the results of two queries into a single

result.
Operator Description

UNION Returns all distinct rows selected by either query.

UNION ALL Returns all rows selected by either query,

including all duplicates.

INTERSECT Returns all distinct rows selected by both queries.

MINUS Returns all distinct rows selected by the first query

but not the second.

Example
1. Display all customers not located in LONDON.

SELECT * FROM CUSTOMER WHERE CITY <> 'LONDON';

2. List all salesmen with commission between 11% and 15%.
SELECT * FROM SALESMAN WHERE COMM BETWEEN 0.11 AND 0.15;

3. List all salesmen whose names begin with letter ‘B’.

SELECT * FROM SALESMAN WHERE SNAME LIKE 'B%';

1.9 ORACLE SQL BUILT-IN FUNCTIONS

Oracle SQL Built-in Functions serve the purpose of manipulating data items and

returning a result. We can assign a value in form of variable or constants, such values

are known as Arguments of functions. Oracle Functions can be divided into main two

categories as described below:

 177

Function

1.9.1. GROUP FUNCTIONS (AGGREGATE FUNCTIONS)
These functions group the rows of data based on the values returned by the query.

The group functions are used to calculate aggregate values, which return just one

value after processing a group of rows.

Value Returned

SUM (Values|Column) Returns Sum of given Values.

AVG (Values|Column) Return the Average Value.

COUNT (Values|Column) Return Number of rows where the value of

the column is not NULL

COUNT (*) Return Number of rows including duplicates

and NULLs

MAX (Values|Column) Returns Maximum Value.

MIN (Values|Column) Returns Minimum Value.

MEDIAN (Values|Column) Returns Median (Middle) value in the sorted
column, interpolating if necessary

STDDEV (Values|Column) Returns Standard deviation of the column

ignoring NULL values

VARIANCE (Values|Column) Returns Variance of the column ignoring

NULL values

CORR (Column-1,Column-2) Returns Correlation coefficient between the

two columns after eliminating nulls.

Example

1. Count the no. of salesmen currently having orders.

SELECT COUNT(DISTINCT (SNUM)) FROM ORDERS;

 178

1.9.2. SINGLE ROW FUNCTIONS (SCALAR FUNCTION)

Single row or Scalar functions return a value for every row that is processed in a

query. There are four types of single row functions.

A. Numeric Functions: These are functions that accept numeric input and return

numeric values.
Function

Value Returned

ABS (m) Absolute value of m

MOD (m, n) Remainder of m divided by n

POWER (m, n) m raised to the nth power

ROUND (m , n) m rounded to the nth decimal place

TRUNC (m, n) m truncated to the nth decimal place

CEIL (n) smallest integer greater than or equal to n

FLOOR (n) greatest integer smaller than or equal to n

SQRT (n) positive square root of n

EXP (n) e raised to the power n

LN (n) natural logarithm of n

LOG (n2, n1) logarithm of n1, base n2

SIN (n) sine (n)

COS (n) cosine (n)

TAN (n) tan (n)

B. String Functions:

Function

These are functions that accept character input and can return

both character and number values.
Value Returned

LOWER (s) All letters are changed to lowercase.

UPPER (s) All letters are changed to uppercase.

INITCAP (s)
First letter of each word is changed to uppercase
and all other letters are in lower case.

 179

CONCAT (s1, s2)
Concatenation of s1 and s2. Equivalent to s1 ||

s2

LPAD (s1, n , s2)
Returns s1 right justified and padded left with n

characters from s2; s2 defaults to space.

RPAD (s1, n, s2)
Returns s1 left justified and padded right with n

characters from s2; s2 defaults to space.

LTRIM (s,set)
Returns s with characters removed up to the first

character not in set; defaults to space

RTRIM (s, set)
Returns s with final characters removed after the

last character not in set; defaults to space

REPLACE (s, search_s,

replace_s)

Returns s with every occurrence of search_s in s

replaced by replace_s; default removes

search_s

SUBSTR (s, m, n)

Returns a substring from s, beginning in position

m and n characters long; default returns to end
of s.

LENGTH (s) Returns the number of characters in s.

INSTR (s1, s2, m, n)

Returns the position of the nth occurrence of s2

in s1, beginning at position m, both m and n

default to 1.

C. Date Functions:

Function

These are functions that take values that are of datatype DATE

as input and return values of datatype DATE.

Value Returned

SYSDATE Current date

LAST_DAY (Date)
Date of the last day of the

month containing date

NEXT_DAY (Date, day)
Date of the first day of the week

after date

ADD_MONTHS (Date, No. of Month) Add No. of Months in Date

 180

MONTHS_BETWEEN (Date-1, Date-2)
Returns Difference in Month
between two dates.

GREATEST (Date-1, Date-2, ..., Date-N) Latest of the given dates

LEAST (Date-1, Date-2, ..., Date-N) Earliest of the given dates

NEW_TIME

(Date,Current_Timezone,New_TimeZone)

Display Date and Time in New

TimeZone Format

D. Conversion Functions:

Function

These are functions that help us to convert a value in one

form to another form.

Value Returned

TO_NUMBER (String, Format)
Character String converted to a Number

as Specified by Format.

TO_CHAR(Value, Format)
Convert Number or Date into Character

string as specified by Format.

TO_DATE (String, Format)
String Value converted in a Date as

specified by given Format.

ROUND (Date, Format) Date Rounded as specified by the Format.

TRUNC (Date, Format)
Date truncated as Specified by the

Format.

1.10 SQL Joins

Sometimes it is required to retrieve information from multiple tables; at that time Join

condition is required. Rows in one table can be joined to rows in another table

according to common values existing in corresponding columns. We must have to

keep in mind some principle as follows:

• When Writing a SELECT statement that joins tables, precede the column

name with the table name for clarify and to enhance the database access.

 181

• If the same column name appears in more than one table, the column name

must be prefixed with the table name.

• To join N tables together, you need a minimum of N-1 join conditions.

1.10.1. TYPES OF ORACLE JOINS
• Inner Join

• Outer Join
• Self Join

A. INNER Join (Equi Join OR Simple Join)

It is a simple SQL join condition which uses the equal sign as the comparison

operator. The query compares each row of table1 with each row of table2 to find all

pairs of rows which satisfy the join-predicate.

Figure-9.2 Inner Join Diagram

The SQL INNER JOIN would return the records where table1 and table2 intersect.

B. Outer Join

An Outer Join is used to identify situations where rows in one table do not match rows
in a second table, even though the two tables are related. The SQL outer join

operator in Oracle is (+) and is used on one side of the join condition only.

There are two types of outer joins:

• LEFT OUTER JOIN

 182

• RIGHT OUTER JOIN

I. LEFT OUTER JOIN

A LEFT OUTER JOIN adds back all the rows that are dropped from the first (left)
table in the join condition, and output columns from the second (right) table are set to

NULL.

Figure-9.3 Left Outer Join Diagram

The SQL LEFT OUTER JOIN would return the all records from table1 and only those

records from table2 that intersect with table1

.

II. RIGHT OUTER JOIN

A RIGHT OUTER JOIN adds back all the rows that are dropped from the second

(right) table in the join condition, and output columns from the first (left) table are set

to NULL.

Figure-9.4 Right Outer Join Diagram

 183

The SQL RIGHT OUTER JOIN would return the all records from table2 and only

those records from table1 that intersect with table2

.

C. Self Join
Sometimes you need to join a table to itself only. When a table is joined to itself, the

join is known as Self Join. It is necessary to ensure that the join statement defines as

alias for both copies of the table to avoid column ambiguity.

Example
1. Show the name of all customers with their relational salesman's name.

SELECT CUST.CNAME, SMAN.SNAME FROM CUSTOMER CUST, SALESMAN

SMAN WHERE SMAN.SNUM = CUST.SNUM;

2. Find all pairs of customers having the same city without duplication.

SELECT CU.CNAME, CU.CITY, CUST.CNAME, CUST.CITY FROM CUSTOMER

CU, CUSTOMER CUST WHERE CU.CITY = CUST.CITY AND CU.CNUM >

CUST.CNUM;

1.11 SUB QUERIES

A query within another query is known as Sub query or Inner Query or Nested query.

It is embedded within the WHERE clause. Sub queries must be enclosed within
parentheses. A sub query is used to return data that will be used in the main query as

a condition to further restrict the data to be retrieved. Sub queries can be used with

the SELECT, INSERT, UPDATE, and DELETE statements along with the operators.

There are a few rules that sub queries must follow:

• A sub query can have only one column in the SELECT clause, unless multiple
columns are in the main query for the sub query to compare its selected columns.

 184

• An ORDER BY cannot be used in a sub query, although the main query can use

an ORDER BY. The GROUP BY can be used to perform the same function as the

ORDER BY in a sub query.

• Sub queries that return more than one row can only be used with multiple value

operators, such as the IN operator.

• The BETWEEN operator cannot be used with a sub query; however, the

BETWEEN operator can be used within the sub query.

Example

1. Following example updates SALARY by 0.25 times in CUSTOMERS table for all

the customers whose AGE is greater than or equal to 27:

UPDATE CUSTOMERS SET SALARY = SALARY * 0.25 WHERE AGE IN (SELECT
AGE FROM CUSTOMERS_BKP WHERE AGE >= 27);

1.12 SQL VIEWS

A view is nothing more than a SQL statement that is stored in the database with an

associated name. A view is actually a composition of a table in the form of a

predefined SQL query. A view can contain all rows of a table or select rows from a

table. A view can be created from one or many tables which depend on the written

SQL query to create a view.

Views, which are kind of virtual tables, allow users to do the following:

• Structure data in a way that users or classes of users find natural or intuitive.

• Restrict access to the data such that a user can see and (sometimes) modify

exactly what they need and no more.

• Summarize data from various tables which can be used to generate reports.

 185

Database views are created using the CREATE VIEW statement. Views can be

created from a single table, multiple tables, or another view.

CREATE VIEW <VIEW NAME> AS SELECT COLUMN1, COLUMN2..... FROM
<TABLE NAME> WHERE [CONDITION];

Obviously, where you have a view, you need a way to drop the view if it is no longer

needed. The syntax is very simple as given below:

DROP VIEW <VIEW NAME>;

1.13 SQL INDEXES

Indexes are special lookup tables that the database search engine can use to speed

up data retrieval. An index helps speed up SELECT queries and WHERE clauses, but
it slows down data input, with UPDATE and INSERT statements.

Creating an index involves the CREATE INDEX statement, which allows you to name

the index, to specify the table and which column or columns to index, and to indicate

whether the index is in ascending or descending order.

Indexes can also be unique, in that the index prevents duplicate entries in the column

or combination of columns on which there's an index.

Syntax:

CREATE INDEX <INDEX_NAME> ON <TABLE_NAME>;

There are three types of index as follows:

• Single-Column Indexes: A single-column index is one that is created based on

only one table column.

 186

• Unique Indexes: Unique indexes are used not only for performance, but also for

data integrity. A unique index does not allow any duplicate values to be inserted

into the table.

• Composite Indexes: A composite index is an index on two or more columns of a

table.

An index can be dropped using SQL DROP command. Care should be taken when

dropping an index because performance may be slowed or improved.
Syntax:

DROP INDEX <INDEX_NAME>;

1.14 SQL SEQUENCE

Sequence is an oracle object which is used to generate unique integers, which can

help to generate primary keys automatically. A new primary key value can be

obtained by selecting the most produced value and incrementing it. It required a lock
during the transaction and causes other users to wait for next value of primary key it
is known as serialization. To create a sequence users must obtain CREATE

SEQUENCE system privileges.

Syntax:

CREATE SEQUENCE <SEQUENCE_NAME>

 STARTWITH INITIAL-VALUE

 INCREMENT BY INCREMENT-VALUE
 MAXVALUE MAXIMUM-VALUE

 CYCLE |NOCYCLE

CACHE | NOCACHE;

Where,
START WITH: Specifies the starting value for the Sequence.

INCREMENT BY: Specifies the value by which sequence will be incremented.

 187

MAXVALUE: specifies the upper limit or the maximum value up to which sequence

will increment itself.
CYCLE: Specifies that if the maximum value exceeds the set limit, sequence will

restart its cycle from the beginning.
CACHE: Pre-allocates a set of sequence number and keep them into memory so the

sequence number can be accessed faster.

Example

1. Let's start by creating a sequence, which will start from 1001, increment by 1 with

a maximum value of 9999.

CREATE SEQUENCE ST_SEQ
STARTWITH1001

INCREMENT BY1

MAXVALUE 9999

CYCLE;

To insert Sequence Value in SNUM of Salesman table, query will be

INSERTINTO SALESMAN VALUE (ST_SEQ.nextval

 Check Your Progress

,‘AMIT’, ’PATAN’, 0.15);

15. Explain difference between varchar2 & nvarchar2 data types.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

16. Explain difference between TRUNCATE and DROP Table.

……………………………………………………………………………………………

 188

……………………………………………………………………………………………

 ……………………………………………………………………………………………
17. What is Primary Key? Describe composite Primary Key with Example.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
18. What is Operator in SQL? List the different operators used in SQL.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
19. Define Aggregate and Scalar Function?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
20. What is Views in SQL?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

1.15 LET US SUM UP

In this chapter, we have discussed about SQL Architecture and different SQL

Statements. We have also explored data types available in SQL. We have come to

know vital processes like Selection, Projection Grouping, Joins and Sub Queries. We
have also described different operators and functions available in SQL. We have tried

to explore different constraints. We have described some SQL Objects like View,

Indexes, and Sequences etc.

1.16CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 189

1. Varchar2 represents variable length character data up to 4000 characters.

While nvarchar2 represents Unicode character string having maximum size

determined by the National Character Set with an upper limit of 4000 Bytes.
2. TRUNCATE clause is used to delete all records from existing tables.

Definition of table remains as it is. While DROP removes entire definition of

table means delete all records including the table structure.

3. Primary Key is used to uniquely identify each record in a database table.

When Primary key is created on multiple fields of the table than it is known as

Composite Primary Key. Composite Primary Key created at table level.

Example:

CREATE TABLE Employee
(

EmployeeId NUMBER (4),

BranchCode NUMBER (4),

EmployeeNAME VARCHAR2(30) NOT NULL,

EmployeeCity VARCHAR2(30),

 EmployeeJoinDate DATE,
PRIMARY KEY (EmployeeId,BranchCode)

);
Above Query is used to Create Employee Table with Composite Primary Key

namely (EmployeeId,BranchCode).

4. An operator is used to perform different operation and return result set. In SQL

operators have different types as follows:

A. Arithmetic Operators

B. Character Operators

C. Comparison Operators

D. Range Searching Operator
E. Pattern Matching Operator

F. Logical Operator

G. Set Operator

 190

At the end of this unit,

• Students will be able to write simple procedure and execute it

• Students will write stored procedure for various operations to be applied on database

table
• Students will be able to simple function and call it

2.2 INTRODUCTION

A procedure or function is a named object of PL/SQL block. There are two types of

subprograms in PL/SQL namely Procedures and Functions. Every subprogram will

contain declaration block, an execution block or body, and an exception handling block

being an optional part.
When user executes a procedure or function, the execution takes place at the server

side. This obviously reduces network traffic. The subprograms are the compiled

programs and stored in the oracle database and can be invoked whenever required.

Whenever the sub programs are called, they only need to execute because they are

stored in compiled form. So, they save time required for compilation of the sub program.

2.3 STORED PROCEDURE BASICS

A procedure may take one or more arguments. If a procedure takes arguments then

these arguments are to be supplied at the time of calling the procedure. A procedure

contains two parts specification and the body. Procedure specification begins with

Create and ends with procedure name or parameters list. Procedures without

parameters are written without a parenthesis. The body of the procedure starts after the

keyword IS or AS and ends with keyword End.
Syntax:

CREATE [OR REPLACE] PROCEDURE [schema.] procedure_name

[(parameter_1 [IN] [OUT] parameter_data_type_1,

parameter_2 [IN] [OUT] parameter_data_type_2,…

parameter_N [IN] [OUT] parameter_data_type_N)]

[AUTHID DEFINER | CURRENT_USER]

 191

IS
— declaration_statements

BEGIN

— executable_statements

return {return_data_type};

[EXCEPTION

— the exception-handling statements]

END [procedure_name];

Where,

Create or Replace means the procedure is created if the procedure with the same name

doesn’t exist or the existing procedure is replaced with the new code.
IS represents the beginning of the body of the procedure and is similar to Declare in

anonymous PL/SQL Blocks. The code between IS and BEGIN makes the Declaration

section.
The syntax within the brackets [] indicate optional fields. The optional parameter list will

contain name, mode and types of the parameters. IN represents the value that will be

passed from outside and OUT represents the parameter that will be used to return a

value outside of the procedure.

EXCEPTION is again an optional part. It is used to handle run-time errors.

2.3.1 COMPONENTS OF PROCEDURE
To understand procedure easily we will divide the Procedure in two parts:
I. Procedure Head

All the code before the “IS” keyword is called the Procedure head or signature. Various

parts of PL/SQL Procedure Head are:
A. Schema

This is an optional parameter and defines the schema name in which the procedure will

be created. The default schema is the current user. If we specify a different user then,

the other user must have the privileges to create a procedure in his/her schema.
B. Name

 192

The NAME parameter defines the name of the procedure. The name of a procedure

should be more meaningful and readable.
C. Parameters

The parameters are optional. These will be required to pass and receive values from a
PLSQL procedure. There are 3 styles of passing parameters.

• IN: This is the default style of parameter in PLSQL procedure. We use the IN mode

whenever we want the parameter to be read only i.e. we cannot change the value of

the parameter in the PLSQL procedure.

• OUT: The OUT parameter returns the values to the calling subprogram

orsubroutines. A default value cannot be assigned to OUT parameter so we cannot

make it optional. We have to assign a value to OUT parameter before we exit the

procedure or the value of the OUT parameter will be NULL. While calling a
procedure with OUT parameters, we have to make sure that we pass variables for

the corresponding OUT parameters.

• IN OUT: In this mode the actual parameter is passed to the PLSQL procedure with

initial values and then within the PLSQL procedure the value of the parameter may

get changed or reassigned. The IN OUT parameter is finally returned to the calling

subroutine.
D. Authid

This is also an optional parameter and it defines whether the procedure will execute
with the privileges of the Creator / Definer of the procedure or with that of the

Current_User privileges.
II. Procedure’s Body

Everything after the “IS” keyword is called the body of the procedure. The procedure’s

body contains the declaration of variables in the declaration section, the code to be

executed in the executable statements part and the code to handle any exception in the

exception handling part.

The declaration and exception handling parts are optional in PLSQL procedure body.
We must have at least one executable statement in the executable statement part. The

execution part is the one where we have to write the business logic. The Return

 193

statement in procedure is used to discontinue the execution of the procedure further

and return the control to the calling subroutine.

To create a stored procedure, user must have Create Procedure system privilege. User

must also have required object privileges on the objects that are referred in the
procedure in order to successfully compile the procedure.

2.3.2 TYPES OF PARAMETERS
There are two types of parameters of a procedure.

1. Formal parameters

2. Actual Parameters
 Formal Parameters

The parameters declared in the definition of procedure are known as formal parameters.

They receive the values sent while calling the procedure. For example,

• procedure Welcome (message varchar2, name varchar2)

In the above code message, name parameters are called as formal parameters.
 Actual Parameters

The values given within parentheses while calling the procedure are called as actual

parameters.

• Welcome (‘Welcome Mr.’, ‘Himanshu’);

‘Welcome Mr.’ and ‘Himanshu’ are actual parameters. These values are copied to the

corresponding formal parameters message and name.

2.4 CREATING STORED PROCEDURES

After discussing the different part of the procedure, its time to create procedure.

Suppose we have a table named ‘employee’ as shown below:

Create table employee

 (Employee_id number(5),

 Employee_name varchar2(10),

 Employee_salary number(6,2),

 194

 Employee_department varchar2(10),
 Employee_commission number(8,2));

After creating ‘employee’ table insert few records in it.

Now, we will create a Procedure in which we will pass the ‘employee_id’ and ‘salary’.

The Procedure will update the record of the employee having the same ‘employee_id’

using Oracle SQL Update statement.
Example:

Create or Replace Procedure update_employee_salary (emp_id_in IN Number,

salary_in IN Number)

IS

Begin
 Update employee

 Set employee_salary = salary_in

 Where employee_id = emp_id_in;

dbms_output.put_line(‘Procedure executed successfully’);

End update_employee_salary;

/

In the above code, we have created a procedure named ‘update_employee_salary’

which will take two parameters ‘employee_id’ and ‘salary’ and update the ‘employee’

table.
 Calling PL/SQL Procedure

After creating procedure, it can be called using the EXEC or EXECUTE Statement.

Syntax to call a Procedure using EXEC or EXECUTE statement is:
Syntax:

EXEC procedure_name(parameters);

or

EXECUTE procedure_name(parameters);

http://techhoney.com/tag/UPDATEPLSQL/�

 195

Suppose, we want to update the salary of ‘employee_id = 101’ from 1000 to 1500 using

update_employee_salary procedure. So, call update_employee_salary procedure using

EXEC statement as shown below.

• Exec update_employee_salary(101,1500);

The procedure will successfully update the salary of employee having id ‘101’ from 1000
to 1500 using PL/SQL Procedure.
 IN Parameter

Here we will create a stored procedure to accept a single parameter and print out the

message with parameter passed via DBMS_OUTPUT.
Example:

Create or Replace Procedure INParameter(var in varchar2)

IS

Begin

 dbms_output.put_line(‘Welcome: The argument passed is: ‘ || var);

End;

/

To Run the procedure pass following command with argument as stated in below:

• Exec INParameter(‘BAOU’);
Output:

• Welcome: The argument passed is: BAOU

 OUT Parameter

A stored procedure to demonstrate the OUT Parameter.
Example:

Create or Replace Procedure OUTParameter(outvar out varchar2)

IS

Begin

outvar:= ‘Welcome to Hindustan’;

End;

/

 196

Now execute the above procedure. It will create the procedure.

Now to execute the procedure we will write a following block of code and call the

Procedure from the body of the block.
Example:

Declare

outvar varchar2(100);

Begin

outparameter(outvar);

dbms_output.put_line(outvar);
End;

/

The executed code is shown below.
Output:

• Welcome to Hindustan
 INOUT Parameter

A stored procedure to accept a INOUT parameter (Param), construct the output

message and assign back to the same parameter name(Param) again.
Example:

Create or replace procedure inoutparameter(param IN OUT varchar2)

IS

Begin

param := ‘Welcome to India ‘ || param;

End;

/

The executed code will create the procedure.

To execute the procedure we will create a following block of code and call the

Procedure from the body of the block.
Example:

 197

Declare
param varchar2(100) := ‘veddesai’;

Begin

inoutparameter(param);

dbms_output.put_line(param);

End;

/

The above code produces following output.
Output:

• Welcome to India veddesai

2.4.1 STORED PROCEDURE WITH DML STATEMENTS
I. INSERT Statement

First of all we will create User_data table in Oracle database as shown below.

Create Table User_data(

 User_id number (5) not null, username varchar2 (20) not null,

 created_by varchar2 (20) not null, created_date date not null,

 primary key (user_id));

Once the table is created, we will create a stored procedure. The procedure will accept

4 IN parameters and insert it into table “User_data”.
Example:

Create OR Replace Procedure insertUSERDATA(
 userid IN USER_data.USER_ID%TYPE,

 username IN USER_data.USERNAME%TYPE,

 createdby IN USER_data.CREATED_BY%TYPE,

 pdate IN USER_data.CREATED_DATE%TYPE)

IS

Begin

 198

 Insert INTO USER_data (“User_Id”, “Username”, “Created_By”,
“Created_Date”)

 Values (userid, username,createdby,pdate);

 Commit;

End;

/

Once the procedure insertUSERdata created, we will execute it from PL/SQL block as

shown below.
Example:

Begin
 insertUSERdata(201,’Het’,’scott’,SYSDATE);

End;

/

Execute the above PL/SQL block and check the table records.
II. UPDATE Statement

We will continue with the previously created user_data table. We will create a stored

procedure which will accept 2 IN parameters and update the username field based on

the provided userId.
Example:

Create or Replace Procedure updateUSERdata(

 userid IN USER_data.USER_ID%TYPE,

 newusername IN USER_data.USERNAME%TYPE)

IS

Begin

 Update USER_data SET Username = newusername where USER_ID =

userid;

 Commit;
End;

 199

/

Once the procedure updateUSERdata created, we will execute it from PL/SQL block as

shown below.
Example:

Begin

 updateUSERdata(201,'Mansi');

End;

/

Execute the above PL/SQL block and check the table records.
III. DELETE Statement

We will continue with the previously created user_data table. We will create a stored

procedure which will delete the record based on the provided userId.
Example:

Create or Replace Procedure deleteUSERdata(userid IN

USER_data.USER_ID%TYPE)

IS

Begin

 Delete USER_data where USER_ID = userid;

 Commit;
End;

/

Once the procedure deleteUSERdata created, we will execute it from PL/SQL block as

shown below.
Example:

Begin

 deleteUSERdata(201);

End;

 200

/

Execute the above PL/SQL block and check the table records.

2.4.2 DELETING A STORED PROCEDURE
To delete a stored procedure we have to fire following command.
Example:

• Drop procedure updateUSERdata;

Above code deletes the procedure updateUSERdata.

2.5 FUNCTION BASICS
A stored function is same as a procedure, except that it returns a value. Create Function

command is used to create a stored function.
Syntax:

Create [OR Replace] Function function_name

[(parameter_1 [IN] [OUT] parameter_data_type_1,

parameter_2 [IN] [OUT] parameter_data_type_2,…

parameter_N [IN] [OUT] parameter_data_type_N)]
RETURN return_datatype

IS | AS

— declaration_statements

BEGIN

— executable_statements

return {return_data_type};

[EXCEPTION

— the exception-handling statements]
END [function_name];

Where,

1. The function_name is the name given to the PLSQL function.

 201

2. The parameter_name is the name of the parameter that we are passing to the

function.

3. The parameter_data_type is the data type of the parameter that we are passing to

the PLSQL function.
4. Every Oracle PL/SQL function must have a Return statement in the code execution

part.

The RETURN specified in the header part of the oracle PL/SQL function specifies the

data-type of the value returned by the function.

2.5.1 PARAMETER PASSING TO A FUNCTION
There are 3 ways of passing parameters to PLSQL Function:

a. IN

b. OUT and

c. IN OUT

• IN: This is the default style of parameter in PLSQL function. This provides same

functionality as of Stored Procedure.

• OUT: The OUT parameter returns the values to the calling subprogram or

subroutines. This provides same functionality as of Stored Procedure.

• IN OUT: In this mode the actual parameter is passed to the PL/SQL function with

initial values and then within the PL/SQL function the value of the parameter may

get changed or reassigned. The IN OUT parameter is finally returned to the

calling subroutine. This provides same functionality as of Stored Procedure.

The block structure of a PL/SQL function is same as those of a PL/SQL Anonymous
Block. Anonymous Block doesn’t have Create or Replace Function, the parameters

section of code and the Return Clause.

To understand functions we will use the previously created table named ‘employee’.

Now suppose we want to create a function that shows us the name of an employee

whenever we pass employee_id as parameter.
Example:

Create or Replace Function get_employee_name (emp_no IN number)

 202

RETURN varchar2
 IS

 emp_name varchar2(100);

Begin

 Select employee_name into emp_name

 From employee

 Where employee_id = emp_no;

Return emp_name;

End get_employee_name;
/

Once the get_employee_name function created, we will execute it from PL/SQL block

as shown below.
 Calling Function

We can call an Oracle PL/SQL Function two ways.
I. Using Oracle SQL SELECT statement

We can call the above PL/SQL function using an SQL SELECT statement shown below

and check the output.

• Select get_employee_name (101) from dual;

Now, suppose if we change the employee_id passed to the function then we will get the

name of another employee.

II. Using Oracle Anonymous Block

Second way to call function is to create an Anonymous block. Here we will create an

anonymous block to call the get_employee_name PLSQL function.
Example:

Declare

 First_Name varchar2(30);

 203

 Second_Name varchar2(30);
 Third_Name varchar2(30);

Begin

 First_Name := get_employee_name(101);

 Second_Name := get_employee_name(102);

 Third_Name := get_employee_name(103);

 dbms_output.put_line(First_Name);

 dbms_output.put_line(Second_Name);
 dbms_output.put_line(Third_Name);

End;

When we execute the above Oracle SQL Anonymous Block we will get three names as

the output.

2.5.2 DELETING FUNCTION
To delete a function we have to use drop function command.
Syntax:

• Drop function <function-name>;
Example:

• Drop function get_employee_name;

Above code has deleted the function get_employee_name.
 Check Your Progress

1) What is procedure and function in PLSQL?

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
 ……………………………………………………………………………………………
2) Where the Pre_defined_functions are stored?
 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
3) Write the code for calling functions and procedures in a PLSQL block.

 204

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
4) Write any five inbuilt String function.
 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
5) State the similarities between Procedure and Function.
 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………
6) Differentiate between Procedure and Function.

……………………………………………………………………………………………

 ……………………………………………………………………………………………

 ……………………………………………………………………………………………

2.6LET US SUM UP

In this chapter, we have learned PL/SQL subprograms. We have learned to create

Procedure and different ways of calling it. We have also discussed to create Function

and ways of calling it. We also learnt parameter passing and returning values from

subprograms. In PLSQL stored procedure and function plays a very important role for

passing and manipulating data records very efficiently and effectively.

2.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS
1. A Procedure is a subprogram block consists of a group of PL/SQL statements while

function is an independent PL/SQL subprogram.

2. Pre_defined_functions are stored in the standard package called “Functions,

Procedures

and Packages”.

 205

3. Function is called as a part of an expression:

Example: squr:=count_sqr(‘10’);

 Procedure is called as a statement in PL/SQL:
Example: count_salary(‘201’);

4. Following are the five inbuilt String function:
I.INSTR(maintext, string, start, occurance): It gives the position of particular

text in the given string.

Where,

maintext is main string,

string is text that need to be searched,
start indicates starting position of the search (optional),

accordance indicates the occurrence of the searched string (optional).

Example:

Select INSTR(‘Gujarat,’a’,2,1) from dual;

Output: 4
II. UPPER (string): It returns the uppercase of the provided string.

Example:Select upper(‘baou’) from dual;

Output: BAOU
III. LOWER (string): It returns the lowercase of the provided string.

Example:Select upper(‘BAOU’) from dual;

Output: baou
IV. INITCAP (string): It returns the given string with the starting letter in upper

case.

Example:Select (‘gujarat vidyapith’) from dual;

Output: Gujarat Vidyapith
V. LENGTH (text) Returns the length of the given string.

Example:Select LENGTH (‘BAOU’) from dual;

Output: 4

 206

5. Both can be called from other PL/SQL blocks.

If the exception raised in the subprogram is not handled in the subprogram exception

handling section, then it will propagate to the calling block.

Both can have as many parameters as required.
Both are treated as database objects in PL/SQL.

6. Following table shows the difference between Procedure and Function:

Procedure Function

It is used to a execute certain process It is used mainly to a execute certain

calculations

It can’t be called in Select statement A Function without DML statements can

be called in Select statement

It uses Out parameter to return the value It uses Return to return the value

It is not mandatory to return the value

from procedure

It is mandatory to return the value from

function

Return will exit the control from

subprogram.

Return will exit the control from

subprogram along with returning the
value

Return datatype is not required to be

specified at the time of procedure

creation

Return datatype is mandatory to specify

at the time of function creation

2.8 ASSIGNMENTS
1. Define stored Procedure. Explain the characteristics of stored Procedure.

2. Define function. Explain the characteristics of functions.

3. Explain various Parameters of PLSQL subprograms.

4. Create a procedure that takes the pnum, pname as input and insert it to the

‘tblPerson’ table of the database.

 207

5. Create a function that takes the number as input and returns the cube as output.

2.9 Further Reading

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 208

Unit 3:Package and Trigger

Unit Structure

3.1. Learning Objectives & Outcomes

3.2. Introduction

3.3. Package Component

3.4. Package Implementation

3.5. Trigger

3.6. Levels of Trigger

3.7. User

3.8. Let Us Sum Up

3.9. Check your progress: Possible Answers

3.10. Assignments

3.11. Further Reading

3

 209

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn and understand trigger and Package concepts

• To define, declare and initialize trigger on various kind of events

• To learn and initialize package and use it

• To learn the concept of Users and their roles
Outcome:

At the end of this unit,

• Students will be able to declare, initialize and write trigger based on various kinds of

events
• Students will be able to define package and access that package

• Students will be able to create and remove user, grant and revoke privileges

3.2 INTRODUCTION
A Package is collection of objects. It contains procedures, functions, variables and SQL

statements created as a single unit. A package consists of two parts, Package

Specification or package header and Package Body.
Package Specification works as an interface to the package. Declaration of types,

variables, constants, exceptions, cursors and subprograms is made in Package

specifications. Package specification does not allow any code statements. Package

body is the platform to provide implementation for the subprograms.

Package delivers various Advantages like,

 It allows user to group together related objects, types and subprograms as a

PL/SQL module.

 If package contains a procedure and when a procedure is called first time, entire
package is loaded. This is expensive with respect to resources. But it takes less

response time for queries for subsequent calls.

 Package allows us to create types, variable and subprograms that are private or

public

 210

Items declared within package body are known as private. They are only accessed

within the package. While items declared within package specification is public and

available outside the package.

3.3 PACKAGE COMPONENT

Package component consists of two parts.

3.3.1 PACKAGE SPECIFICATION
The syntax for the package specification is as follows.
Syntax:

CREATE [OR REPLACE] PACKAGE package_name
[AUTHID { CURRENT_USER | DEFINER }]

{ IS | AS }

 [Definitions of public TYPES

 ,Declarations of public variables, types, and objects

 ,Declarations of Exceptions

 ,Pragmas

 ,Declarations of Cursors, Procedures, and Functions

 ,Headers of Procedures and Functions]
END [package_name];

3.3.2 PACKAGE BODY
The syntax for the package body is as follows:
Syntax:

CREATE [OR REPLACE] PACKAGE BODY package_name

{ IS | AS }

 [Definitions of private TYPEs

 ,Declarations of private variables, types, and objects

 ,full definitions of Cursors

 ,full definitions of Procedures and Functions]

 211

[BEGIN
 sequence_of_statements

[EXCEPTION

 Exception_handlers]]

 END [package_name];

Package body is not required if the package specification contains only types,

constants, variables, exceptions. This type of packages only contains global variables

that will be used by subprograms or cursors.

3.4 Package Implementation

Now we will discuss the implementation of package. First of all, we will start with simple

example as follows:
Example 1: In the below code, first we are creating a package specification with two

stored procedure one to find the maximum number and another to find the cube of the

given number.
Package Specification:

Create or Replace Package PackageTest as

 procedure findMaximum(num1 IN number, num2 IN number);

 procedure findCube (num IN number);

end PackageTest;
/

Once we execute above code it will create a package specification named

‘PackageTest’ (the body is not created yet).

Package Body:

Now consider the following code:

Create or Replace Package body PackageTest as

 212

 procedure findMaximum(num1 IN number, num2 IN number) is
 begin

if (num1 > num2) then

dbms_output.put_line (num1|| ‘ is greater than ‘|| num2);

else

dbms_output.put_line (num2|| ‘ is greater than ‘|| num1);

end if;

 end;

 procedure findCube(num IN number) is
 begin

 dbms_output.put_line (‘Cube of the number ‘|| num || ‘ is ’|| (num * num *

num));

 end;

end PackageTest;

/

When we execute the above code it will create the package body for the previously

created package specification. All the members in the package body must match with all

the declarations within the package specification. We have to make sure that both

package specification and package body gets stored in the database.

To execute package we have to use the command ‘execute’ followed by

the “packagename.sub-programname”. To execute the above created package from
SQL prompt the following command will be used.

• Execute PackageTest.findcube(15);

• Execute PackageTest.findMaximum(15,25);

Both of the above execution will return the respective output.
Example 2:

Now we will create a package to interact with a database. Before creating a package we

will create tables named Employee and Department to be accessed in package as

shown below.

 213

• Create table employee(eno number(3) primary key,ename

varchar2(15),salary number(7,2), deptno number(3) references department);

• Create table department(deptno number(3) primary key, deptname

varchar2(15));

After creating both the tables insert few records in both the tables.

After inserting records into the tables we will create package to access both the tables
in it.
Package Specification:

Create or Replace Package PackageDBAccess as

 procedure dispEmprecord;
 procedure dispDeptrecord;

end PackageDBAccess;

/
Package Body:

Create or Replace Package body PackageDBAccess AS

 Procedure dispEmprecord as

 Cursor cursor_emprec is

 select ename, salary from employee;

 Begin

 dbms_output.put_line (‘Name’ || ‘ ’ || ‘Salary’);
for record_emp in cursor_emprec

loop

 dbms_output.put_line (record_emp.ename || ‘ ’ ||

record_emp.salary);

end loop;

 End;

 Procedure dispDeptrecord as

 Cursor cursor_deptrec is
 select deptno,deptname from department;

 214

 Begin
 dbms_output.put_line (‘DeptNo’ || ‘ ’ || ‘DeptName’);

 for record_dept in cursor_deptrec

 loop

 dbms_output.put_line (record_dept.deptno || ‘ ’ ||

 record_dept.deptname);

 end loop;

 End;

End PackageDBAccess;
/

Above block of code will successfully create a package body.
Package Execution
To execute each of these procedures separately, we can use the following command as

shown below.

• Execute PackageDBAccess. dispemprecord;

• Execute PackageDBAccess. dispdeptrecord;

When we execute both the above statements it will display both table records.

3.4.1 ALTERING PACKAGE
Sometime we need to modify the package code. So, after updating the code we have to

just recompile the package body.

Package Alter Syntax is:

• Alter Package <package_name> Compile Body;

3.4.2 DELETING PACKAGE
To delete the package we have to use package Drop command.

Package Drop Syntax is:

• Drop Package <package_name>;

 215

3.5 TRIGGERS

A database trigger is a stored procedure associated with a database table, view or

event. The trigger can be invoked once, when some event occurs. It may occur many

times, once for each row affected by an Insert, Update or Delete statement. The trigger

can be invoked before the event to prevent unexpected operations. The executable part

of a trigger can contain procedural statements and SQL statements. The stored
procedure and functions have to be called explicitly while the database triggers are

executed or called implicitly whenever the table is affected by any DML operations.

We can write triggers that will be invoked whenever one of the following operations

occurs:

• DML commands (Insert, Update, Delete) on a particular table or view issued by

any user.

• DDL commands (Create or Alter primarily) issued either by a particular

schema/user or by any schema/user in the database.

• Database events such as logon/logoff, errors or startup/shutdown, issued either

by a particular schema/user or by any schema/user in the database

 Uses of Triggers

1. Trigger allows enforcing business rules that can’t be defined by using integrity

constants.

2. Trigger enables us to gain strong control over the security.

3. Using trigger we can also collect statistical information on the table access.

4. Using triggers we can prevent invalid transaction.

3.5.1 TYPES OF TRIGGERS
Trigger type depends on the type of triggering operation and by the level at which the

trigger is executed. Triggers are of Two Types.
3.5.1.1 Row Level Triggers

A row trigger is triggered each time a row in the table is affected by the triggering

statement. For example, if an update statement updates multiple rows of a table, a row

trigger is triggered once for each row affected by the update statement. If the triggering

 216

statement affects no rows, the trigger is not executed. Row triggers should be used

when some processing is required whenever a triggering statement affects a single row

in a table. Row level triggers are created using the “For Each Row” Clause in the Create

Trigger statement.
3.5.1.2 Statement Level Triggers

A statement level trigger is triggered once on behalf of the triggering statement,

independent of the number of rows the triggering statement affects (even if no rows are

affected). Statement triggers should be used when a triggering statement affects rows in

a table but the processing required is completely independent of the number of rows

affected. Statement level triggers are the default trigger created via Create Trigger

statement.
Syntax:

CREATE [OR REPLACE] TRIGGER Trigger_Name

 {BEFORE | AFTER | INSTEAD OF }

 {INSERT [OR] | UPDATE [OR] | DELETE}

 [OF col_name]

 ON table_name
 [REFERENCING OLD AS o NEW AS n]

 [FOR EACH ROW]

 WHEN (condition)

BEGIN

 --- SQL statements

 END;

Explanation:

• CREATE [OR REPLACE] TRIGGER trigger_name : This creates a trigger with

the given name or overwrites an existing trigger with the same name.

• {BEFORE | AFTER | INSTEAD OF} : This specifies at what time the trigger get

fired. i.e before or after updating a table. Before means before compiling the

statement the trigger will be fired, after means after the compilation the trigger

 217

will be fired. INSTEAD OF is used to create a trigger on a view. Before and after

cannot be used to create a trigger on a view.

• {INSERT [OR] | UPDATE [OR] | DELETE} : This determines the triggering event.

There are more than one triggering events that can be used together separated
by OR keyword. The trigger gets fired at all the specified triggering event.

• [OF col_name] : This clause is used with update triggers. This clause is used

when we want the trigger to fire only when a specific column is updated.

• [ON table_name] : This clause specifies the name of the table or view to which

the trigger is associated.

• [REFERENCING OLD AS o NEW AS n] : This clause is used to reference the old

and new values of the data being changed. By default, we reference the values

as :old.column_name or :new.column_name. We cannot reference old values
when inserting a record, or new values when deleting a record because they do

not exist.

• [FOR EACH ROW] : This clause is used to determine whether a trigger must fire

when each row gets affected (i.e. a Row Level Trigger) or just once when the

entire SQL statement is executed (i.e. statement level Trigger).

• WHEN (condition) : This clause is valid only for row level triggers. The trigger is

fired only for rows that satisfy the specified condition.
3.5.1.3 INSTEAD OF Trigger
This type of trigger enables us to stop and redirect the performance of a DML

statement. This type of trigger helps us in managing the way we write to non-updatable

views. Sometimes, the INSTEAD OF triggers are also seen inserting, updating or

deleting rows in designated tables that are otherwise unrelated to the view.
3.5.1.4 Compound Triggers

These are multi-tasking triggers that work as both statement as well as row-level

triggers when the data is inserted, updated or deleted from a relation.

3.5.2 DML TRIGGERS
These triggers are executed before or after we perform any DML operations on a table.
When we create a trigger, the trigger definition is stored in the database, which is

 218

identified with the trigger name. The code in the trigger is processed when we apply any

command on the database or table.


Example 1:
Statement Level Triggers:

Create or replace trigger instrigger before insert on Employee

Begin

dbms_output.put_line(‘one record inserted successfully.....’);

End;
/

Create a Trigger, which displays a message whenever we insert a new row

in to Employee table.

Example 2.Create a Trigger, Which displays a message whenever we update an

existing row in the tableEmployee

Create or replace trigger updtrigger before update on Employee

Begin

dbms_output.put_line(‘one record updated successfully.....’);

End;

/

.

Example 3.Create a Trigger, which displays a message whenever we delete a row from

the table Employee.

Create or replace trigger deltrigger before delete on Employee

Begin

dbms_output.put_line(‘record(s) deleted successfully.....’);

End;

/



Example 1.
Row Level Triggers:

Create a Trigger, which displays a message whenever we insert a new row

into a tableEmployee.

 219

Create or replace trigger instrigger before insert on Employee
for each row

Begin

dbms_output.put_line(:new.id||’ record inserted successfully.....’);

End;

/

Example 2.Create a trigger, which displays a message whenever we update a row in

the table Employee.

Create or replace trigger updtrigger before update on Employee

for each row
Begin

dbms_output.put_line(:old.id||’ record updated to ‘||:new.id);

End;

/

Example 3.Create a Trigger, which displays a message whenever we delete a row from

the table Employee.

Create or replace trigger deltrigger after delete on Employee

for each row

Begin
dbms_output.put_line(:old.id||’ record deleted successfully.....’);

End;

/

3.5.3 DDL TRIGGERS
Example 1.Create a Trigger, which displays an error message whenever we create a

new table.

Create or replace trigger restrict_CreateTable

 220

 before create on schema
begin

 raise_application_error(-20001,’CREATE Table not Permitted’);

end;

/

As we can see that the above code creates a trigger restrict_CreateTable. Now when

we try to create a table named test it will not allow us to do so.
Example 2.Create a Trigger, which will display an error message whenever we try to

drop any table. Now create one table named Test as shown below.

• Create table Test(tno number(3),tname varchar2(20));

Create or replace trigger restrict_DropTable

before drop on schema

begin

 raise_application_error(-20001,’DROP Table not permitted’);

end;

/

After the above block of code gets executed it will create a trigger restrict_DropTable.

Now try to drop the previously created table Test and check the output.
Example 3.Create a Trigger, which will display an error message whenever we try to

alter any table.

Create or replace trigger restrict_AlterTable

before alter on schema

begin

 raise_application_error(-20001,’ALTER Table not permitted’);

end;

 /

 221

After the above block of code gets executed it will create a trigger restrict_AlterTable.

Now try to alter the previously created table Test and check the output.
Example 4.Create a Trigger, which displays an error message whenever we try to

truncate any table.

Create or replace trigger restrict_TruncateTable

before truncate on schema

begin

 raise_application_error(-20001,’TRUNCATE table not Permitted’);
end;

/

After the above block of code gets executed it will create a trigger

restrict_TruncateTable. Now try to truncate the previously created table Test and check
the output.

3.6 LEVELS OF TRIGGER

Level of trigger can be categorized as follows.

3.6.1 BEFORE INSERT TRIGGER
A Before Insert trigger means the trigger will be fired before the insert operation is

executed.
Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name

BEFORE INSERT
 ON table_name

 [FOR EACH ROW]

DECLARE

 -- variable declarations

BEGIN

 222

 -- trigger code
EXCEPTION

 WHEN ...

 -- exception handling

END;

Suppose we have a table named Customer_Order created as follows:

Create Table Customer_Order

(Custorder_id number(5), Ordquantity number(4),

cost_per_Orditem number(6,2), total_Ordcost number(8,2),

 ord_date date, Ordcreated_by varchar2(10));

After creating the table, we can then use the Create Trigger statement to create a

Before Insert Trigger as follows:
Example:

Create or Replace Trigger Before_InsertData

Before Insert ON Customer_Order

For Each Row

Declare

u_name varchar2(10);
Begin

 Select user INTO u_name from dual;

 -- Update ord_date field with current system date

 :new.ord_date := sysdate;

-- Update Ordcreated_by field to the username of the person performing the

Insert

 :new.Ordcreated_by := u_name;

dbms_output.put_line(‘The Trigger Executed Successfully’);
End;

 223

/

Once the trigger is created insert following records into the table. When we insert the

records the trigger will be invoked implicitly.

• insert into Customer_Order values(1,12,5,60,’28-march-19’,’vinod’);

• insert into Customer_Order values(2,5,15,75,’28-march-19’,’mukesh’);

By observing the above execution, we can say that when we have inserted the records

with date and user ‘28-march-19’,’vinod’ & ‘28-march-19’,’mukesh’ respectively; the
created trigger will fire implicitly on Customer_Order table and replace the date and user

values as per the trigger body.
Note: The values in Ord_Date and OrdCreated_By columns may be different for you as

they depend on system date and user logged in.

3.6.2 AFTER INSERT TRIGGER
An After Insert Trigger means that the trigger will be fired after the insert operation is

executed.
Syntax:

CREATE [OR REPLACE] TRIGGER trigger_name

AFTER INSERT

 ON table_name

 [FOR EACH ROW]

DECLARE

 -- variable declarations

BEGIN

 -- trigger code

EXCEPTION

 WHEN ...

 224

 -- exception handling

END;

/

Example:
Suppose we have a table named Customer as follows:

Create Table Customer

(emp_id number(4), emp_name varchar2(30), creation_date date, created_by

varchar2(30));

We will also create a duplicate table of ‘Customer’ table as ‘Duplicate_Customer’ using

the code below:

Create Table Duplicate_Customer As (select * from Customer);

At this moment we have not inserted any data in ‘Customer’ and ‘Duplicate_Customer’
tables. Now, create a trigger on ‘Customer’ table so that whenever we will enter any

customer record in the ‘Customer’ table the same record also gets stored in ‘Duplicate_

Customer’ table.
Trigger:

Create or Replace Trigger After_InsertData_trigger
After Insert

ON Customer

For each row

Declare

 creator_name varchar2(30);

 creation_date date;

Begin

 225

--Getting the name of the current logged in User
 Select User INTO creator_name From dual;

--setting system date in creation_date

 creation_date := sysdate;

--Inserting data into the Duplicate_Customer table

 Insert into Duplicate_Customer

 Values (:new.emp_id ,:new.emp_name , creation_date ,

creator_name);

End;
/

Here we have created a PL/SQL After Insert Trigger named ‘After_InsertData_trigger’

which will insert a record in the ‘Duplicate_Customer’ table as soon as insert operation

is performed on ‘Customer’ table.
Let’s insert a row in ‘Customer’ table as:

• Insert Into Customer Values (1, ‘himanshu’,sysdate,’vinod’);

After executing above Insert statement, we can query on both the tables and check the

output.

Here using the PL/SQL After Insert Trigger we can see that in the ‘Duplicate_Customer’

table a record got inserted as soon as we inserted a record in ‘Customer’ table.

We can also create trigger for before update, after update, before delete and after

delete operations.

3.6.3 DROP TRIGGER
After creating a trigger in Oracle, we might find that we need to remove it from the

database. We can do this with the Drop Trigger statement.
Syntax:

• Drop Trigger Trigger-Name;
Example:

• Drop trigger After_InsertData_trigger;

 226

3.6.4 ENABLE-DISABLE TRIGGER
Whenever we need to disable the trigger, we can do this with the Alter Trigger

statement.
Example:

• ALTER Trigger Before_Insert_Trigger DISABLE;

Above statement uses the Alter Trigger statement to disable the trigger

called Before_Insert_Trigger.
 Disable all Triggers on a Table

We can disable all triggers associated with a table at the same time using the Alter

Table statement with the Disable All Triggers option. For example, to disable all triggers

defined for the Customer_Order table, we can write the following command.
Syntax:

• Alter table table_name Disable All Triggers;

 Enable a Trigger

Sometimes we want to enable trigger on a table which is disabled earlier. We can do

this with the help of Alter Trigger statement.
Syntax:

• ALTER TRIGGER trigger_name ENABLE;
Example:

• ALTER TRIGGER orders_before_insert ENABLE;

This example uses the Alter Trigger statement to enable the trigger called

orders_before_insert.
 Enable all Triggers on a Table

We can enable all triggers associated with a table at the same time using the Alter

Table statement with the Enable All Triggers option. To enable all triggers defined for

the Customer_Order table, enter the following command.
Syntax:

• Alter Table table_name Enable All Triggers;

 227

Example:

• Alter Table Customer_Order Enable All Triggers;

3.7 USER
To create a user, simply issue the Create User command to generate a new account.

3.7.1 CREATING A USER
Example:

• Create User Ved Identified By rdbms;

Here we have simply created a Ved account that is identified or authenticated by the

rdbms password.
 Privileges and Roles

Privilegesdefines the access rights provided to a user on a database objects. There are

two types of privileges:

I. System Privileges: This privilege allows user to create, alter, or drop database

elements.

II. Object Privileges: This privilege allows user to execute, select, insert, or delete

data from database objects to which the privileges apply.

Roles are the collection of privileges or access rights. In case of many users in a

database it becomes complex to grant or revoke privileges to the users. So, if we define
roles we can automatically grant/revoke privileges.

Data Control Language (DCL) commands are used to enforce database security in a

multiple database environment. Two types of DCL commands used are Grant and

Revoke. Database Administrator's or owner’s of the database object can provide or

remove privileges on a database object.

3.7.2 GRANT COMMAND
SQL Grant command is used to provide access or privileges on the database objects to
the users. The syntax for the GRANT command is:

• GRANT privilege_name ON object_name TO {user_name | PUBLIC |

 228

role_name} [with GRANT option];

Where,

• privilege_name is the access right or privilege granted to the user.

• object_name is the name of the database object like table, view etc.

• user_name is the name of the user to whom an access right is being granted.

• Public is used to grant rights to all the users.

• With Grant option allows users to grant access rights to other users.

In create user section, we have Ved account created, we can now start adding

privileges to the account using the GRANT statement. GRANT is a very important and
powerful command with many possible options. Generally, we first want to assign

privileges to the user through connecting the account to various roles.
Syntax:

• GRANT<privilege> to <user>
Example:

• Grant Connect to Ved;

To allow your user to login, we need to give it the create session privilege as shown
below:

• Grant create session to Ved;

We can give many system privileges in one command also. Grant these to Ved by

chaining them together as shown below:

• Grant create table, create view, create procedure, create sequence to Ved;

In newer versions of oracle it is not necessary but some older version may require that

we manually assign the access rights to the new user to a specific schema and
database tables.

 229

For example, if we want our Ved user to have the ability to perform Select, Update,

Insert and Delete operation on the student table, we might execute the following

GRANT statement:

• Grant select, insert, update, delete on schema.student to Ved;

This ensures that Ved can perform the four basic operation for the student table that is
part of the database schema.

3.7.3 REVOKE COMMAND
The revoke command removes user access rights or privileges to the database objects.

The syntax for the REVOKE command is:

• REVOKE privilege_name ON object_name FROM {User_name | PUBLIC |

Role_name}

For example to revoke select, update, insert privilege granted to Ved then give the
following statement.

• revoke select, update, insert on employee from Ved;

To revoke update statement on employee granted to public then give the following

command.

• revoke update on employee from public;

 Revoking System Privileges and Roles:

We can revoke system privileges or roles using the SQL command revoke. Any user
with the admin capacity for a system privilege or role can revoke the privilege or role

from any other database user. The grantor does not have to be the user that originally

granted the privilege or role. The following statement revokes the create table System

Privilege from Ved:

• Revoke create table from Ved;

 230

 Revoking Object Privileges and Roles:

We can revoke object privileges using the SQL command revoke. To revoke an object

privilege, the revoker must be the original grantor of the object privilege being revoked.

For example, assuming you are the original grantor, to revoke the select and insert
privileges on the employee table from the users Ved and Shrey, you have to issue the

following command:

• Revoke select, insert on employee from Ved, Shrey;

 Revoking Column Selective Object Privileges:

Users can grant specific column level insert, update and references privileges for tables

and views. But they cannot revoke column specific privileges with a similar revoke

statement. For that, the grantor must first revoke the object privilege for all columns of a
table or view, and then regrant the column specific privileges.

For example, assume that role Computer_Science is granted the update privilege on

the deptId and dname columns of the table dept. To revoke the update privilege on just

the deptId column, we have to issue the following two commands:

• Revoke update on dept from Computer_Science;

• Grant update (dname) on dept to Computer_Science;

The revoke statement revokes update privilege on all columns of the dept table from the

role Computer_Science. The grant statement regrants update privilege on the dname

column to the role Computer_Science.

3.7.4 DROP USER
The DROP USER command is used to remove a user from the oracle database and

remove all objects owned by that user.
Syntax:

• DROP USER user_name [CASCADE];

Where:

user_name: It specifies the name of the user to remove from the Oracle database.

 231

CASCADE: It is optional. It specifies that if user_name owns any objects (i.e. tables or

views in its schema), we must specify CASCADE to drop all of these objects.
Example:

If the user does not own any objects in its schema, we can execute the following DROP
USER statement:

• DROP USER Ved;

Above code will drop the user called Ved. This DROP USER command will only run if

Ved does not own any objects in its schema.
If Ved did own objects in its schema, we will need to run the following DROP USER

command:

• DROP USER Ved CASCADE;

This DROP USER statement will remove the user Ved, drop all objects (i.e. tables and
views) owned by Ved, and all referential integrity constraints on Ved's objects will also

be dropped.
 Check Your Progress

1) What is Trigger?

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

2) When do we use triggers?
…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

3) What is INSTEAD OF triggers?

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

4) Differentiate between execution of triggers and stored procedures.

 232

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

5) Write the objects that PL/SQL package may contain.
 …………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….
6) What is PL/SQL packages? State two different parts of the PL/SQL packages.

…………………………………………………………………………………………….

…………………………………………………………………………………………….

…………………………………………………………………………………………….

7) What do you mean by privileges and Grants?
 …………………………………………………………………………………………….

 …………………………………………………………………………………………….

 …………………………………………………………………………………………….

3.8 LET US SUM UP
In this unit we have discussed package and trigger. Package allows us to bundle all the

objects like function, procedure within it and later we can execute them either directly or

from other subprograms. We also learnt that the trigger can be invoked whenever an

event occurs. Event may be an Insert, Update or Delete statement. Throughout Trigger

discussion we observed that it helps us in enforcing business rules that can’t be defined

by using integrity constants. We can generate statistical data using trigger about the

table access. Through trigger we can prevent invalid transaction from execution. So,
both package and trigger objects of PLSQL allows programmer a wide scope in writing

sub programs. At last we have learnt the creation of user, granting roles and privileges

to users and removing the users.

 233

3.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS
1. Trigger is a database object, executes automatically in response to some events on

the tables or views. It is used to maintain the integrity constraint to the database

objects.

2. The word ‘Trigger’ means to activate. Triggers are mainly required for the following

goals:

• To maintain complex integrity constraints on the database tables

• To audit table information by recording the changes

• To signal other program actions when changes are made to database table

• To enforce complex business rules

• To preventing invalid transactions

3. The INSTEAD OF triggers are written especially for updating views, which is not

possible to modify directly through SQL DML statements.

4. Stored procedure is executed explicitly by issuing procedure call statement from

another block while trigger is executed implicitly whenever any triggering event like any

DML operation happens.

5. A PL/SQL package contains;

• PL/SQL table and record TYPE statements

• Procedures and Functions

• Cursors

• Variables and constants

• Exception and pragmas for associating an error number with an exception

6. PL/SQL package is a schema that groups functions, cursors, stored procedures and

variables in one place. PL/SQL packages have the following two parts:

 234

I. Specification part: This part specifies the part where the interface to the application is

defined.

II. Body part: Body part specifies the implementation of the specification is defined.

7. Privileges are the rights to execute SQL commands. Grants are assigned to the
object so that objects can be accessed accordingly. Grants can be assigned by the

owner or creator of an object.

3.10 ASSIGNMENTS
1. Explain the uses of database trigger?

2. Explain 3 basic parts of a trigger.

3. What are the benefits of PL/SQL packages?

4. Explain the difference between Triggers and Constraints?

5. Explain types of triggers supported by PL/SQL with example.

6. Write a trigger that may execute after deleting a record from the table.

7. Define User, role and privileges.
8. Explain Grant and Revoke command with proper example.

3.11 Further Reading

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgramming Language of ORACLE,BPB Publication by Ivan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

4. http://beginner-sql-tutorial.com/sql-grant-revoke-privileges-roles.htm

 235

Unit 4:Managing User Privileges
& Roles and User Profile

Unit Structure

4.1. Learning Objectives & Outcomes

4.2. Introduction

4.3. User Role

4.4. Privileges

4.5. Managing User Role and Privileges

4.6. User Profile

4.7. Let Us Sum Up

4.8. Check your progress: Possible Answers

4.9. Assignments

4.10. Further Reading

4

 236

4.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this chapter is to make the students,
• To understand User Role

• To learn about Privileges

• To understand User Profile.

Outcome:

At the end of this unit,

• Students will be able to understand User Role and Privileges.

• Students will be able to create User Defined Role and assign it to the Users.
• Students will understand difference between System Privileges and Schema

Objects

 Privileges.

• Students will be able to create User Profile.

4.2 INTRODUCTION

Roles, on the other hand, are created by users (usually administrators) and are used to
group together privileges or other roles. They are a means of facilitating the granting of

multiple privileges or roles to users. A user privilege

A user's security domain includes privileges on all schema objects in the corresponding

schema, the privileges granted to the user, and the privileges of roles granted to the

user that are

 is a right to execute a particular

type of SQL statement, or a right to access another user's object.

Each role and user has its own unique security domain. A role's security domain

includes the privileges granted to the role plus those privileges granted to any roles that

are granted to the role.

currently enabled. A role can be simultaneously enabled for one user and

disabled for another. A user's security domain also includes the privileges and roles

 237

granted to the user group PUBLIC. The SESSION_ROLES view shows all roles that are

currently enabled.

In some environments, you can administer database security using the operating
system. The operating system can be used to manage the granting (and revoking) of

database roles and to manage their password authentication. This capability is not

available on all operating systems.

This chapter describes management of different SQL concepts as follows:

• User Roles

• Privileges

• User Profiles.

4.3 User Role

Oracle provides for easy and controlled privilege management through roles. Roles

These properties of roles allow for easier privilege management within a database:

 are

named groups of related privileges that you grant to users or other roles. Roles are

designed to ease the administration of end-user system and schema object privileges.

However, roles are not meant to be used for application developers, because the

privileges to access schema objects within stored programmatic constructs need to be

granted directly.

Reduced privilege

administration

Rather than granting the same set of privileges explicitly to

several users, you can grant the privileges for a group of related

users to a role, and then only the role needs to be granted to

each member of the group.

Dynamic privilege

management

If the privileges of a group must change, only the privileges of the

role need to be modified. The security domains of all users

granted the group's role automatically reflect the changes made

to the role.

Selective You can selectively enable or disable the roles granted to a user.

 238

availability of
privileges

This allows specific control of a user's privileges in any given
situation.

Application

awareness

The data dictionary records which roles exist, so you can design

applications to query the dictionary and automatically enable (or

disable) selective roles when a user attempts to execute the

application by way of a given username.

Application-

specific security

You can protect role use with a password. Applications can be

created specifically to enable a role when supplied the correct

password. Users cannot enable the role if they do not know the

password.

 In general, you create a role to serve one of two purposes: to manage the privileges for

a database application or to manage the privileges for a user group.

 239

Application Roles: You grant an application role all privileges necessary to run a given

database application. Then, you grant the application role to other roles or to specific

users. An application can have several different roles, with each role assigned a

different set of privileges that allow for more or less data access while using the
application.

User Roles: You create a user role for a group of database users with common

privilege requirements. You manage user privileges by granting application roles and

privileges to the user role and then granting the user role to appropriate users.

Database roles have the following functionality:

• A role can be granted system or schema object privileges.

• A role can be granted to other roles. However, a role cannot be granted to itself

and cannot be granted circularly.

• Any role can be granted to any database user.

• Each role granted to a user is, at a given time, either enabled or disabled.

• An indirectly granted role (a role granted to a role) can be explicitly enabled or

disabled for a user. However, by enabling a role that contains other roles, you

implicitly enable all indirectly granted roles of the directly granted role.

Granting and Revoking Roles

You grant or revoke roles from users or other roles using the following options:

• The Grant System Privileges/Roles dialog box and Revoke System

Privileges/Roles dialog box of Oracle Enterprise Manager

• The SQL commands GRANT and REVOKE

Roles can also be granted to and revoked from users using the operating system that

executes Oracle, or through network services.

 240

Any user with the GRANT ANY ROLE system privilege can grant or revoke any

Predefined Roles

 role

(except a global role) to or from other users or roles of the database. Any user granted a

role with the ADMIN OPTION can grant or revoke that role to or from other users or

roles of the database.

The roles CONNECT, RESOURCE, DBA, EXP_FULL_DATABASE, and

IMP_FULL_DATABASE are defined automatically for Oracle databases. These roles

are provided for backward compatibility to earlier versions of Oracle and can be

modified in the same manner as any other role in an Oracle database.

4.4 Privileges

A privilege

• connect to the database (create a session)

 is a right to execute a particular type of SQL statement or to access another

user's object. Some examples of privileges include the right to

• create a table

• select rows from another user's table

• execute another user's stored procedure

You grant privileges to users so these users can accomplish tasks required for their job.

Excessive granting of unnecessary privileges can compromise security. A user can

receive a privilege in two different ways:

• You can grant privileges to users explicitly.

• You can also grant privileges to a role (a named group of privileges), and then

grant the role to one or more users.

There are two distinct categories of privileges:

• System privileges
• Schema object privileges

 241

 A. System Privileges

A system privilege is the right to perform a particular action, or to perform an action on
any schema objects of a particular type. For example, the privileges to create

tablespaces and to delete the rows of any table in a database are system privileges.

There are over 100 distinct system privileges. Each system privilege allows a user to

perform a particular database operation or class of database operations.

You can grant or revoke system privileges to users and roles. If you grant system

privileges to roles, you can use the roles to manage system privileges System privileges

are granted to or revoked from users and roles using either of the following:

• The Grant System Privileges/Roles dialog box and Revoke System

Privileges/Roles dialog box of Oracle Enterprise Manager

• The SQL commands GRANT and REVOKE

Only users who have been granted a specific system privilege with the ADMIN OPTION

or users with the GRANT ANY PRIVILEGE system privilege can grant or revoke system

privileges to other users.

Because system privileges are so powerful, Oracle recommends that you configure your
database to prevent regular (non-DBA) users exercising ANY system privileges (such

as UPDATE ANY TABLE) on the data dictionary. In order to secure the data dictionary,

ensure that the O7_DICTIONARY_ACCESSIBILITY initialization parameter is set
to FALSE

B. Schema Object Privileges

. This feature is called the dictionary protection mechanism.

A schema object privilege is a privilege or right to perform a particular action on

a specific

table, view, sequence, procedure, function, or package. Different object

privileges are available for different types of schema objects.

 242

Some schema objects (such as clusters, indexes, triggers, and database links) do not

have associated object privileges; their use is controlled with system privileges. For

example, to alter a cluster, a user must own the cluster or have the ALTER ANY

CLUSTER system privilege.

A schema object and its synonym are equivalent with respect to privileges; that is, the

object privileges granted for a table, view, sequence, procedure, function, or package

apply whether referencing the base object by name or using a synonym.

Schema object privileges can be granted to and revoked from users and roles. If you

grant object privileges to roles, you can make the privileges selectively available.

Object privileges for users and roles can be granted or revoked using the SQL
commands GRANT and REVOKE, respectively, or the Add Privilege to Role/User

dialog box and Revoke Privilege from Role/User dialog box of Oracle Enterprise

Manger.

4.5 Managing User Role and Privileges

4.5.1. CREATE ROLE

You may wish to create a role so that you can logically group the users' permissions.

Please note that to create a role, you must have CREATE ROLE system privileges.

You must give each role you create a unique name among existing user names and role

names of the database. Roles are not contained in the schema of any user. In a

database that uses a multibyte character set, Oracle recommends that each role name

contain at least one single-byte character. If a role name contains only multibyte

characters, then the encrypted role name and password combination is considerably

less secure.

Syntax

 243

CREATE ROLE <ROLE_NAME>
[NOT IDENTIFIED | IDENTIFIED {BY password | USING [schema.] package |
EXTERNALLY | GLOBALLY }] ;

Where,
ROLE_NAME: The name of the new role that you are creating. This is how you will

refer to the grouping of privileges.
NOT IDENTIFIED: It means that the role is immediately enabled. No password is

required to enable the role.
IDENTIFIED: It means that a user must be authorized by a specified method before the

role is enabled.
BY password: It means that a user must supply a password to enable the role.
USING package: It means that you are creating an application role - a role that is

enabled only by applications using an authorized package.
EXTERNALLY: It means that a user must be authorized by an external service to

enable the role. An external service can be an operating system or third-party service.
GLOBALLY: It means that a user must be authorized by the enterprise directory

service to enable the role.

If both NOT IDENTIFIED and IDENTIFIED

 are omitted in the CREATE ROLE
statement, the role will be created as a NOT IDENTIFIED role.

Example
CREATE ROLE DEMO_ROLE;

It will create New Role called DEMO_ROLE;

A. Grant TABLE Privileges to Role

Once you have created the role in Oracle, your next step is to grant privileges to that

role.

 244

Just as you granted privileges to users, you can grant privileges to a role. Let's start with

granting table privileges to a role. Table privileges can be any combination of SELECT,

INSERT, UPDATE, DELETE, REFERENCES, ALTER, INDEX, or ALL.

Syntax
GRANT <PRIVILEGES> ON <OBJECT> TO <ROLE_NAME>;
Where,
Privileges: The privileges to assign to the role. It can be any of the following values:

Privilege Description

SELECT Ability to perform SELECT statements on the table.

INSERT Ability to perform INSERT statements on the table.

UPDATE Ability to perform UPDATE statements on the table.

DELETE Ability to perform DELETE statements on the table.

REFERENCES Ability to create a constraint that refers to the table.

ALTER Ability to perform ALTER TABLE statements to change the table
definition.

INDEX Ability to create an index on the table with the create index

statement.

ALL All privileges on table.

Object: The name of the database object that you are granting privileges for. In the

case of granting privileges on a table, this would be the table name.
Role_Name: The name of the role that will be granted these privileges.

Example

1. If you wanted to grant SELECT, INSERT, UPDATE, and DELETE privileges on a

table called salesman to a role named DEMO_ROLE

, you would run the following

GRANT statement:
GRANT select, insert, update, delete ON salesman TO DEMO_ROLE;

https://www.techonthenet.com/oracle/grant_revoke.php�

 245

2. You can also use the ALL keyword to indicate that you wish all permissions to be
granted. GRANT all ON salesman TO DEMO_ROLE;

B. Revoke Table Privileges from Role
Once you have granted table privileges to a role, you may need to revoke some or all of

these privileges. To do this, you can execute a revoke command. You can revoke any

combination of SELECT, INSERT, UPDATE, DELETE, REFERENCES, ALTER,

INDEX, or ALL.

Syntax
REVOKE <PRIVILEGES> ON <OBJECT> FROM <ROLE_NAME>;

Where,
Privileges: The privileges to revoke from the role. It can be any of the following values:

Privilege Description

SELECT Ability to perform SELECT statements on the table.

INSERT Ability to perform INSERT statements on the table.

UPDATE Ability to perform UPDATE statements on the table.

DELETE Ability to perform DELETE statements on the table.

REFERENCES Ability to create a constraint that refers to the table.

ALTER Ability to perform ALTER TABLE statements to change the table

definition.

INDEX Ability to create an index on the table with the create index

statement.

ALL All privileges on table.
Object: The name of the database object that you are revoking privileges for. In the

case of revoking privileges on a table, this would be the table name.
Role_Name: The name of the role that will have these privileges revoked.

 246

Example

1. If you wanted to revoke DELETE privileges on a table called salesman from a role

named DEMO_ROLE, you would run the following REVOKE statement:
REVOKE delete ON salesman FROM DEMO_ROLE;

2. If you wanted to revoke ALL privileges on the table called Salesman from a role

named DEMO_ROLE

, you could use the ALL keyword.
REVOKE all ON salesman FROM DEMO_ROLE;

4.5.2. GRANT ROLE TO USER

Now, that you've created the role and assigned the privileges to the role, you'll need to

grant the role to specific users.

Syntax
GRANT <ROLE_NAME> TO <USER_NAME>;

Where,
Role_Name: The name of the role that you wish to grant.

User_Name: The name of the user that will be granted the role.

Example
1. GRANT DEMO_ROLE TO SCOTT;
This example would grant the role called DEMO_ROLE to the user named SCOTT

.

A. Enable/Disable Role (Set Role Statement)

To enable or disable a role for a current session, you can use the SET ROLE statement.

When a user logs into Oracle, all default

 roles are enabled, but non-default roles must

be enabled with the SET ROLE statement.

 247

Syntax
SET ROLE (ROLE_NAME [IDENTIFIED BY PASSWORD] | ALL [EXCEPT ROLE1,
ROLE2, ...] | NONE);
Role_Name: The name of the role that you wish to enable.
IDENTIFIED BY password: The password for the role to enable it. If the role does not

have a password, this phrase can be omitted.
ALL: It means that all roles should be enabled for this current session, except those

listed in EXCEPT

.
NONE: Disables all roles for the current session (including all default roles).

Example
SET ROLE DEMO_ROLE IDENTIFIED BY demo123;
This enable the role called DEMO_ROLE with a password of demo123.

B. Set role as DEFAULT Role

A default role means that the role is always enabled for the current session at logon. It

is not necessary to issue the SET ROLE statement. To set a role as a DEFAULT ROLE,

you need to issue the ALTER USER statement.

Syntax
ALTER USER <USER_NAME> DEFAULT ROLE (<ROLE_NAME> | ALL [EXCEPT
ROLE1, ROLE2, ...] | NONE);

Where,
USER_NAME: The name of the user whose role you are setting as DEFAULT.

ROLE_NAME: The name of the role that you wish to set as DEFAULT.

ALL: It means that all roles should be enabled as DEFAULT, except those listed

in EXCEPT

.
NONE: Disables all roles as DEFAULT.

Example

 248

ALTER USER scott DEFAULT ROLE DEMO_ROLE;

It would set the role called DEMO_ROLE as a DEFAULT role for the user named scott

.

4.5.3. DROP ROLE

In some cases, it may be appropriate to drop a role from the database. The security
domains of all users and roles granted a dropped role is immediately changed to reflect

the absence of the dropped role privileges. All indirectly granted roles of the dropped

role are also removed from affected security domains. Dropping a role automatically

removes the role from all user default role lists.

Because the creation of objects is not dependent on the privileges received through a

role, tables and other objects are not dropped when a role is dropped.

Syntax
DROP ROLE <ROLE_NAME>;

Example
DROP ROLE DEMO_ROLE;

It will drop the role called DEMO_ROLE that we defined earlier.

4.6 USER PROFILE

Profile

• To create a profile, you must have the CREATE PROFILE system privilege.

is a set of limits on database resources. If you assign the profile to a user, then

that user cannot exceed these limits. Use profiles to limit the database resources

available to a user for a single call or a single session.

Prerequisites

• To specify resource limits for a user, you must:

 249

• Enable resource limits dynamically with the ALTER SYSTEM statement or with the

initialization parameter RESOURCE_LIMIT. This parameter does not apply to

password resources. Password resources are always enabled.

• Create a profile that defines the limits using the CREATE PROFILE statement

• Assign the profile to the user using the CREATE USER or ALTER USER statement

Oracle Database enforces resource limits in the following ways:

• If a user exceeds the CONNECT_TIME or IDLE_TIME session resource limit,

then the database rolls back the current transaction and ends the session. When

the user process next issues a call, the database returns an error.

• If a user attempts to perform an operation that exceeds the limit for other session

resources, then the database aborts the operation, rolls back the current

statement, and immediately returns an error. The user can then commit or roll

back the current transaction, and must then end the session.

• If a user attempts to perform an operation that exceeds the limit for a single call,

then the database aborts the operation, rolls back the current statement, and

returns an error, leaving the current transaction intact.

4.6.1. CREATE PROFILE

Syntax

CREATE PROFILE <PROFILE_NAME> LIMIT [Resource Parameter | Password
Parameter] ;

 250

UNLIMITED

When specified with a resource parameter, UNLIMITED indicates that a user assigned

this profile can use an unlimited amount of this resource. When specified with a

password parameter, UNLIMITED indicates that no limit has been set for the
parameter.

DEFAULT

Specify DEFAULT if you want to omit a limit for this resource in this profile. A user

assigned this profile is subject to the limit for this resource specified in

the DEFAULT profile. The DEFAULT profile initially defines unlimited resources. You

can change those limits with the ALTER PROFILE statement.

Any user who is not explicitly assigned a profile is subject to the limits defined in

the DEFAULT profile. Also, if the profile that is explicitly assigned to a user omits limits

for some resources or specifies DEFAULT for some limits, then the user is subject to

the limits on those resources defined by the DEFAULT profile.

RESOURCE_PARAMETERS

• SESSIONS_PER_USER: Specify the number of concurrent sessions to which you

want to limit the user.

• CPU_PER_SESSION: Specify the CPU time limit for a session, expressed in

hundredth of seconds.

• CPU_PER_CALL: Specify the CPU time limit for a call (a parse, execute, or fetch),

expressed in hundredths of seconds.

• CONNECT_TIME: Specify the total elapsed time limit for a session, expressed in

minutes.

• IDLE_TIME: Specify the permitted periods of continuous inactive time during a

session, expressed in minutes. Long-running queries and other operations are not

subject to this limit.

 251

• LOGICAL_READS_PER_SESSION: Specify the permitted number of data blocks

read in a session, including blocks read from memory and disk.

• LOGICAL_READS_PER_CALL: Specify the permitted number of data blocks read

for a call to process a SQL statement (a parse, execute, or fetch).

• PRIVATE_SGA: Specify the amount of private space a session can allocate in the

shared pool of the system global area (SGA). Please refer to size_clause for

information on that clause.

PASSWORD_PARAMETERS

Use the following clauses to set password parameters. Parameters that set lengths of

time are interpreted in number of days. For testing purposes you can specify minutes

(n/1440) or even seconds (n/86400).

• FAILED_LOGIN_ATTEMPTS: Specify the number of failed attempts to log in to

the user account before the account is locked.

• PASSWORD_LIFE_TIME: Specify the number of days the same password can be

used for authentication. If you also set a value for PASSWORD_GRACE_TIME, the

password expires if it is not changed within the grace period, and further

connections are rejected. If you do not set a value for PASSWORD_GRACE_TIME,

its default of UNLIMITED will cause the database to issue a warning but let the user

continue to connect indefinitely.
• PASSWORD_REUSE_TIME and PASSWORD_REUSE_MAX: These two

parameters must be set in conjunction with each

other. PASSWORD_REUSE_TIME specifies the number of days before which a

password cannot be reused. PASSWORD_REUSE_MAX specifies the number of

password changes required before the current password can be reused. For these

parameter to have any effect, you must specify an integer for both of them.

• If you specify an integer for both of these parameters, then the user cannot

reuse a password until the password has been changed the password the
number of times specified for PASSWORD_REUSE_MAX during the number

of days specified for PASSWORD_REUSE_TIME.

https://docs.oracle.com/cd/B19306_01/server.102/b14200/clauses008.htm#CHDEIJBC�

 252

• If you specify an integer for either of these parameters and

specify UNLIMITED for the other, then the user can never reuse a password.

• If you specify DEFAULT for either parameter, then Oracle Database uses the

value defined in the DEFAULT profile. By default, all parameters are set
to UNLIMITED in the DEFAULT profile. If you have not changed the default

setting of UNLIMITED in the DEFAULT profile, then the database treats the

value for that parameter as UNLIMITED.

• If you set both of these parameters to UNLIMITED, then the database ignores

both of them.
• PASSWORD_LOCK_TIME: Specify the number of days an account will be locked

after the specified number of consecutive failed login attempts.
• PASSWORD_GRACE_TIME: Specify the number of days after the grace period

begins during which a warning is issued and login is allowed. If the password is not

changed during the grace period, the password expires.
• PASSWORD_VERIFY_FUNCTION: The PASSWORD_VERIFY_FUNCTION claus

e lets a PL/SQL password complexity verification script be passed as an argument

to the CREATEPROFILE statement.

Examples

The following statement creates the profile named NEW_USER_PROFILE:
CREATE PROFILE NEW_USER_PROFILE LIMIT
PASSWORD_REUSE_MAX 10
PASSWORD_REUSE_TIME 30;

 Check Your Progress

21. How can any user Grant/Revoke a granted role to/from other users?

……………………………………………………………………………………………
……………………………………………………………………………………………

 ……………………………………………………………………………………………

 253

22. How can user receive a Privileges?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
23. Explain Set Role Statement of SQL.

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………
24. What is User Profile?

……………………………………………………………………………………………

……………………………………………………………………………………………

 ……………………………………………………………………………………………

4.7 LET US SUM UP

In this chapter, we have learnt about Role and Privileges. We have also concluded
the system and object privileges. We have also explored different operation of User

Role like Create, Grant and Revoke Role and Drop. We have come to know how can

we set limits on resources for any user using profiles.

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

5. Any user Granted a role with ADMIN OPTION can Grant/Revoke that role

to/from any other users.
6. A user can receive Privileges in two different ways.

a. Grant Privileges to Users explicitly

b. Grant Privileges to a Role and then Grant that Role to one or more

users.

7. Set Role Statement is used to Enable or Disable a role for the current

session.

 254

8. User Profile is a set of limits on database resources and user cannot exceed

these limits.

4.9 ASSIGNMENTS

1. Explain Privileges. Also describe difference between System Privileges and

Object Privileges.
2. What is User Role? Describe with all options.

3. Explain User Profile in detail with all parameters.

4.10 Further Reading

1. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

2. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 255

 Block-4

Introduction to PL/SQL

 256

Unit 1: Introduction to PL/SQL

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. PL/SQL Environment

1.4. Advantages of PL/SQL

1.5. Fundamentals of PL/SQL

1.6. Data types and Variables

1.7. Let Us Sum Up

1.8. Check Your Progress: Possible Answers

1.9. Assignments

1.10. Further Reading

1

 257

1.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn, understand basics of PL/SQL and its Block structure

• To learn, declare and initialize identifiers in PL/SQL block

• To learn, understand and access local and global variables

Outcome:

At the end of this unit,

• Students will be able to declare, initialize and access local and global variables

• Students will be able to write a PL/SQL block and execute it
• Students will be able to print the message or value from the PL/SQL block

1.2 INTRODUCTION

PL/SQL is Oracle's procedural language extension to SQL, a relational database

language. PL/SQL thoroughly integrates modern software engineering features such as

data encapsulation, information hiding, overloading, exception handling. We don’t have

a separate place or prompt for executing our PL/SQL programs. PL/SQL technology is
like an engine that executes PL/SQL blocks and subprograms. Due to the strong

integration of SQL and PL/SQL, PL/SQL is very effective in data manipulation.

SQL* Plus is an interactive and batch query tool that will be installed with every Oracle

installation. We can found it at Start -> Programs -> Oracle-OraHomeName ->

Application Development -> SQL Plus. It has also a command line user interface,

Windows GUI, and web-based user interface. It allows the user to connect to the

database and execute PL/SQL commands.

1.3 PL/SQL ENVIRONMENT

With PL/SQL, we can use SQL statements to manipulate ORACLE data and flow of

control statements to process the data. Moreover, we can also declare constants,

variables, define subprograms (procedures and functions) and handle runtime errors.

 258

Thus, PL/SQL combines the data manipulating power of SQL with the data processing

power of procedural languages.

Figure 1 PL/SQL Environment

PL/SQL engine executes procedural statements and sends SQL part of statements to

SQL statement processor in the Oracle server. PL/SQL combines the data manipulating

power of SQL with the data processing power of procedural languages.

1.3.1 PL/SQL BLOCK STRUCTURE
PL/SQL is a block-structured language. i.e. Programs of PL/SQL contain logical blocks.

 259

Figure 2 PL/SQL Block Structure

As shown in the Figure 2 a PL/SQL block has three parts;
1. Declaration: Necessary variables are declared in this section. It is optional. This is

an optional section of the code block. It contains the name of the local objects that will

be used in the code block. These include variables, cursor definitions, and exceptions.

This section begins with the keyword Declare.
2. Begin: This section contains executable statements of SQL and PL/SQL. This is the

only mandatory section. It contains the statements that will be executed. These consist

of SQL statements, DML statements, procedures (PL/SQL code blocks), functions
(PL/SQL code blocks that return a value), and built-in subprograms. This section starts

with the keyword Begin.
3. Exception: Any error occurred while executing the statements in begin part can be

handled in this part. This is an optional section. It is used to “handle” any errors that

occur during the execution of the statements and commands in the executable section.

This section begins with the keyword Exception.

The code block is terminated by the End keyword. This is the only keyword within the

construct that is followed by a semi-colon (;). The only required section is the

 260

executable section. This means the code block must have the Begin and End keywords.

The code block is executed by the slash (/) symbol.
13.2.2 PL/SQL Block Types

There are three PL/SQL Block types as shown in figure 3.

Figure 3 Pl/SQL Block types

PL/SQL is a block-structured language. The named blocks are called subprograms and
unnamed blocks are called anonymous blocks. Subprograms can be referred as either

functions or procedures. The difference between functions and procedures is that a

function can be used in an expression and it returns a value to that expression. A

procedure is invoked as a standalone statement and passes values to the calling

program only through parameters. Subprograms can be nested within one another and

can be grouped in larger units called packages. The basic units (procedures, functions,

and anonymous blocks) that make up a PL/SQL program are logical blocks, which can

contain any number of nested sub-blocks. Typically, each logical block corresponds to a
problem or sub-problem to be solved. Anonymous block don’t have the name.

1.4 ADVANTAGES OF PL/SQL

There are various advantages of using PL/SQL. They are,

 261

1. It is a portable and easy language.

2. We can declare identifiers.

3. We can program with procedural language control structures.

4. It can handle errors and prevents program from abnormal termination using the
exception handling mechanism.

5. It modularizes program development through various PL/SQL blocks such as

Procedure and functions.

6. It integrates with Oracle server and shared library.

7. It improves performance through better communication with underlying DBMSs.

1.5 FUNDAMENTALS OF PL/SQL

Lexical Units

PL/SQL is not case-sensitive language, so lower-case letters are equivalent to

corresponding upper-case letters except within string and character literals. A line of

PL/SQL text contains groups of characters known as lexical units, which can be

classified as follows:
I. Delimiters (Simple and Compound Symbols)

A delimiter is a simple or compound symbol that has a special meaning to PL/SQL. For
example, we can use delimiters to represent arithmetic operations such as addition and

subtraction.
II. Identifiers (include Reserved Words)

We can use identifiers to name PL/SQL program objects and units, which include

constants, variables, exceptions, cursors, subprograms and packages. Some identifiers

called Reserved Words, have a special syntactic meaning to PL/SQL and so cannot be

redefined. For flexibility, PL/SQL lets us to enclose identifiers within double quotes.

Quoted identifiers are seldom needed, but occasionally they can be useful.
III. Literals

A literal is an explicit numeric, character, string, or Boolean value not represented by an

identifier. Two kinds of numeric literals can be used in arithmetic expressions: integers

and reals.

 262

•String literal is a sequence of zero or more characters enclosed by single quotes. All

string literals except the null string (`') belong to type CHAR. PL/SQL is case-sensitive

within string literals.

•Boolean literals are the predefined values TRUE and FALSE and the non-value NULL
(which stands for a missing, unknown, or inapplicable value). Boolean literals are not

strings.
IV. Comments

The PL/SQL compiler ignores comments. Adding comments to our program enhances

readability and guides the user in understanding the code. PL/SQL supports two types

of comment styles, single-line and multiline.

• Single-line comments begin with a double hyphen (--) anywhere on a line and extend

to the end of the line.
• Multiline comments begin with a slash asterisk (/*), end with an asterisk-slash (*/), and

can span multiple lines. We cannot nest comments.
Example: In this code, we are going to print ‘Welcome to GVP’ and we are also going to

check how the commented lines behave in the code.

BEGIN
 --This is a single line comment

dbms output.put line (‘Welcome to GVP’);

/*Multi line comments starts

Multi line comment ends */

END;

/

1.6 DATATYPES AND VARIABLES

Every constant and variable has a datatype, which specifies a storage format,

constraints and valid range of values.

PL/SQL provides a variety of predefined scalar and composite datatypes. A scalar type
has no internal components. A composite type has internal components that can be

manipulated individually. PL/SQL mostly used datatypes are discussed below.

 263

• NUMBER

We use the NUMBER datatype to store fixed or floating point numbers of virtually any

size. We can specify precision, which is the total number of digits and scale, which

determines where rounding occurs.
NUMBER[(precision, scale)]

We cannot use constants or variables to specify precision and scale; we must use an

integer literals.
• CHAR

We use the CHAR datatype to store fixed-length character data. The CHAR datatype

takes an optional parameter that lets us to specify a maximum length up to 32767 bytes.

CHAR[(maximum_length)]

We cannot use a constant or variable to specify the maximum length; we must use an
integer literal. If we do not specify the maximum length, it defaults to 1.
• VARCHAR2

We use the VARCHAR2 datatype to store variable-length character data. The

VARCHAR2 datatype takes a required parameter that lets us to specify a maximum

length up to 32767 bytes.

VARCHAR2(maximum_length)

We cannot use a constant or variable to specify the maximum length; we must use an

integer literal.
• BOOLEAN

We use the BOOLEAN datatype to store the values TRUE and FALSE and the non-

value NULL. NULL stands for a missing, unknown, or inapplicable value. The

BOOLEAN datatype takes no parameters.
• DATE

We use the DATE datatype to store fixed-length date values. The DATE datatype takes

no parameters. Valid dates for DATE variables include January 1, 4712 BC to

December 31, 4712 AD. When stored in the database column, date values will include
the time of day in seconds since midnight. The default date portion is the first day of the

current month and the default time portion is the midnight.
Defining Variables

 264

Variables are defined in the declaration section of the program. The syntax is:

• Variable_name datatype(precision);

The definition must end with a semi-colon. The definition statement begins with the

variable name and contains the data type. A value may also be assigned to the variable

during the definition statement. The variable may also be constrained.
Variables are used to store results. Forward references are not allowed. So we have to

first declare the variable and then use it. Variables can have any SQL datatype, such as

CHAR, DATE, NUMBER etc or any PL/SQL datatype like BOOLEAN,

BINARY_INTEGER etc.

We have to initialize variables designated as NOT NULL and CONSTANT. We have to

initialize identifiers by using the assignment operator (:=) or the DEFAULT reserved

word.
Declaring Variables

Variables are declared in DECLARE section of PL/SQL.

DECLARE

Stu_No number (3);

Stu_Name varchar2 (15);

_ _ _

BEGIN
Variable Initialization
Variables and constants are initialized every time a block or subprogram is entered. By

default, variables are initialized to NULL. So, unless you explicitly initialize a variable, its

value is undefined. Scalar variable declaration and initialization examples are as

follows.

var_job VARCHAR2(9);

var _count BINARY_INTEGER := 0;

var _total_sal NUMBER(9,2) := 0;

var _orderdate DATE := SYSDATE + 3;
var _tax_rate CONSTANT NUMBER(3,2) := 8.25;

var _valid BOOLEAN NOT NULL := TRUE;
Constraints Definitions

 265

Constraints can be placed on the variables defined in the code block. A constraint is a

condition that is placed on the variable. Two common constraints are:
• Constant: This constraint will cause Oracle to ensure the value is not changed after a

value is initially assigned to the variable. If a statement tries to change the variable
value, an error will occur. The following is the example of constrained variable

definitions:

PI constant number(9,8) := 3.14159265;
• Not Null: This constraint will cause Oracle to ensure the variable always contains a

value. If a statement attempts to assign a null value to the variable, an error will occur.

The following is the example of constrained variable definitions:

Date_of_Birth not null date := ‘26-March-2019’;

Declaration and usage of variables:

Here we are going to print the ‘Welcome to BAOU, Ahmedabad’ using the variables and

execute it.

 Set Serveroutput on;

DECLARE
msg VARCHAR2(50);

BEGIN

msg:= ‘Welcome to BAOU,Ahmedabad’;

dbms_output.put_line (msg);

END:

/
Output:

Welcome to BAOU,Ahmedabad

SET SERVEROUTPUT ON

It is a command used to access results from Oracle Server. A PL/SQL program always

followed by a slash (“/“) on a line by itself. It sends the information to the compiler that

the end of the block is reached. Without ‘/’, the compiler will not consider the block is

 266

completed, and it will not execute it. DBMS_OUTPUT is a package and PUT_LINE is a

function in it.

Scope of Variables
A variable in PL/SQL block is as local to that block and global to all its Sub-blocks. If we

redeclare an identifier in a sub-block, we cannot reference the global identifier except

we use a qualified name.
Example:

In the given example declaration two variables named num1 and num2 are in the outer

block (i.e. Global variable) and third variable named num_sum declared into the inner

block (i.e. local variable). Variable ‘num_sum’ is declared in inner block so can't access

in the outer block. But no1 and no2 can be accessed anywhere in the block.

DECLARE

 no1 number := 25;

 no2 number := 15;

BEGIN

 DECLARE
num_sum number;

 BEGIN

num_sum := no1 + no2;

 dbms_output.put_line(‘Sum is: ‘ || num_sum);

 END;

END;

/
Output:
Sum is: 40

We can use OUTER keyword to access outer block variable inside the inner block. It is

called global qualifier name space.
Example:

 267

DECLARE
 no number := 25;

BEGIN

 DECLARE

 no number := 15;

 BEGIN

 IF no > OUTER.no THEN

 DBMS_OUTPUT.PUT_LINE(‘Inner variable is greater than outer variable’);

 ELSE
 DBMS_OUTPUT.PUT_LINE(‘Inner variable is smaller than outer variable’);

 END IF;

 END;

END;

/
Output:

Inner variable is smaller than outer variable

 Check Your Progress

1) What is the use of Dbms_output.put_line()?

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

. ……………………………………………………………………………………

…………..

2) How do we get input from user in PL/SQL?

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

 268

. ……………………………………………………………………………………………...

…………………………………………………………………………………… ………….

3) While doing comparisons which rules to be applied to NULLs?

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

. ……………………………………………………………………………………

…………..

4) Write a PL/SQL program to add two numbers?

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

. ……………………………………………………………………………………

…………..

5) The PL/SQL engine executes the procedural commands and passes the SQL
commands to the Oracle server to process. State True or False.

 ………………………………………………………………………………………………..

.
6) Explain types of PL/SQL blocks.

 ………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..
.……………………………………………………………………………………

1.7LET US SUM UP

 269

In this unit, we have discussed about PL/SQL block, its benefit along with the use of

SQL* Plus tool. We have also discussed about how to write the simple PL/SQL program

and how to declare and use a variable in them. We have also used one package

DBMS_OUTPUT to print the message.

1.8CHECK YOUR PROGRESS : POSSIBLE ANSWERS

 Check Your Progress

1. Dbms_output.put_line() statement takes a parameter which can be printed onto

the console screen. When we start the SQL Command Prompt or Terminal, first

we have to type:
 Set serveroutput on;

This statement activates the working of print statement on the console screen.

2. We can get input from the user using the ‘&’ sign. For example, to get input in to

variable num,

num:=#

This statement will assign the value that the user enters for the variable.

3. While Comparison we need to keep in mind that,

I. NULL will never be TRUE or FALSE

II. NULL cannot be equal or unequal to other values

III. When a value in an expression is NULL, then the expression itself

evaluates to NULL except for concatenation operator (||)

4. Declare
no1 integer;

no2 integer;

sum integer;

Begin

no1:=& no1;

no2:=& no2;

sum:= no1 + no2;

 270

dbms_output.put_line(sum);

End;

/

5. True
6. PL/SQL blocks are of two types:

 1. Anonymous blocks: A PL/SQL blocks without header are known as anonymous

blocks.

 These blocks do not form the body of a procedure, function or triggers.
 Example:

DECLARE

digit NUMBER(2);

sqr NUMBER(3);
BEGIN

digit:= &Number1;

sqr:= digit * digit;

DBMS_OUTPUT.PUT_LINE(‘Square:’ || sqr);

END;

2. Named blocks: PL/SQL blocks with header or labels are known as Named

blocks. Named blocks may either be subprograms (procedures, functions,

packages) or Triggers.
Example:

FUNCTION squar (digit IN NUMBER)

RETURN NUMBER is sqr NUMBER(2);

BEGIN

sqr:= digit * digit;

RETURN sqr;

END;

1.9ASSIGNMENT
1. Define PL/SQL.

2. Discuss PL/SQL environment and block structure.

3. What is local and global variable access in PL/SQL block?

 271

4. Discuss various advantages of PL/SQL.

5. Write a PLSQL code to check whether a number is prime or not.

1.10 FURTHER READING
1. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

2. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

3. https://way2tutorial.com/plsql/

4. https://www.guru99.com/pl-sql-first-program-helloworld.html

https://way2tutorial.com/plsql/�
https://www.guru99.com/pl-sql-first-program-helloworld.html�

 272

Unit 2: Cursor

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Cursor Execution Cycle

2.4. Types of Cursor

2.5. Cursor for Loop

2.6. Parameterized Cursor

2.7. Let Us Sum Up

2.8. Check Your Progress: Possible Answers

2.9. Assignments

2.10. Further Reading

2

 273

2.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn and understand Cursor and its execution cycle

• To define, declare and initialize Cursor to access data

• To learn and understand different types of Cursor

• To learn accessing Cursor through for loop

Outcome:

At the end of this unit,

• Students will be able to declare, initialize and access Cursor
• Students will be able to declare Cursor and write a PL/SQL block to access Cursor

data

• Students will be able to write implicit, explicit and parameterized Cursor

14.2 INTRODUCTION

A cursor is a pointer to an area of memory, called a context area. The context area is

allocated by oracle in order to process a SQL statement. The cursor allows PL/SQL to
control what happens to the context area when a statement is processed. It can be used

by user to process the output of a select statement that returns more than one row.

Oracle uses a work area to execute SQL commands and store processing information.

PL/SQL allows us to access this area through a name using a Cursor. For the execution

of every SQL statement certain area in memory is allocated. This private SQL area is

called context area or Cursor. A cursor works as a handle or pointer into the context
area.

When we declare a cursor, we get a pointer variable, which initially doesn’t point

anywhere. When the cursor is opened, memory is allocated and the cursor structure is

created. The cursor variable will now points the cursor. When the cursor is closed the

memory allocated for the cursor is released. Cursors allow the programmer to retrieve

data from a table and perform actions on that data one row at a time.

 274

2.3 CURSOR EXECUTION CYCLE

The important steps in the cursor execution cycle are OPEN, FETCH and CLOSE. A
cursor execution cycle refers to the stages which a cursor follows to process and

execute the query. The phases of cursor execution cycle are listed below:

Figure 1: Cursor Execution Cycle

The activity carried out by the server in the key phases is:
1. OPEN Phase

In this phase,PGA memory is allocated for cursor processing, SELECT statement is

parsed, Variable binding takes place, SELECT Query executes and finally pointer

moves to the first record.
2. FETCH Phase

In this phase, the record to which the record pointer points, is retrieved from the result
set. The record pointer will move only in the forward direction. The FETCH phase lives

until the last record is reached.
3. CLOSE Phase

After the last record of the result set is reached, cursor is closed and allocated memory

will be garbage collected and returned back to SGA. If an open cursor is not closed,

oracle automatically closes it after the execution of its parent block.

2.4 Types of Cursor
There are two types of cursors.

• Implicit cursor

• Explicit cursor

 275

2.4.1 IMPLICIT CURSORS
PL/SQL declares an implicit cursor for every DML command, queries it, which will return

a single row. The name of the implicit cursor is SQL. We can directly use this cursor

without any declaration.

For SQL queries which returns single row, PL/SQL declares implicit cursors. Implicit

cursors are simple SELECT statements and are written in the BEGIN block (executable

phase) of the PL/SQL. Implicit cursors retrieve exactly one row. The most commonly
raised exceptions are NO_DATA_FOUND or TOO_MANY_ROWS.

For Example:

• Select sname, ssalary into sna, ssa from salesman where sno = 542;
Note: sname and ssalary are columns of the table salesman and sna and ssa are the

variables

used to store sname and ssalary fetched by the query.

Oracle implicitly opens a cursor to process each SQL statement not associated with an

explicitly declared cursor. We can refer to this cursor using the name SQL.
We cannot use the OPEN, FETCH, and CLOSE statements with SQL cursor. But, we

can use cursor attributes to get information about the most recently executed SQL

statement.

The following code shows how to use implicit cursor to know whether the most recent

UPDATE has updated any rows or not.

DECLARE

BEGIN

update . . .

if SQL%NOTFOUND then

statements;

end if;

END;

NOTFOUND is an attribute of implicit cursor that will returns true if previous UPDATE

command has not affected any row.

 276

 Implicit Cursor Attributes

Cursor attributes do not have the similar meaning for both explicit and implicit cursors.

The following are the attributes of implicit cursor.

1. NOTFOUND: It returns true, if previous DML operation didn’t affect any row.
2. FOUND: It returns true, if previous DML operation affected any row.

3. ROWCOUNT: It returns number of rows affected by the most recent DML

operation.

The following code shows how to use ROWCOUNT attribute with implicit cursor to know

how many rows were updated with most recent UPDATE command.

BEGIN

update salesman set scity = “Ahmedabad” where ssalary > 45;

/* if more than 3 rows are effected then rollback updation */

if SQL%ROWCOUNT > 3 then

rollback;

else

commit;
end if;

END;

2.4.2. EXPLICIT CURSOR
PL/SQL’s implicit cursor can handle only single-row queries. But, if you need to select

more than one row using select then you have to use explicit cursor. The set of rows

fetched by a query is called active set. Select command in PL/SQL block will retrieve

only one row. If select command retrieves no row then NO_DATA_FOUND exception

will be raised. If select retrieves more than one row then TOO_MANY_ROWS exception

occurs.
A select command will succeed only when it retrieves a single row. Select command

copies the values of columns that it retrieved into variables. If multiple rows are

 277

retrieved then multiple values for each column will be copied to a single variable and

that will create the problem.
Example:

DECLARE

ssid varchar2(5);

snam varchar2(5);

sdpt varchar2(5);

BEGIN

select scode, sname, sdept into ssid, snam, sdpt
from salesman where ssalary > 45;

END;

Select command in the above code will raise TOO_MANY_ROWS exception if more

than one salesman is having salary more than 45.
An explicit cursor is the solution to the problem. A cursor can store a collection of

records retrieved by a query. Then it allows us to fetch one record from cursor at a time

and thereby enabling to process all the records in the cursor.
 Handling Explicit Cursor

Explicit cursor is a name used to refer to an area where you can place multiple rows

retrieved by select. We must use an explicit cursor whenever we have to use a multi-

row query in PL/SQL.

The following are the steps required to create and use an explicit cursor:
1. Declare the cursor in Declare section

2. Open the cursor using open statement in Executable part

3. Fetch one row at a time using fetch statement.

4. Close the cursor after all the records in the cursor are fetched and processed by

using close.

Processing multiple rows is same as file handling. In file processing we need to open

the file, process records and then close the file. Similarly user-defined explicit cursor

needs to be opened, fetch and read the rows, after which it is closed. Like how file

 278

pointer marks current position in file processing, cursor marks the current position in the

active set.
 Declaring a Cursor

A cursor is declared in Declare section using cursor statement. At the time of
declaration the

name of the cursor and the associated select statement are mentioned.
Syntax:

CURSOR cursor_name [(parameter[, parameter]...)]

IS select_statement
[FOR UPDATE [OF column,column, . . .];

The following code shows how to declare a cursor.

DECLARE

cursor sales_data is

select scode, sname, sdept

from salesman;

BEGIN

…………..

END;

sales_data is the name of the cursor, which will be populated with the rows retrieved by

the

given select at the time of opening the cursor.
 Opening a Cursor

OPEN statement is used to execute the select command associated with the cursor and

place

the rows retrieved by the query into cursor.

OPEN cursor_name [(input_arguments)];

Cursor_name is the name of the cursor that is to be opened.

Input_arguments are the values to be passed to the parameters of the cursor.

The following statement opens the cursor sales_data and places the rows retrieved by
the

 279

query into the cursor.

DECLARE

cursor sales_data is

select scode, sname, sdept

from salesman;

BEGIN

open sales_data;

END;
 Fetching Rows

Once cursor is opened using open statement, cursor has a set of rows, which can be

fetched using fetch statement. Fetch statement takes the data of the current row in the

cursor and copies the values of the columns into variables given after INTO keyword.

 FETCH cursor_name INTO variable-1, variable-2, . . .;

For each column in the cursor there should be a corresponding variable in FETCH
statement. We also need to make sure that the data types of variables and

corresponding columns are matching.

The following code demonstrates how to fetch and copy data from current row of the

cursor to variables given after INTO keyword.

DECLARE
Cursor sales_data is

select scode, sname, sdept

from salesman;

v_scode salesman.scode%type;

v_sname salesman.sname%type;

v_dept salesman.sdept%type;

BEGIN

open sales_data;
loop

fetch sales_data into v_scode, v_sname, v_dept;

. . .

 280

end loop;
END;

FETCH statement is used inside the loop to repeatedly fetch rows from the cursor. The

process of fetching will stop when all the rows of the cursor are fetched (reached end of

cursor). The following code shows how to exit cursor when cursor is completely
processed.

Loop

fetch sales_data into v_scode, v_sname, v_sdept;

exit when sales_data%notfound;

end loop;

NOTFOUND attribute of the cursor returns TRUE when previous FETCH doesn’t

successfully

read a row from cursor.
 Closing a Cursor

Close statement is used to close cursor after the cursor is processed. Closing a cursor

will release the resources associated with cursor.

CLOSE cursor_name;

The following code closes sales_data cursor:

DECLARE
BEGIN

open ..

loop

...

end loop;

close sales_data;

END;

 Explicit Cursor Attributes

 281

Cursor attributes allow user to retrieve information regarding cursor. For example, we

can get the number of rows fetched so far from a cursor using ROWCOUNT attribute.

We can also determine whether a row is fetched or not using FOUND attribute.

The following syntax is used to access cursor attributes:
cursor_name%Attribute

Every cursor defined by the user has 4 attributes. When appended to the cursor name

these attributes allows the user to access important information about the execution of a

multirow query.

The attributes are:

1. %NOTFOUND: It is a Boolean attribute, which returns true, if the last fetch is
failed. i.e. when there are no rows left in the cursor to fetch.

2. %FOUND: Boolean variable, which returns true if the last fetch is succeeded.

3. %ROWCOUNT: It’s a numeric attribute, which returns number of rows fetched by

the cursor so far.

4. %ISOPEN: A Boolean variable, which returns true if the cursor is opened

otherwise returns false.

The following code shows cursor attributes with explicit cursors. Attribute NOTFOUND

returns true if previous FETCH statement couldn’t fetch any row.

LOOP

fetch sales_data into s_scode, s_dept;
/* exit loop if previous FETCH failed */

exit when sales_data%NOTFOUND;

/* process the record fetched */

END LOOP;

In the above code EXIT is executed when NOTFOUND attribute of cursor sales_data

returns TRUE.
 Using Cursor with LOOP

LOOP can be used to access the cursor values as shown in the following code.

 282

Example:

DECLARE

Lname varchar2(10);

Sal number(8,2);

CURSOR C1 IS Select Last_Name, Salary from Employee;

BEGIN

Open C1;

dbms_output.put_line(‘Last_Name’||’ ‘||’Salary’);

If C1%isopen then
LOOP

Fetch C1 into Lname, Sal;

dbms_output.put_line(Lname||’ ‘||Sal);

END LOOP;

END IF;

END;

/

Fetch is used twice in the below example using While Loop to make %FOUND

available.
Example:

DECLARE

Cursor C1 is

SELECT ID, Last_Name, city FROM Employee;

Num Employee.ID%type;

Nam Employee.Last_Name%type;

Town Employee.city%type;

Begin
Open C1;

 Fetch C1 into Num, Nam, Town;

while C1%found loop

 283

dbms_output.put_line('Row Number '||C1%rowcount || ' is: '|| Num||' '||Nam||'
'||Town);

Fetch C1 into Num, Nam, Town;

End loop;

Close C1;

End;

/

The above code will display the cursor C1 records with Employee Id, Name and city.

2.5 CURSOR FOR LOOP
The cursor for Loop can be used to process multiple records. There are two benefits

with cursor for Loop.

1. It implicitly declares a %ROWTYPE variable.

2. Cursor for loop itself opens a cursor, read records and then closes the cursor

automatically. So, Open, Fetch and Close statements are not necessary in it.

To process a cursor, we can use cursor FOR loop to automate the following
steps.

• Opening cursor

• Fetching rows from the cursor

• Terminating loop when all rows in the cursor are fetched

• Closing cursor

The following is the syntax of cursor for loop. This for loop is specifically meant to

process cursors.

FOR rowtype_variable IN cursor_name

LOOP

Statements;

END LOOP;

 284

rowtype_variable is automatically declared by cursor for loop. It is of ROWTYPE of the

cursor. It has columns of the cursor as fields. These fields can be accessed using

rowtype_variable.fieldname.
Example:

DECLARE

CURSOR C1 IS Select Last_Name, Salary from Employee;

BEGIN

For EMP_REC in C1

LOOP
dbms_output.put_line(EMP_REC.Last_name||’

‘||EMP_REC.Salary);

END LOOP;

END;

/

The above code will display the cursor C1 records with Employee Last Name and their

salary. emp_rec is automatically created variable of %ROWTYPE. We have not used

Open, Fetch and Close in the above example as cursor for loop does it automatically.

Using Implicit for Loop the above example can be rewritten as shown below:
Example:

BEGIN

For EMP_REC in (Select Last_Name, Salary from Employee)

LOOP

dbms_output.put_line(EMP_REC.Last_name||’

‘||EMP_REC.Salary);

END LOOP;

END;
/

__

 285

2.6 Parameterized Cursor

Parameterized Cursor passes the parameters into a cursor and uses them in the query.

PL/SQL parameterized cursor define only datatype of parameter and doesn’t require to

define it's length. A cursor FOR loop automatically opens the cursor to which it refers,

so our program doesn’t require opening that cursor inside the loop.
Syntax:

CURSOR cursor_name (parameter_list)

IS

 SELECT_statement;

The syntax for a cursor with parameters in PL/SQL is:

Example:

DECLARE

 Cursor C1(num number) is select * from Employee
 where ID = num;

 emp Employee%rowtype;

BEGIN

If C1%Isopen Then

Close C1;

End If;

 -- Open C1(5);

 FOR emp IN C1(5) LOOP
 dbms_output.put_line('EMP_NUM: ' ||emp.ID);

 dbms_output.put_line('First_Name: '||emp.First_Name);

 dbms_output.put_line('Last_Name: '||emp.Last_Name);

 dbms_output.put_line('EMP_Salary:'||emp.Salary);

 END Loop;

-- CLOSE C1;

END;

/

 286

 Check Your Progress

1) What is a cursor? Why Cursor is required?

………………………………………………………………………………………………
…………………….…………………………………………………………………………

………….……………………………………………………………………………………

…………………………………………….…………………………………………………

2) Write the PL/SQL Statements used in cursor processing.

………………………………..………………………………………………………………
………………………………………………………..………………………………………

……………………………………………………………………..…………………………

3) Write the cursor attributes used in PL/SQL.

…………………………………………………………………………………..……………

………………………………………………………………………………………………..
………………………………………………………………………………………………..

4) Check following code and tell what will happen after commit statement?

Cursor C1 is

 Select empno,
 ename from emp;

Begin

 open C1;

loop

 Fetch C1 into

eno. ename;

 Exit When

 C1 %notfound;-----
 commit;

end loop;

end;

 287

5) What is the use of WHERE CURRENT OF clause in cursors?

……………………………………………………………………………………………..

……………………………………………………………………………………………..
…………………………………………………………………………………………..…

2.7SUMMARY

In this unit we have learnt that the major task of a cursor is to fetch data, one row at a

time, from the result set. Cursors are used whenever the user wants to manipulate or

update records in a singleton fashion or in a row by row manner, in a database table.

The information stored in the Cursor is known as Active Data Set. Cursors are opened

in predefined area of Oracle’s DBMS in the main memory set, where the cursors are

opened. We have also discussed cursor with for loop and parameter. Cursor plays an

important role in accessing data one row at a time unlike sql commands.

2.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 Check Your Progress

1. Cursor is a named private SQL area from where we can access information. Cursors

needs to process rows individually for queries returning multiple rows.

2. DECLARE CURSOR cursor name, OPEN cursor name, FETCH cursor name INTO

or Record types, CLOSE cursor name.

3. Cursor attributes are;

I. %ISOPEN : It is used to check whether cursor is open or not.

II. % ROWCOUNT : It returns the number of rows fetched / updated / deleted.

III. % FOUND : It is used to check whether cursor has fetched any row. Returns
true if rows are fetched.

IV. % NOT FOUND : It is used to check whether cursor has fetched any row.

Returns true if no rows are fetched.

 288

These attributes are processed with SQL for Implicit Cursors and with Cursor name for

Explicit Cursors.

4. In the above code the cursor is having query SELECT, so does not get closed even

after Commit / Rollback.
If, the cursor is having query as SELECT FOR UPDATE then it gets closed after

Commit / Rollback.

5. In cursor, WHERE CURRENT OF clause in an Update, Delete statement refers to the

latest row retrieved from a cursor.

2.9 ASSIGNMENTS
1. Define Cursor. Explain Cursor Cycle.

2. Discuss the types of cursor with proper syntax.

3. How do we use While Loop and For Loop in Cursor? Discuss with example.

4. Explain parameterized Cursor with example.
5. Differentiate Cursor declared in a procedure and Cursor declared in a package
specification.

6. What are PL/SQL cursor exceptions?

2. 10 FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 289

Unit 3: Locking

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Locking Strategy

3.4. Types of Lock

3.5. Lock Table

3.6. Let Us Sum Up

3.7. Check Your Progress: Possible Answers

3.8. Assignments

3.9. Further Reading

3

 290

3.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,

• To learn and understand database lock

• To learn the benefits of locking any database objects

• To learn and understand different modes of locks

• To learn and understand different types of locks

Outcome:

At the end of this unit,

• Students will be able to define database lock

• Students will be able to lock table with different locking mode

3.2 INTRODUCTION

Oracle Database provides data concurrency, consistency and integrity among

transactions through a locking mechanism. The locks are performed automatically and

require no user interaction. It is directly associated with a session. Database Locks are
mechanisms that prevent destructive interaction between transactions accessing the

shared resource or objects. These resources can be tables, data rows, data blocks,

cached items, connections and entire systems.

There are many types of locks that can occur such shared locks, exclusive locks,

transaction locks, DML locks, and backup-recovery locks. Oracle database

automatically obtains required locks when performing SQL transactions. For example,

before a session is permitted to update data, the session must first lock the data. The

lock empowers the session exclusive control over the data so that no other transaction
can update the locked data until the lock is released.

https://gerardnico.com/db/oracle/transaction�
https://gerardnico.com/db/oracle/session�

 291

3.3 Locking Strategy

The database maintains different types of locks based on the operation that hold the

lock. Locks have direct impact on the interaction of read and write operation. The

following rules summarize the locking behaviour of oracle database for reads and

writes:

• A row is locked whenever modified by a write operation. When a transaction
updates one row, the transaction acquires a lock for this row only. The contention

can be minimized by locking table data at the row level.

• When one transaction is updating a row, then a row lock prevents a different

transaction from updating the same row concurrently.

• A read operation never blocks a write operation. A reading of a row does not lock

that row, a write operation can update this row. The only exception is a SELECT

... FOR UPDATE statement that will lock the row being read.

• A write operation never blocks a read operation. When a row is being changed

by a write transaction, the database applies undo data to provide readers with a
consistent view of the row data.

3.3.1. LOCK MODES
Following table describe various types of locking mode with their meaning.

Lock Mode Meaning

EXCLUSIVE It allows a SELECT query on the locked table, all other

operations (i.e. Update, Delete etc.) are prohibited to other

transactions.

SHARE It allows concurrent queries, but updates are prohibited for

all transactions.

 292

Lock Mode Meaning

ROW SHARE It allows concurrent access to the table, but no other users

can acquire an exclusive lock on the table.

ROW EXCLUSIVE It is essentially the same as ROW SHARE but also

prevents locking in SHARE mode.

SHARE ROW

EXCLUSIVE

It locks the entire table; queries are allowed but no other

transaction can acquire any lock on the table.

3.4 Types of Lock

Oracle server implicitly acquires a lock situation if a transaction is done on the same

table in different sessions. This default locking technique is

called implicit or automatic locking.

In Explicit Locking, a table or partition can be locked using the LOCK TABLE statement

in one of the earlier specified modes. It is better to acquire an Explicit Locking rather
than relying on the implicit locking done by default by the Oracle server.

Generally, the database uses two types of locks:

3.4.1 EXCLUSIVE LOCKS
In Exclusive locks only one lock can be obtained on an object such as a row or a table.

This locking mode prevents the associated resource from being shared. A transaction

acquires an exclusive lock when it updates data. The first transaction who had acquired

a lock to resource exclusively is the only transaction that can modify the resource until

the exclusive lock is released.
15.3.2. Shared locks

In Shared locks many share locks can be obtained on a single object. This locking

mode allows the associated resource to be shared based on the operations involved.

 293

Multiple users reading data can share the same data, acquiring share locks to prevent

simultaneous access by a write transaction looking for an exclusive lock.

Oracle database does not allow a field level locking. It gives the Row level, Page level

and Table level locking mechanism.
I. Row Level locking

In row-level locking, any specific row or rows in a table can be locked (unlocked

rows will be available for updates or deletes). The locked rows can be updated

only by the process that initiated the locking.

II. Page Level locking

A page level locking is used when the Where clause evaluates to a set of data.

III. Table Level locking

In table-level locking, the whole table is locked against any kind of DML actions
from

another transaction. Once a given transaction has locked a table, that transaction

is the

only one that can change rows in the table.

3.5 LOCK TABLE
To lock any database table following syntax can be used.
Syntax:

• LOCK TABLE tables IN lock_mode MODE [WAIT [, integer] | NOWAIT];

Where,

• Tables is a A comma-delimited list of tables,

• lock_mode is a previously discussed any lock mode,

• WAIT specifies that the database will wait for a specific number of seconds as
mentioned by integer to acquire a DML lock.

• NOWAIT indicates that the database should not wait for a lock to be released.

Example

Let's look at below code of how to use the LOCK TABLE statement.

 294

For example:

• LOCK TABLE Student IN SHARE MODE NOWAIT;

This code will lock the Student table in SHARE MODE and not wait for a lock to be

released.

• Lock table Student IN Exclusive Mode NOWAIT;

Above code will lock the Student table in EXCLUSIVE MODE and not wait for a lock to

be released.

 Check Your Progress

1) What are LOCKS?

………………………………………………………………………………………………..

.
………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

.

2) Write two important database goals of Locking.

………………………………………………………………………………………………..
.

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..
.

3) Write different types of locks available in database.

………………………………………………………………………………………………..

.

 295

………………………………………………………………………………………………..

.

………………………………………………………………………………………………..

.
4)What will happen if another session tries to update the locked data?

………………………………………………………………………………………………

………………………………………………………………………………………………

…......……………………………………………………………………………………….

.

3.6LET US SUM UP
Locking is a mechanism to ensure data consistency, concurrency and integrity while

allowing maximum simultaneous access to objects. It is used to implement concurrency

control when multiple users try to manipulate table data at the same time. By learning

locking we can say that it helps in avoiding deadlock conditions and also avoids clashes

in acquiring the database resources. Generally a user does not need to worry about
locking, as RDBMS automatically selects the most appropriate lock for a particular

transaction.

3.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS

 Check Your Progress

1. Locks are techniques used to prevent destructive interaction between users

accessing database objects. ORACLE uses locks to control concurrent access to

data.

2. I. Consistency: It ensures that the data objects a user is reading or changing is

not changed (by other users) until the user is finished with the data.

II. Integrity: It ensures that the database's data object and structures reflect all
changes made to them in the correct order.

3. a. Data Locks (DML)

b. Dictionary Locks (DDL)

c. Internal Locks and Latches

 296

d. Distributed Locks

e. Parallel Cache Management Locks

 4. Suppose database session A tries to update some data that is already locked by

database
session B. Here, session A will remain in lock wait state, and session A will be stopped

from making any progress with any SQL transaction that it’s executing. We can say that

session A will be blocked until session B releases the lock on that data.

3.8ASSIGNMENTS
1. Define Lock. Explain Locking benefits.

2. Discuss different types of locking with example.

3. Explain various modes of lock.

3.9FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

 297

Unit 4: Exception Handling

Unit Structure

4.1. Learning Objectives

4.2. Introduction

4.3. User-defined Exceptions

4.4. Predefined (Named) Exceptions

4.5. SQLCODE and SQLERRM

4.6. PRAGMA Exception

4.7. Let Us Sum Up

4.8. Check Your Progress: Possible Answers

4.9. Assignments

4.10. Further Reading

4

 298

4.1 LEARNING OBJECTIVES & OUTCOMES

The objective of this unit is to make the students,
• To learn and understand Exception

• To define and understand different types of Exception

• To learn and understand Exception handling

Outcome:

At the end of this unit,

• Students will be able to write exception handling block

• Students will be able to declare user defined exception
• Students will be able to use pre-defined exception for different types of errors

• Students will be able to write pragma exception

4.2INTRODUCTION

An Exception is an error situation or abnormal condition, which arises during program

execution. When an error takes place exception is raised, normal execution is stopped

and control transfers to exception handling block. Exception handlers are block of codes
written to handle the exception. The exceptions can be system-defined or pre-defined

and User-defined exception. When PL/SQL raises a predefined exception, the program

is terminated by displaying error message. But if the program is supposed to handle

exception raised by PL/SQL then we have to use Exception Handling part of the block.

Control is transferred to exception handling part whenever an exception occurs. After

the exception handler completes execution, control is transferred to next statement in

the enclosing block. If there is no enclosing block then control returns to Host (from

where we ran the PL/SQL block).
Syntax of exception handling is:

WHEN exception-1 [or exception -2] ... THEN

statements;

[WHEN exception-3 [or exception-4] ... THEN

 299

statements;] ...
[WHEN OTHERS THEN

statements;]

exception-1, exception-2 are exceptions that are to be handled. These exceptions are

either pre-defined exceptions or user-defined exceptions. If an exception is raised but
not handled by exception handling part then PL/SQL block is terminated by displaying

an error message related to the exception.

The biggest advantage of exception handling is that it improves readability and reliability

of the code. Errors from many statements of code can be handles with a single handler.

Instead of checking for an error at every point we can just add an exception handler to

handle the exception when raised.

4.3 USER-DEFINED EXCEPTIONS
A User-defined exception is an exception defined by the programmer. User-defined

exceptions are declared in the declaration section with their type as exception. They

must be raised explicitly using RAISE Command, while pre-defined exceptions are

raised implicitly. RAISE statement can also be used to raise internal exceptions. We
can map exception names with specific Oracle errors using the

EXCEPTION_INIT Pragma. We can also assign a number and description to the

exception using RAISE_APPLICATION_ERROR

DECLARE
 myexception EXCEPTION;

BEGIN

 Raising Exception:

BEGIN

 RAISE myexception;
Handling Exception:

BEGIN

 EXCEPTION

.
Declaring Exception:

 300

 WHEN myexception THEN
 Statements;

END;

Note:

 An Exception cannot be declared twice in the same block.
 Exceptions declared in a block are considered as local to that block and global to

its sub-

blocks.

 An enclosing block cannot access Exceptions declared in its sub-block. While it is

possible for a sub-block to refer its enclosing Exceptions.

The following example demonstrates the use of User-defined Exception using
Procedure:

Create or Replace Procedure Raise_Exception (Input NUMBER) IS

 Evenno_Exception EXCEPTION;

 Oddno_Exception EXCEPTION;

Begin

 IF MOD(Input, 2) = 1 THEN

 RAISE Oddno_Exception;
 ELSE

 RAISE Evenno_Exception;

 END IF;

EXCEPTION

 WHEN Evenno_Exception THEN

 dbms_output.put_line(TO_CHAR(Input) || ' is Even Number ');

 WHEN Oddno_Exception THEN

 dbms_output.put_line(TO_CHAR(Input) || ' is Odd Number');
End Raise_Exception;

/

 301

Now execute the procedure with following command and check out the output as shown

below.

• exec Raise_Exception(5);

5 is odd Number

4.3.1 RERAISING AN EXCEPTION
When we want an exception to be handled in the current block as well in its enclosing

block then we need to use RAISE statement without an exception name. RAISE
command can also be used to reraise an exception so that the current exception is

propagated to outer block. Current exception will be raised again if a sub block executes

RAISE statement without specifying exception name in exception handler. In the below

example, the exception ZERO_DIVIDE is logged into a table before it is re-raised to the

user or to the application.
Note: RAISE statement without exception name is valid only in exception handler.

DECLARE

 num NUMBER;

 BEGIN

 num := 5/0;

 EXCEPTION

 WHEN zero_divide THEN

 INSERT INTO log_details VALUES (log_seq.nextval, SQLCODE ||’ ‘||
sqlerrm);

 RAISE;

 END;

 /

4.3.2 RAISE APPLICATION ERROR
To display our own error messages we can use the built in

RAISE_APPLICATION_ERROR. It will display the error message in the same way as

Oracle errors. We should use a negative number between –20000 to –20999 for the

error_number and the error message should not exceed 512 characters.

 302

Syntax:

RAISE_APPLICATION_ERROR(<error_number>, <error_message>, <TRUE |

FALSE>);

Where,

error_number -20000 to -20999

error_message Varchar2(2048)

TRUE add to error stack

FALSE replace error stack (the default)

Let’s try to understand with following example.

CREATE OR REPLACE PROCEDURE Raise_application_Exception (Input NUMBER)

IS

 evenno_exception EXCEPTION;

 oddno_exception EXCEPTION;

BEGIN

 IF MOD(Input, 2) = 1 THEN

 RAISE oddno_exception;

 ELSE
 RAISE evenno_exception;

 END IF;

EXCEPTION

 WHEN evenno_exception THEN

 RAISE_APPLICATION_ERROR(-20001, 'Even Number Entered');

 WHEN oddno_exception THEN

 RAISE_APPLICATION_ERROR(-20999, 'Odd Number Entered');

END Raise_application_Exception;
/

Execute the above procedure with following command and check the output. It will

display error message with error number.

• Exec Raise_application_Exception(5);

 303

4.4 Predefined (Named) Exceptions
Predefined exception is raised automatically whenever there is a violation of Oracle

coding rules. PL/SQL has defined certain common errors and given names to these
errors, which are called as predefined exceptions. Each exception has a corresponding

Oracle error code. Predefined exceptions examples are those like ZERO_DIVIDE,

which is raised automatically when we try to divide a number by zero. Other built-in

exceptions are given below. We can handle unexpected Oracle errors using OTHERS

handler. It can handle all raised exceptions that are not handled by any other handler. It

must always be written as the last handler in exception block. Predefined exception

handlers are declared globally in package Standard. We don’t need to define them.
Structure of Error Handling:

CREATE OR REPLACE PROCEDURE <procedure_name> IS

BEGIN

 NULL;

EXCEPTION

 WHEN <named_exception> THEN
 -- handle identified exception

 WHEN <named_exception> THEN

 -- handle identified exception

 WHEN OTHERS THEN

 -- handle any exceptions not previously handled

END;

/

Example of ZERO_DIVIDE Exception:

Declare

 num number := 50;

 div number := 0;

 result number;

 304

begin
 result := num / div;

 dbms_output.put_line(‘result: ‘||result);

exception

 when zero_divide then

 dbms_output.put_line(‘DIVIDE by ZERO: ’||sqlerrm);

end;

/

Example of NO_DATA_FOUND Exception:

The below program will show the name and address of a salesman as result whose ID

is matches. But there is no salesman with ID 10 in our record, so the program raises the

run-time exception NO_DATA_FOUND, which is captured in EXCEPTION block.

DECLARE

 s_id salesman.id%type := 10;

 s_name salesman.name%type;

 s_addr salesman.address%type;

BEGIN

 SELECT name, address INTO s_name, s_addr
 FROM salesman

 WHERE id = s_id;

DBMS_OUTPUT.PUT_LINE (‘Name: ‘|| s_name);

 DBMS_OUTPUT.PUT_LINE (‘Address: ‘ || s_addr);

EXCEPTION

 WHEN no_data_found THEN

 dbms_output.put_line(‘No such Salesman exists!’);

 WHEN others THEN
 dbms_output.put_line(‘There is problem’');

END;

/

 305

The DUP_VAL_ON_INDEX exception is raised when a SQL statement tries to create a

duplicate value in a column on which primary key or unique constraints are defined.

Following example demonstrates the use of DUP_VAL_ON_INDEX exception.

BEGIN

 Insert into salesman (id) values(1);

 EXCEPTION

 When dup_val_on_index then

 dbms_output.put_line('Duplicate value on an index');

END;
 /

More than one Exception can be written in a single handler as shown below.

EXCEPTION

When NO_DATA_FOUND or TOO_MANY_ROWS then

Statements;

END;

Invalid Cursor Exception

Here we will try to check the exception associated with Cursor access. Let’s examine

the below example.

CREATE OR REPLACE PROCEDURE InvalidCursor_exception IS

 CURSOR CurExcp is

 SELECT * FROM salesman;

 Cur_Record CurExcp%rowtype;

BEGIN

 LOOP

 -- note the cursor was not opened before the FETCH

 FETCH CurExcp INTO Cur_Record;
 EXIT WHEN CurExcp%notfound;

 306

 NULL;
 END LOOP;

EXCEPTION

 WHEN INVALID_CURSOR THEN

 dbms_output.put_line('Invalid Cursor State exception Raised');

 WHEN OTHERS THEN

 dbms_output.put_line('Some Other Problem');

END InvalidCursor_exception;

/

Execute the above procedure and check the output.

The following table shows some important predefined exception with their meaning and

error code.

Exception Name Error Description

CASE_NOT_FOUND
ORA-

06592

None of the choices in the WHEN clauses

of a CASE statement is selected and there
is no ELSE clause.

CURSOR_ALREADY_OPEN
ORA-

06511

Raised when tried to open a cursor that was

already open

DUP_VAL_ON_INDEX
ORA-

00001

Raised when an attempt to insert or update

a record in violation of a primary key or

unique constraint is made

INVALID_CURSOR
ORA-

01001

Raised when the cursor is not open, or not

valid in the context in which it is being

called.

INVALID_NUMBER
ORA-

01722

Raised when it isn’t a number

LOGIN_DENIED
ORA-
01017

Invalid name and/or password for the
instance.

http://psoug.org/oraerror/ORA-06592.htm�
http://psoug.org/oraerror/ORA-06592.htm�
http://psoug.org/definition/WHEN.htm�
http://psoug.org/definition/ELSE.htm�
http://psoug.org/oraerror/ORA-06511.htm�
http://psoug.org/oraerror/ORA-06511.htm�
http://psoug.org/oraerror/ORA-00001.htm�
http://psoug.org/oraerror/ORA-00001.htm�
http://psoug.org/oraerror/ORA-01001.htm�
http://psoug.org/oraerror/ORA-01001.htm�
http://psoug.org/oraerror/ORA-01722.htm�
http://psoug.org/oraerror/ORA-01722.htm�
http://psoug.org/oraerror/ORA-01017.htm�
http://psoug.org/oraerror/ORA-01017.htm�

 307

NO_DATA_FOUND
ORA-

01403

Raised when the SELECT statement

returned no rows or referenced a deleted

element in a nested table or referenced an

initialized element in an Index-By table.

NOT_LOGGED_ON
ORA-

01012

Raised when database connection lost.

PROGRAM_ERROR
ORA-

06501

Raised when internal PL/SQL error.

ROWTYPE_MISMATCH
ORA-

06504

Raised when the rowtype does not match

the values being fetched or assigned to it.

STORAGE_ERROR
ORA-

06500

Raised when a hardware problem either

RAM or disk drive occurs.

SUBSCRIPT_BEYOND_COUNT
ORA-

06533

Raised when reference to a nested table or

varray index higher than the number of

elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT
ORA-

06532

Raised when reference to a nested table or

varray index outside the declared range

(such as -1).

TIMEOUT_ON_RESOURCE
ORA-

00051

Raised when the activity took too long and

timed out.

TOO_MANY_ROWS
ORA-
01422

Raised when the SQL INTO statement

brought back more than one value or row
(only one is allowed).

ZERO_DIVIDE
ORA-

01476

Raised when an attempt is made to divide a

number by zero.

http://psoug.org/oraerror/ORA-01403.htm�
http://psoug.org/oraerror/ORA-01403.htm�
http://psoug.org/definition/SELECT.htm�
http://psoug.org/oraerror/ORA-01012.htm�
http://psoug.org/oraerror/ORA-01012.htm�
http://psoug.org/oraerror/ORA-06501.htm�
http://psoug.org/oraerror/ORA-06501.htm�
http://psoug.org/oraerror/ORA-06504.htm�
http://psoug.org/oraerror/ORA-06504.htm�
http://psoug.org/oraerror/ORA-06500.htm�
http://psoug.org/oraerror/ORA-06500.htm�
http://psoug.org/oraerror/ORA-06533.htm�
http://psoug.org/oraerror/ORA-06533.htm�
http://psoug.org/oraerror/ORA-06532.htm�
http://psoug.org/oraerror/ORA-06532.htm�
http://psoug.org/oraerror/ORA-00051.htm�
http://psoug.org/oraerror/ORA-00051.htm�
http://psoug.org/oraerror/ORA-01422.htm�
http://psoug.org/oraerror/ORA-01422.htm�
http://psoug.org/definition/INTO.htm�
http://psoug.org/oraerror/ORA-01476.htm�
http://psoug.org/oraerror/ORA-01476.htm�

 308

4.5 SQLCODE AND SQLERRM
In WHEN OTHERS part of exception handler, we can use SQLCODE and SQLERRM

functions to retrieve the error number and error message respectively. There is no

predefined exception for every oracle errors.

By using these two functions we can get the error code and error message of the most

recently occurred error. The following example demonstrates how to use SQLCODE

and SQLERRM functions. To understand this we will create a table named subject as
follows.

• Create table subject(subcode varchar2(2) primary key not null, subname

varchar2(20));

After creating Table insert few records as shown below. Here we have to define subject

code primary key and not null.

• Insert into subject values(‘A’,’Java’);

• Insert into subject values(‘B’,’DBMS’);

• Insert into subject values(‘C’,’RDBMS’);

• Insert into subject values(‘D’,’C++’);

Now write and execute following code and check the output.
Example:

Declare

newscode varchar2(5) := null;
begin

update subject set subcode = newscode where subcode = 'C';

exception

when dup_val_on_index then

dbms_output.put_line('Duplicate subject code');

when others then

dbms_output.put_line(sqlerrm);
end;

/

 309

If you run the above program, it will show cannot update (‘SYSTEM’,’Subject’,’subcode’)

to null with error code ORA-01407.

The above output is generated when others part of exception handling block executes.

SQLERRM returns the error message of the most recent error occurred. As we are
trying to set SCODE, which is a not null column to NULL value, PL/SQL raises an

exception. But as the error (-01407) is not associated with any predefined exception,

WHEN OTHERS part of exception handling part is executed.

4.6 PRAGMA EXCEPTION
PRAGMA EXCEPTION_INIT allows user to map ORA- error and it can be raised in

PL/SQL code. The SQL Error number passed in “EXCEPTION_INIT” is the same as
error code except for “NO_DATA_FOUND” ORA-01403 which is 100.
Example:

Declare

no_rows_found exception;

pragma exception_init(no_rows_found, 100);
Begin

raise no_rows_found;

End;

/

Execute above code and check the output.
Example with too many rows:

Declare

too_many_rows exception;

Pragma exception_init(too_many_rows, -1422);
Begin

raise too_many_rows;

End;

/

 310

Execute above code and check the output.

Whenever Oracle error -1407 occurs, NULL_VALUE_ERROR exception is raised by
PL/SQL. The following example will illustrate important points related to associating an

Oracle error with a user-defined exception.

Here we will consider the previously created Subject table and same update query for

assigning null value to a not null column.
Example:

Declare

null_value_error Exception;

Pragma Exception_init(null_value_error, -1407);

newscode varchar2(5) := null;

begin

update subject set subcode = newscode where subcode = 'C';

Exception

When null_value_error Then
dbms_output.put_line(‘User is trying to set null value to a not null column’);

end;

/

Execute above code and check the output.

 Check Your Progress

1) What is an Exception? State the types of Exception.

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………

2) What do you mean by PRAGMA keyword?

…………………………………………………………………………………………….…

………….……………………………………………………………………………………
.………………………………………………………………………………………………

 311

3) What is Raise_application_error?

………………………………………………………………………………………………

………………………………………………………………………………………………

………………………………………………………………………………………………
4) What is the benefit of OTHERS exception handler?

…………………………………………………………………………………………….

……….……………………………………………………………………………………

……………………………………………………………………………………………

5) What is PRAGMA EXECPTION_INIT? Explain its use?

………………………………………………………………………………………………

………….…………………………………………………………………………………

……………………………………………………………………………………………

4.7 LET US SUM UP
A PL/SQL block is successful if it exits without raising any exceptions or raises an

exception but the exception is handled in the block’s exception handling part. Same

way, A PL/SQL block is unsuccessful if it exits with an unhandled exception means the

executable part raises an exception (either predefined or user-defined) and it is not

handled in the block’s exception handler. In this unit we have discussed the exception

and exception handling mechanism using predefined and user defined exception. We

have also discussed RAISE_APPLICATION_ERROR procedure to generate a user-

defined error.

4.8CHECK YOUR PROGRESS:POSSIBLE ANSWERS
 Check Your Progress

1. Exception is an error and Exception handling is the error handling part of PL/SQL

block. The types of Exception are Predefined and user_defined. Some of Predefined

exceptions are:

• CURSOR_ALREADY_OPEN

 312

• DUP_VAL_ON_INDEX

• NO_DATA_FOUND

• TOO_MANY_ROWS

• INVALID_CURSOR

• INVALID_NUMBER

• LOGON_DENIED

• NOT_LOGGED_ON

• PROGRAM-ERROR

• STORAGE_ERROR

• TIMEOUT_ON_RESOURCE

• VALUE_ERROR

• ZERO_DIVIDE

• OTHERS.
2. The PRAGMA keyword specifies that the statement is a compiler directive, which is

not processed when the PL/SQL block is executed. It is a pseudo-code that tells the

compiler to interpret all the occurrences of exception name within the block with the

associated oracle server number.

3. Raise_application_error is a procedure of package DBMS_STANDARD. It allows

issuing an user_defined error messages from stored sub-program or database trigger.

4. The OTHERS exception handler makes sure that no exception goes unhandled and

the program terminates successfully.
5. The PRAGMA EXECPTION_INIT informs the complier to associate an exception with

an oracle error to get an error message of a specific oracle error.

For example, PRAGMA EXCEPTION_INIT (exception name, oracle error number)

4.9ASSIGNMENT
1. What is Exception? How do we handle Exception in PL/SQL?

2. Explain User defined exception in PL/SQL.

3. Write a PL/SQL code to explain any four predefined exception.

4. Discuss PRAGMA Exception.

5. Discuss the SQLCODE and SQLERRM functions.

 313

6. Is it possible for a PL/SQL block to process more than one exception at a time?

4.10FURTHER READING

1. Advanced PL/SQL Programming: The Definitive Reference by Boobal Ganesan

2. SQL/PLSQL,TheProgrammingLanguageofORACLE,BPBPublicationbyIvan.

3. Introduction to Database Systems, 4th Edition, C. J. Date, Narose Publishing.

Website : www.baou.edu.in | Email : office.scs@baou.edu.in

	3.3 DATA MODELING
	3.4 THE HIERARCHICAL DATA MODEL
	1.3.1. FULLY FUNCTIONAL DEPENDENCY (FFD)
	1.3.2. ARMSTRONG’S AXIOMS OF FUNCTIONAL DEPENDENCIES (INFERENCE RULES)
	A set of rules that may be used to infer additional dependencies was proposed by William W. Armstrong in 1974. These rules (or axioms) are a complete set of rules in that all possible functional dependencies may be derived from them. Below given are ...
	Lossy Decomposition: The decomposition of relation R into R1 and R2 is 148Tlossy148T when the join of R1 and R2 does not yield the same relation as in R. One of the disadvantages of decomposition into two or more relational schemes (or tables) is that...
	Lossless Join Decomposition: The decomposition of relation R into R1 and R2 is lossless when the join of R1 and R2 yield the same relation as in R. A relational table is decomposed into two or more smaller tables, in such a way that the designer can c...

	Dependency-Preserving Decomposition: The dependency preservation decomposition is another property of decomposed relational database schema D in which each functional dependency X -> Y specified in F either appeared directly in one of the relation sch...
	B. Fourth normal form (4NF):
	Fully Functional Dependence (FFD) is defined, as Attribute Y is FFD on attribute X, if it is FD on X and not FD on any proper subset of X. According to FFD definition Y must not be FD .on any proper subset of X.
	Transitivity Axioms is similar to the transitivity rule in algebra. If X (Y holds and Y (Z, then X (Z holds.
	A relation is decomposed into two or more smaller relations, in a way by which we can obtain the original relation by joining the decomposed partition of relation.
	A complete set or closure set of FDs is a set of all possible FDs that can be derived from a given set of FDs. If F is used to donate the set of FDs for relation R, then a closure of a set of FDs implied by F is denoted by FP+P.
	Merits of Normalization:
	More efficient data structure.
	Avoid redundant fields or columns.
	More flexible data structure.
	Better understanding of data.
	Ensures that distinct tables exist when necessary.
	Easier to maintain data structure.
	Minimizes data duplication.
	Demerits of Normalization:
	You cannot start building the database before you know what the user needs.
	On Normalizing the relations to higher normal forms i.e. 4NF, 5NF the performance degrades.
	It is very time consuming and difficult process in normalizing relations of higher degree.
	Careless decomposition may leads to bad design of database which may leads to serious problems.
	Oracle Instance consists of Two components namely Memory Structure and Background Processes.
	SGA_MAX_SIZE parameter of Initialization Parameter file is used to define size of SGA. The size of the SGA cannot exceed the parameter SGA_MAX_SIZE minus the combination of the size of the additional parameters, DB_CACHE_SIZE, LOG_BUFFER, SHARED_POOL_...
	System Monitor (SMON) is responsible for instance recovery by applying entries in the online redo log files to the datafiles.
	Archived Redo Log File is the copy of redo log files and necessary for recovery in the event of disk failure.
	Yes, A Large tablespace may have more than one datafiles.
	Distributed Databases Vs Distributed Processing
	Heterogeneous Services
	Transparent Gateway Agents
	Generic Connectivity
	3.6.2. TYPES OF DATABASE LINKS
	3.6.3. USERS OF DATABASE LINKS
	3.6.4. DATABASE LINK RESTRICTIONS
	Authentication Through Database Links
	Authentication Without Passwords
	Supporting User Accounts and Roles
	Centralized User and Privilege Management
	Database Encryption

	Remote SQL Statements
	Distributed SQL Statements
	Shared SQL for Remote and Distributed Statements
	Remote Transactions
	Distributed Transactions
	Two-Phase Commit Mechanism
	Database Link Name Resolution
	Schema Object Name Resolution
	If the database cannot find the object, then it checks public objects of the remote database. If it cannot resolve the object, then the established remote session remains but the SQL statement cannot execute and returns an error.

	TRANSPARENCY IN A DISTRIBUTED DATABASE SYSTEM
	Location Transparency: An Oracle Database distributed database system has features that allow application developers and administrators to hide the physical location of database objects from applications and users. Location transparency exists when a ...
	SQL and COMMIT Transparency: The Oracle Database distributed database architecture also provides query, update, and transaction transparency. For example, standard SQL statements such as SELECT, INSERT, UPDATE, and DELETE work just as they do in a non...
	Replication Transparency: The database also provide many features to transparently replicate data among the nodes of the system. For more information about Oracle Database replication features, see Oracle Database Advanced Replication.

	3.9.2. REMOTE PROCEDURE CALLS (RPCS)
	Distributed database is a set of databases in a distributed system that can appear to applications as a single data source. While distributed processing is the operation that occurs when an application distributes its tasks among different computers i...
	Generic connectivity enables you to connect to non-Oracle Database data stores by using either a Heterogeneous Services ODBC agent or a Heterogeneous Services OLE DB agent. The advantage to generic connectivity is that it may not be required for you t...
	A database link is a connection between two physical database servers that allows a client to access them as one logical database. These basic link types differ according to which users are allowed access to the remote database:
	Distributed query optimization is an Oracle Database feature that reduces the amount of data transfer required between sites when a transaction retrieves data from remote tables referenced in a distributed SQL statement.
	Full Export: The EXP_FULL_DATABASE and IMP_FULL_DATABASE, respectively, are needed to perform a full export. Use the full export parameter for a full export.
	Tablespace: Use the tablespaces export parameter for a tablespace export.
	User: This mode can be used to export and import all objects that belong to a user. Use the owner export parameter and the fromuser import parameter for a user (owner) export-import.
	Table: Specific tables (and partitions) can be exported/imported with table export mode. Use the tables export parameter for a table export.
	4.3.1 EXPORT UTILITY

	General Parameters are used with exp command are as:
	Full: Use this parameter to specify 19Tfull export mode19T.
	Tablespaces: Use this parameter to specify 19Ttablespace export mode19T.
	Owner: Use this parameter to specify 19Tuser export mode19T.
	Tables: Use this parameter to specify 19Ttable export mode19T.
	Query: Restricts the exported rows by means of a where clause. The query parameter can only be used for 19Ttable export mode19T. For obvious reasons, it must be appliable to all exported tables.
	Parfile: Specifies a parfile. Parameter file is a simple text files creating using any text editor.
	4.3.2 IMPORT UTILITY

	FFER:The integer specified for 18TBUFFER18T is the size, in bytes, of the buffer through which data rows are transferred.
	COMMIT:Specifies whether Import should commit after each array insert. By default, Import commits only after loading each table, and Import performs a rollback when an error occurs, before continuing with the next object.
	CONSTRAINTS: Specifies whether or not table constraints are to be imported. The default is to import constraints. If you do not want constraints to be imported, you must set the parameter value to 18Tn.
	FILE:Specifies the names of the export files to import. The default extension is .18Tdmp18T, because Export supports multiple export files, you may need to specify multiple filenames to be imported.
	FROMUSER:The parameter enables you to import a subset of schemas from an export file containing multiple schemas.
	FULL: Specifies whether to import the entire export dump file.
	GRANTS:Specifies whether to import object grants.
	PARFILE:Specifies a filename for a file that contains a list of Import parameters. For more information about using a parameter file, see 19TParameter Files19T.
	ROWS:Specifies whether or not to import the rows of table data.
	TABLES:Specifies that the import is a table-mode import and lists the table names and partition and sub partition names to import. Table-mode import lets you import entire partitioned or non-partitioned tables.
	TOUSER: Specifies a list of user names whose schemas will be targets for Import. The user names must exist prior to the import operation; otherwise an error is returned. The 18TIMP_FULL_DATABASE18T role is required to use this parameter. To import to ...
	USERID: Specifies the 5Tusername5T18T/5T18Tpassword5T (and optional connect string) of the user performing the import.
	/

	Making User-Managed Backups of Online Tablespaces and Datafiles
	Making User-Managed Backups of Online Read/Write Tablespaces

	Making User-Managed Backups of the Control File
	Backing Up the Control File to a Binary File

	Making User-Managed Backups of Archived Redo Logs
	4.4.2 RECOVERY

	Responding to the Loss of a Subset of the Current Control Files
	Copying a Multiplexed Control File to a Default Location

	Determining Which Datafiles Require Recovery
	Restoring Datafiles
	Recovering After the Loss of Archived Redo Log Files:
	Take frequent backups of physical datafiles and store them in a safe place, making multiple copies if possible
	The EXP_FULL_DATABASE and IMP_FULL_DATABASE, respectively, are needed to perform a full export.
	COMMIT specifies whether Import should commit after successfully execution of Import.
	Inconsistent Backup means a backup taken when database is open and database must require ARCHIVELOG mode for it. It is also known as HOT Backup.
	18TV$DATAFILE18T and 18TV$TABLESPACE18T data dictionary is used to obtain filenames and tablespace names for datafiles requiring recovery
	SQL Process

	Oracle Database provides following basic data types for attributes defined with CREATE TABLE clause of database.
	1.5.1. CREATE TABLE
	Syntax:
	Example:
	A. PRIMARY KEY

	Examples:
	1. Single Field Primary Key at Column Level:
	2. Composite Primary Key at Table Level:
	B. FOREIGN KEY / REFERENCE KEY
	Examples:

	1. Reference Key at Column Level:
	2. Reference Key at Table Level:
	UNIQUE
	Examples:

	Unique Key at Column Level:
	B. NOT NULL
	Examples:
	Examples:

	Check constraint at Table Level:
	Examples:

	Arithmetic Operator: Arithmetic operators manipulate numeric operands. Below Tables shows the list of Arithmetic Operators.
	Character Operator: Character operators are used in expressions to manipulate character strings. Below Tables shows the list of Character Operators.
	Comparison Operator: Comparison operators are used in conditions that compare one value or expression with another. The result of a comparison can be TRUE or FALSE.
	Range Searching Operator: In order to select data that is within a range of values, the range searching operator is used.
	Pattern Matching Operator: Pattern matching operator allows comparison of one string value with another string value, which is not identical. This is achieved by using wildcard characters.
	Logical Operator: Logical operators manipulate the results of conditions.
	Set Operator: Set operators combine the results of two queries into a single result.
	Example
	Display all customers not located in LONDON.
	SELECT * FROM CUSTOMER WHERE CITY <> 'LONDON';
	List all salesmen with commission between 11% and 15%.
	SELECT * FROM SALESMAN WHERE COMM BETWEEN 0.11 AND 0.15;
	List all salesmen whose names begin with letter ‘B’.
	SELECT * FROM SALESMAN WHERE SNAME LIKE 'B%';
	Example
	Count the no. of salesmen currently having orders.
	SELECT COUNT(DISTINCT (SNUM)) FROM ORDERS;
	Sometimes it is required to retrieve information from multiple tables; at that time Join condition is required. Rows in one table can be joined to rows in another table according to common values existing in corresponding columns. We must have to keep...
	When Writing a SELECT statement that joins tables, precede the column name with the table name for clarify and to enhance the database access.
	If the same column name appears in more than one table, the column name must be prefixed with the table name.
	To join N tables together, you need a minimum of N-1 join conditions.
	Example
	In this chapter, we have discussed about SQL Architecture and different SQL Statements. We have also explored data types available in SQL. We have come to know vital processes like Selection, Projection Grouping, Joins and Sub Queries. We have also de...
	Varchar2 represents variable length character data up to 4000 characters. While nvarchar2 represents Unicode character string having maximum size determined by the National Character Set with an upper limit of 4000 Bytes.
	TRUNCATE clause is used to delete all records from existing tables. Definition of table remains as it is. While DROP removes entire definition of table means delete all records including the table structure.
	Primary Key is used to uniquely identify each record in a database table. When Primary key is created on multiple fields of the table than it is known as Composite Primary Key. Composite Primary Key created at table level.
	Example:
);
	Above Query is used to Create Employee Table with Composite Primary Key namely (EmployeeId,BranchCode).
	An operator is used to perform different operation and return result set. In SQL operators have different types as follows:
	Arithmetic Operators
	Character Operators
	Comparison Operators
	Range Searching Operator
	Pattern Matching Operator
	Logical Operator
	Set Operator

	II. Procedure’s Body
	I. INSERT Statement

	Data Manipulation Language (DML)
	Data Definition Language (DDL)
	Data Control Language (DCL)
	Transaction Control Language (TCL)
	II. UPDATE Statement
	III. DELETE Statement
	We will continue with the previously created user_data table. We will create a stored procedure which will delete the record based on the provided userId.
	Example:
	2.5 FUNCTION BASICS
	2.5.1 PARAMETER PASSING TO A FUNCTION
	1. A Procedure is a subprogram block consists of a group of PL/SQL statements while
	function is an independent PL/SQL subprogram.
	2. Pre_defined_functions are stored in the standard package called “Functions, Procedures
	and Packages”.
	3. Function is called as a part of an expression:
	Example: squr:=count_sqr(‘10’);
	Procedure is called as a statement in PL/SQL:
	Example: count_salary(‘201’);
	4. Following are the five inbuilt String function:
	I.INSTR(maintext, string, start, occurance): It gives the position of particular text in the given string.
	Where,
	maintext is main string,
	string is text that need to be searched,
	start indicates starting position of the search (optional),
	accordance indicates the occurrence of the searched string (optional).
	Example:
	Select INSTR(‘Gujarat,’a’,2,1) from dual;
	Output: 4
	II. UPPER (string): It returns the uppercase of the provided string.
	Example:Select upper(‘baou’) from dual;
	Output: BAOU
	III. LOWER (string): It returns the lowercase of the provided string.
	Example:Select upper(‘BAOU’) from dual;
	Output: baou
	IV. INITCAP (string): It returns the given string with the starting letter in upper
	case.
	Example:Select (‘gujarat vidyapith’) from dual;
	Output: Gujarat Vidyapith
	V. LENGTH (text) Returns the length of the given string.
	Example:Select LENGTH (‘BAOU’) from dual;
	Output: 4
	5. Both can be called from other PL/SQL blocks.
	If the exception raised in the subprogram is not handled in the subprogram exception handling section, then it will propagate to the calling block.
	Both can have as many parameters as required.
	Both are treated as database objects in PL/SQL.
	6. Following table shows the difference between Procedure and Function:
	2. Define function. Explain the characteristics of functions.

	Items declared within package body are known as private. They are only accessed within the package. While items declared within package specification is public and available outside the package.
	The syntax for the package specification is as follows.
	Syntax:
	The syntax for the package body is as follows:
	Syntax:
	Package body is not required if the package specification contains only types, constants, variables, exceptions. This type of packages only contains global variables that will be used by subprograms or cursors.
	Uses of Triggers
	3.5.1.3 INSTEAD OF Trigger
	3.5.1.4 Compound Triggers
	3.5.3 DDL TRIGGERS

	3.6.1 BEFORE INSERT TRIGGER
	By observing the above execution, we can say that when we have inserted the records with date and user ‘28-march-19’,’vinod’ & ‘28-march-19’,’mukesh’ respectively; the created trigger will fire implicitly on Customer_Order table and replace the date a...
	Note: The values in Ord_Date and OrdCreated_By columns may be different for you as they depend on system date and user logged in.
	3.6.2 AFTER INSERT TRIGGER
	An After Insert Trigger means that the trigger will be fired after the insert operation is executed.
	Syntax:
	Example:
	Suppose we have a table named Customer as follows:
	We will also create a duplicate table of ‘Customer’ table as ‘Duplicate_Customer’ using the code below:
	Trigger:
	We can also create trigger for before update, after update, before delete and after delete operations.
	3.6.3 DROP TRIGGER
	3.6.4 ENABLE-DISABLE TRIGGER
	Example:
	Above statement uses the Alter Trigger statement to disable the trigger called Before_Insert_Trigger.

	To create a user, simply issue the Create User command to generate a new account.
	3.7.1 CREATING A USER
	Example:
	Create User Ved Identified By rdbms;
	Here we have simply created a Ved account that is identified or authenticated by the rdbms password.
	Privileges and Roles
	Privilegesdefines the access rights provided to a user on a database objects. There are two types of privileges:
	I. System Privileges: This privilege allows user to create, alter, or drop database
	elements.
	II. Object Privileges: This privilege allows user to execute, select, insert, or delete
	data from database objects to which the privileges apply.
	Roles are the collection of privileges or access rights. In case of many users in a database it becomes complex to grant or revoke privileges to the users. So, if we define roles we can automatically grant/revoke privileges.
	3.7.2 GRANT COMMAND
	Syntax:
	GRANT<privilege> to <user>
	Example:
	Grant Connect to Ved;
	3.7.3 REVOKE COMMAND
	3.7.4 DROP USER
	1. Trigger is a database object, executes automatically in response to some events on the tables or views. It is used to maintain the integrity constraint to the database objects.
	2. The word ‘Trigger’ means to activate. Triggers are mainly required for the following goals:
	To maintain complex integrity constraints on the database tables
	To audit table information by recording the changes
	To signal other program actions when changes are made to database table
	To enforce complex business rules
	To preventing invalid transactions
	Application Roles: You grant an application role all privileges necessary to run a given database application. Then, you grant the application role to other roles or to specific users. An application can have several different roles, with each role as...
	User Roles: You create a user role for a group of database users with common privilege requirements. You manage user privileges by granting application roles and privileges to the user role and then granting the user role to appropriate users.

	Granting and Revoking Roles
	Predefined Roles
	A. System Privileges
	B. Schema Object Privileges
	4.5.1. CREATE ROLE
	Syntax
	Example

	A. Grant TABLE Privileges to Role
	Syntax
	Example

	B. Revoke Table Privileges from Role
	Syntax
	Example

	4.5.2. GRANT ROLE TO USER
	Syntax
	Example

	A. Enable/Disable Role (Set Role Statement)
	Syntax
	Example

	B. Set role as DEFAULT Role
	Syntax
	Example

	4.5.3. DROP ROLE
	Syntax
	Example

	4.6.1. CREATE PROFILE
	In this chapter, we have learnt about Role and Privileges. We have also concluded the system and object privileges. We have also explored different operation of User Role like Create, Grant and Revoke Role and Drop. We have come to know how can we set...
	Any user Granted a role with ADMIN OPTION can Grant/Revoke that role to/from any other users.
	A user can receive Privileges in two different ways.
	Grant Privileges to Users explicitly
	Grant Privileges to a Role and then Grant that Role to one or more users.
	Set Role Statement is used to Enable or Disable a role for the current session.
	User Profile is a set of limits on database resources and user cannot exceed these limits.
	4. Explain parameterized Cursor with example.
	3. Explain various modes of lock.
	1. Exception is an error and Exception handling is the error handling part of PL/SQL block. The types of Exception are Predefined and user_defined. Some of Predefined exceptions are:
	CURSOR_ALREADY_OPEN
	DUP_VAL_ON_INDEX
	NO_DATA_FOUND
	TOO_MANY_ROWS
	INVALID_CURSOR
	INVALID_NUMBER
	LOGON_DENIED
	NOT_LOGGED_ON
	PROGRAM-ERROR
	STORAGE_ERROR
	TIMEOUT_ON_RESOURCE
	VALUE_ERROR
	ZERO_DIVIDE
	OTHERS.
	3. Write a PL/SQL code to explain any four predefined exception.
	4. Discuss PRAGMA Exception.

	MSIT 102.pdf
	Page 2

	MSIT BACK SIDE.pdf
	Page 6

	MSCIT - 102 BOOKS COVER Design.pdf
	Page 3

	MSCIT - 102 back side.pdf
	Page 4

	MSCIT 102.pdf
	Page 3

	MSCIT 102 - BACK PAGE.pdf
	Page 4

