=& QPEN UNIVERSITY

@ saou DR.BABASAHEB AMBEDKAR
e
ke

BCAR-402
Software Engineering

I SOFTWARE ENGINEERING

__ <gmou
| Education
N for All

DR. BABASAHEB AMBEDKAR OPEN UNIVERSITY
AHMEDABAD

Editorial Panel

Author : Mr. Parimal Patel
I/C Director,
Khyati School of Computer Application,
Ahmedabad.

Editor : Dr. Tulsidas. V. Nakrani
Assistant Professor,
Sankalchand Patel College of Engineering,
MCA Department, Visnagar.

Language Editor : Dr. Jagdish Vinayakrao Anerao
Associate Professor,
Smt A. P. Patel Arts and
N. P. Patel Commerce College,
Ahmedabad.

ISBN 978-93-91071-27-1

Edition : 2021

Copyright © 2021 Knowledge Management and Research
Organisation.

All rights reserved. No part of this book may be reproduced,
transmitted or utilized in any form or by a means, electronic or
mechanical, including photocopying, recording or by any information
storage or retrieval system without written permission from us.

Acknowledgment

Every attempt has been made to trace the copyright holders of
material reproduced in this book. Should an infringement have
occurred, we apologize for the same and will be pleased to make
necessary correction/amendment in future edition of this book.

ROLE OF SELF-INSTRUCTIONAL MATERIAL
IN DISTANCE LEARNING

The need to plan effective instruction is imperative for a
successful distance teaching repertoire. This is due to the fact that
the instructional designer, the tutor, the author (s) and the
student are often separated by distance and may never meet in
person. This is an increasingly common scenario in distance
education instruction. As much as possible, teaching by distance
should stimulate the student's intellectual involvement and contain
all the necessary learning instructional activities that are capable
of guiding the student through the course objectives. Therefore,
the course / self-instructional material is completely equipped

with everything that the syllabus prescribes.

To ensure effective instruction, a number of instructional
design ideas are used and these help students to acquire knowledge,
intellectual skills, motor skills and necessary attitudinal changes.
In this respect, students' assessment and course evaluation are

incorporated in the text.

The nature of instructional activities used in distance
education self-instructional materials depends on the domain of
learning that they reinforce in the text, that is, the cognitive,
psychomotor and affective. These are further interpreted in the
acquisition of knowledge, intellectual skills and motor skills.
Students may be encouraged to gain, apply and communicate
(orally or in writing) the knowledge acquired. Intellectual-skills
objectives may be met by designing instructions that make use of
students' prior knowledge and experiences in the discourse as the

foundation on which newly acquired knowledge is built.

The provision of exercises in the form of assignments,
projects and tutorial feedback is necessary. Instructional activities
that teach motor skills need to be graphically demonstrated and
the correct practices provided during tutorials. Instructional
activities for inculcating change in attitude and behaviour should
create interest and demonstrate need and benefits gained by
adopting the required change. Information on the adoption and

procedures for practice of new attitudes may then be introduced.

Teaching and learning at a distance eliminate interactive
communication cues, such as pauses, intonation and gestures,

associated with the face-to-face method of teaching. This is

particularly so with the exclusive use of print media. Instructional
activities built into the instructional repertoire provide this missing
interaction between the student and the teacher. Therefore, the
use of instructional activities to affect better distance teaching is

not optional, but mandatory.

Our team of successful writers and authors has tried to

reduce this.

Divide and to bring this Self-Instructional Material as the
best teaching and communication tool. Instructional activities are
varied in order to assess the different facets of the domains of

learning.

Distance education teaching repertoire involves extensive use
of self-instructional materials, be they print or otherwise. These
materials are designed to achieve certain pre-determined learning
outcomes, namely goals and objectives that are contained in an
instructional plan. Since the teaching process is affected over a
distance, there is need to ensure that students actively participate
in their learning by performing specific tasks that help them to
understand the relevant concepts. Therefore, a set of exercises is
built into the teaching repertoire in order to link what students
and tutors do in the framework of the course outline. These could
be in the form of students' assignments, a research project or a
science practical exercise. Examples of instructional activities in
distance education are too numerous to list. Instructional activities,
when used in this context, help to motivate students, guide and

measure students' performance (continuous assessment)

PREFACE

We have put in lots of hard work to make this book as user-
friendly as possible, but we have not sacrificed quality. Experts
were involved in preparing the materials. However, concepts are
explained in easy language for you. We have included many tables

and examples for easy understanding.

We sincerely hope this book will help you in every way you

expect.

All the best for your studies from our team!

SOFTWARE ENGINEERING

Contents

BLOCK 1 :

INTRODUCTION TO SOFTWARE ENGINEERING

Unit 1

Unit 2

Unit 3

Unit 4

Introduction to Software & Software Engineering

Introduction, The Need for Software Engineering, Goals
of Software Engineering, Typical Software Engineering
Tasks, Characteristics of Good Software, Software
Development Life Cycle, Software Model : Classical
Waterfall Model, Iterative Model, Prototyping Model,
Evolutionary Model, Spiral Model

Introduction to Software Project Management

Introduction, Introduction to Software Project
Management, History of Project Management, Software
Project, Need of Software Project Management, Software
Project Manager, Sub-Team needed in Software
Engineering Projects, Software Management Activity,
Project Preparation, Resource Organization, Risk
Organization, Project Implementation and Monitoring,
Project Communication Organization, Configuration

Organization, Concept of Tailoring, Extreme Programming
Software Project Planning Tools and Techniques

Introduction, Work Breaks Down Structure (WBS),
Software Sizing, Milestones Baseline, Cost Estimation ,
Ray Leigh Curve, LOC and FP Estimation, Documenting
the Schedule, Developing the Activity Network, Empirical
Relationships, Effort Distribution, Empirical Estimation
Techniques — COCOMO

Software Project Maintenance

Introduction, Software Configuration Management, Why
do we need Configuration Management ?, Element of
Configuration Management, Participant of Software
Configuration Management, Software Maintenance
Processes, Project Planning, Documentation Standards,

Version Control

BLOCK 2 :

SOFTWARE REQUIREMENT, DESIGN, QUALITY
MANAGEMENT & SOFTWARE TESTING

Unit 5

Software Requirement

Introduction, Requirement Engineering, Requirement
Engineering Process, Feasibility Study, Requirement
Gathering, Software Requirement Specification (SRS),

Unit 6

Unit 7

Unit 8

Software Requirement Validation, Requirement Initiation
Process, Requirement Initiation Techniques, Interview,
Questionnaires, Observation, Document Review, Software
Requirement Characteristics, Software Requirements,
Functional Requirements, Non-Functional Requirements,
User Interface Requirements, Software System Analyst,
Role of System Analyst OR What a System Analyst
Does ?, Attributes of a Good System Analyst OR Qualities
of System Analyst

Software Design

Introduction, Software Design Basic, Software Design
Level, Modularization, Concurrency, Coupling and
Cohesion, Design Verification, Software Design
Strategies, Structured Design, Function Oriented Design,
Object Oriented Design, Software Design Approaches,
Software User Interface Design, Command Line Interface
(CLI), Graphical User Interface, User Interface Design
Activities, GUI Implementation Tools, User Interface
Golden Rules, Software Design Complexity, Halsted's
Complexity Measures, Cyclomatic Complexity Measures,
Function Point, Software Implementation, Structured
Programming, Functional Programming, Programming
Style, Software Documentation, Software Implementation

Challenges
Software Quality Management

Introduction, Software Quality, Verification & Validation
(V & V), Quality Control, Inspection, Walkthrough and
Review, Why Standards ?, Software Quality Metrics or
Parameters, Five levels of Capability Maturity Model
(CMM)

Software Testing Technique

Introduction, Software Validation & Verification, Manual
VS Automated Testing, Testing Approaches, Black-Box
Testing, White-Box Testing, Testing Levels, Unit Testing,
Integration Testing, System Testing, Acceptance Testing,
Regression Testing, Function Test Plan, Process of

Testing, Testing Documentation, Before Testing, While

Being Tested, After Testing, Grey Box Testing, Non-
Functional Testing, Testing Artifacts

BLOCK 3 :

SOFTWARE RISK ANALYSIS & MANAGEMENT

Unit 9

Unit 10

Unit 11

Software Risk Analysis

Introduction, Risk Analysis in Project Management,
Risk Identification, Qualitative Risk Analysis,

Quantitative Risk Analysis
Software Risk Management - I

Introduction, Software Risk Management
Implementation, Planning Risk Responses, Monitoring

and Controlling Risks
Software Risk Management - II

Introduction, Human Resource and Risk Management,
The HR Executive and Risk Control, Team Risk

Management

BLOCK 4 :

CASE STUDIES

Unit 12

Unit 13

Unit 14

Case Study - I : Waste Management Inspection

Tracking System

Introduction, Waste Management System, Basic Project
Plan, Project Estimates, Risk Management, Project
Schedule, Project Team Organization, Tracking and

Control Mechanism
Case Study - II : Library Management System

Introduction, Library Management System, Objective,
Project Life Cycle, Existing System, Proposed System,
Requirement Determining, Development Phase, Design
of System Model, Conceptual Model of our Proposed
Library Management System

Case Study - III : Software Project Management

Introduction, Measuring a Software Project, Rapid
Application Development (RAD) Method, Prototype
Method, Agile Scrum Method, Hospital Management
System

BAOU Dr. Babasaheb Ambedkar BCAR-402

Education Open University Ahmedabad
for All

Software Engineering

BLOCK 1 : INTRODUCTION TO SOFTWARE ENGINEERING

UNIT 1 INTRODUCTION TO SOFTWARE & SOFTWARE
ENGINEERING

UNIT 2 INTRODUCTION TO SOFTWARE PROJECT MANAGEMENT

UNIT 3 SOFTWARE PROJECT PLANNING TOOLS AND
TECHNIQUES

UNIT 4 SOFTWARE PROJECT MAINTENANCE

INTRODUCTION TO
SOFTWARE ENGINEERING

Block Introduction :

In this block, we will detail about the software, characteristics of good
software, software engineering, goals, need for software engineering, software
development life cycle, and the software model such as classical waterfall model,

iterative model, prototyping model, evolutionary model and spiral model.

Software Project Management applies to information of plan, measure and
control the project in order to deliver on time and with required budget. It involves
accumulation of requirements, risk, monitoring and controlling progress and
following a software development process. Software project planning encompasses

estimation, risk analysis, scheduling and SQA/SCM planning.

In this block, we will detail about the basic of Process based Management
and idea about Standard Software Development Process. The block will focus on
the study and concept of Managing the Software Development Process and
identifying the Software Model. You will give an idea on Milestones Baseline,

Cost Estimation, Ray Leigh Curve and Documenting the Schedule.

After studying this block, you will make to learn and understand about the
basic of Empirical Estimation Techniques such as COCOMO model. The concept
related to Software Configuration Management and Maintenance Processes along
with Version Control are also explained to the students. The student will be

demonstrated about Empirical Relationships techniques.

Block Objectives :

After learning this block, you will be able to understand :
Software & Software Engineering

Need & Goal of Software Engineering

Characteristics of Good Software

Software Development Life Cycle

Knowledge related to Waterfall Model, Iterative Model, Prototyping
Model, Evolutionary Model, Spiral Model

Idea about Software Project Planning Tools and Techniques
Idea about Software Configuration Management

Project Scheduling

Resource Management

Risk Management

Software Maintenance Processes

Documentation Standards

Version Control

Block Structure :

Unit 1

Unit 2

Unit 3

Unit 4

Introduction to Software & Software Engineering
Introduction to Software Project Management
Software Project Planning Tools and Techniques

Software Project Maintenance

Unit § YNTRODUCTION TO SOFTWARE

O1) & SOFTWARE ENGINEERING

1.0 Learning Objectives

1.1 Introduction
1.2 The Need for Software Engineering
1.3 Goals of Software Engineering
1.4 Typical Software Engineering Tasks
1.5 Characteristics of Good Software
1.6 Software Development Life Cycle
1.7 Software Model
1.7.1 Classical Waterfall Model
1.7.2 Iterative Model
1.7.3 Prototyping Model
1.7.4 Evolutionary Model
1.7.5 Spiral Model
1.8 Let Us Sum Up
1.9 Answers for Check Your Progress
1.10 Glossary
1.11 Assignment
1.12 Activities
1.13 Case Study
1.14 Further Readings

1.0 Learning Objectives :

After learning this unit, you will be able to understand :
. Introduction about the Software and Software Engineering
. Need, Goals, and Tasks of Software Engineering
. Detail idea about Software Development Life Cycle

. Idea about various Software Model

1.1 Introduction :

Software Engineering is about methods, tools and techniques used for
developing software. Software surrounds us everywhere in the industrialized
nations — in domestic appliances, communications systems, transportation systems
and in businesses. Software comes in different shapes and sizes — from the
program in a mobile phone to the software to design a new automobile.

Let us understand what Software Engineering stands for. The term is
made of two words, software and engineering.

Software Engineering

Software is program which is a collection of related instructions organized
for a common purpose. Software accept input from the user and gives meaningful
output.

On the other hand, engineering is a process in which product development
by considering the analysis, development models and methods.

Software

Requiremants

Software Engineering

Software engineering is an engineering in which product development
is carry on by the developers and team by considering the analysis with
development models and methods, which then going to test by the tester and
release to the customer.

Software engineering is a discipline for solving business problems by
designing and developing software—based systems.

O Check Your Progress — 1 :

1. __ isprogram which is a collection of related instructions organized
for a common purpose.

a. Software b. Instruction c. Project d. None of Above

2. __ 1is aprocess in which product development by considering the
analysis, development models and methods.

a. Software Development b. System Development

c. Engineering d. All of Above

1.2 The Need for Software Engineering :

The nature of computer software has changed considerably in the last
forty—five or so years, with accelerated changes in the last fifteen to twenty.

We begin with a brief history. In the late 1970s and early 1980s, personal
computers were just beginning to be available at reasonable cost. There were
many computer magazines available at newsstands and bookstores; these
magazines were filled with articles describing how to determine the contents
of specific memory locations used by computer operating systems. Other articles
described algorithms and their implementation in some dialect of the BASIC
programming language. High school students sometimes made more money by
programming computers for a few months than their parents made in a year.
Media coverage suggested that the possibilities for a talented, solitary programmer
were unlimited. It seemed likely that the computerization of society and the

fundamental changes caused by this computerization were driven by the actions
of a large number of independently operating programmers.

However, another trend was occurring, largely hidden from public view.
Software was growing greatly in size and becoming extremely complex. The
evolution of word processing software is a good illustration.

The explosive growth of personal computers is in the 1980s and 1990s.
The growth has continued to the present day, with computing now done on
smartphones, tablets, and other devices. As indicated, many of the initial
versions of some of the earlier software products have evolved into very large
systems that require more effort than one individual can hope to devote to
any proj—ect.

A moment's thought might make you think that standards such as Hypertext
Markup Language (HTML) and the Java programming language with its
application programming interfaces have changed everything. There are more
recent developments. Application frameworks and cloud computing have been
major players, along with highly mobile devices such as smartphones and tablets
with their specialized user interfaces.

There are also inexpensive, high—quality application development
frameworks and software development kits. There are many sixteen—year—olds
who are making a large amount of money as web page designers, although
this is relatively less frequent in 2014, since many elementary school students
in the United States are taught how to design a web page before they reach
their teens. One of the job skills most in demand now is "web master"—a job
title that did not even exist in 1993. A casual reading of online job listings
might lead you to believe that we have gone back to the more freewheeling
days of the 1980s.

Certainly, the effects of technology have been enormous. It is also true
that nearly anyone who is so inclined can learn enough HTML in a few minutes
to put together a flashy web page.

However, the problem is not so simple. Even the most casual user of
the Internet has noticed major problems in system performance. Delays make
waiting for glitzy pictures and online animations very unappealing if they slow
down access to the information or services that the user desired. They are
completely unacceptable if they cannot display properly on many portable
devices with small screen "real estate."

Proper design of websites is not always a trivial exercise. As part of
instruction in user interface design, a student of mine was asked to examine
the main websites of a number of local universities to obtain the answer to
a few simple questions. The number of selections (made by clicking a mouse
button) ranged from five to eleven for these simple operations. Even more
interaction was necessary in some cases because of the need to scroll through
online documents that were more than one screen long, or even worse, more
than one screen wide. Efficiency of design is often a virtue.

Several issues may not be transparent to the casual user of the Internet.
Perhaps the most troublesome is the lack of systematic configuration management,
with servers moving, software and data being reorganized dynamically, and
clients not being informed. Who has not been annoyed by the following famous
message that appears so often when attempting to connect to an interesting
website ?

Introduction to
Software &
Software Engineering

Software Engineering

ERROR 40:: File not found

It is obvious what happened to the information that the user wanted,
at least if there was no typing error. As we will see later in this book,
maintenance of websites is often a form of "configuration management," which
is the systematic treatment of software and related artifacts that change over
time as a system evolves.

There are also major issues in ensuring the security of data on servers
and preventing unwanted server interaction with the user's client computer.
Finally, designing the decomposition of large systems into client and server
subsystems is a nontrivial matter, with considerable consequences if the design
is poor.

It is clear that software engineering is necessary to have modern software
development done in an efficient manner. These new technologies have refocused
software engineering to include the effects of market forces on software
development. As we will see, these new technologies are amenable to good
software engineering practice.

O Check Your Progress — 2 :

L. — is necessary to have modern software development.
a. Software b. Software Engineering
c. Software Structure d. None of Above

1.3 Goals of Software Engineering :

Clearly organizations involved with producing software have a strong
interest in making sure that the software is developed according to accepted
industry practice, with good quality control, adherence to standards, and in an
efficient and timely manner.

For some organizations, it is literally a matter of life and death, both
for the organization and for potential users of the software. Software engineering
is the term used to describe software development that follows these principles.

Specifically, the term Software engineering refers to a systematic procedure
that is used in the context of a generally accepted set of goals for the analysis,
design, implementation, testing, and maintenance of software.

The software produced should be efficient, reliable, usable, modifiable,
portable, testable, reusable, maintainable, interoperable, and correct.

. Efficiency : The software is produced in the expected time and within
the limits of the available resources. The software that is produced runs
within the time expected for various computations to be completed.

. Reliability : The software performs as expected. In multiuser systems,
the system performs its functions even with other load on the system.

. Usability : The software can be used properly. This generally refers to
the ease of use of the user interface but also concerns the applicability
of the software to both the computer's operating system and utility
functions and the application environment.

. Modifiability : The software can be easily changed if the requirements
of the system change.

Portability : The software system can be ported to other computers or
systems without major rewriting of the software. Software that needs only
to be recompiled in order to have a properly working system on the new
machine is considered to be very portable.

Testability : The software can be easily tested. This generally means
that the software is written in a modular manner.

Reusability : Some or all of the software can be used again in other
projects. This means that the software is modular, that each individual
software module has a well-defined interface, and that each individual
module has a clearly defined outcome from its execution. This often
means that there is a substantial level of abstraction and generality in
the modules that will be reused most often.

Maintainability : The software can be easily understood and changed
over time if problems occur. This term is often used to describe the
lifetime of long—lived systems such as the air traffic control system that
must operate for decades.

Interoperability : The software system can interact properly with other
systems. This can apply to software on a single, stand—alone computer
or to software that is used on a network.

Correctness : The program produces the correct output.

Check Your Progress — 3 :

The software performs as expected is known as

a. Reusability b. Portability c. Reliability d. Efficiency

The software can be easily understood and changed over time if problems
occur is known as

a. Maintainability b. Correctness c. Reusability d. Interoperability

Write a detail note on goals of Software Engineering.

1.4 Typical Software Engineering Tasks :

There are several tasks that are part of every software engineering

project :

Analysis of the problem

Determination of requirements

Design of the software

Coding of the software solution

Testing and integration of the code
Installation and delivery of the software

Documentation

Introduction to
Software &
Software Engineering

Software Engineering

. Maintenance

. Quality assurance

. Training

. Resource estimation
i Project management

Analysis of a problem is very often undertaken by experts in the particular
area of application.

The requirements phase of an organization's software life cycle involves
precisely determining what the functionality of the system will be. If there is
a single customer, or set of customers, who is known in advance, then the
requirements process will require considerable discussion between the customer
and the requirements specialists on the software team.

The design phase involves taking the requirements and devising a plan
and a representation to allow the requirements to be translated into source code.
A software designer must have considerable experience in design methodology
and in estimating the trade—offs in the selection of alternative designs. The
designer must know the characteristics of available software systems, such as
databases, operating systems, graphical user interfaces, and utility programs that
can aid in the eventual process of coding.

Coding activity is most familiar to students. We note, however, that many
decisions about coding in object—oriented or procedural languages might be
deferred until this point in the software life cycle, or they might have been
made at the design or even the requirements phase. Since coding standards
are often neglected in many first— and second—year programming courses, and
they are critical in both large, industrial-type systems and for small apps that
are evaluated for quality in an app store before they are allowed to be placed
on sale.

Software testing is an activity that often begins after the software has
been created but well before it is judged ready to be released to its customer.
It is often included with software integration, which is the process of combining
separate software modules into larger software systems.

Documentation includes much more than simply commenting the source
code. It involves rationales for requirements and design, help files, user manuals,
training manuals, technical guides such as programming reference manuals, and
installation manuals.

The term software maintenance is used to describe those activities that
are done after the software has been released. Maintenance includes correcting
errors found in the software; moving the software to new environments,
computers, and operating systems; and enhancing the software to increase
functionality.

Quality assurance, or QA, is concerned with making certain that both
the software product that is produced and the process by which the software
is developed meet the organization's standards for quality. The QA team is often
responsible for setting the quality standards. In many organizations, the QA
team is separate from the rest of the software development team.

0 Check Your Progress — 4 :

1. Software engineering involves .

a. Design b. Coding

c. Documentation d. All of Above
2. Explain tasks involves in Software Engineering.

1.5 Characteristics of Good Software :

A software is identified by what it gives and how well it can be used.
The software must satisfy the following criteria:

. Functionality
. Transitional
. Maintainability

. Functionality : It refers to the performance of the software. Performance
can be measured as usability, correctness, dependability, security and
safety of the software.

. Transitional : It refers when the software is moved from one platform
to another means cross platform. It can be measured as an adaptability,
interoperability, portability and reusability.

. Maintainability : It refers to as ease modification can be done in software
to extend the functionality of the software. In this maintainability
modularity, flexibility and scalability play major role.

0 Check Your Progress — 5 :

1. Explain characteristics of good software.

1.6 Software Development Life Cycle :

Software development is a process of consisting of two major parts which
are as follows : System Analysis and System Design. When Management of
organization feels that a new system or improvement in existing system is
required, at that time the phase of system development starts.

"Software Development Life Cycle is a set of activities that analysts,
designers and users carry out to develop and implement an information system".

Software Development Life Cycle method consists of Six phase which
are as follows :

Introduction to
Software &
Software Engineering

Software Engineering

1.

Preliminary Investigation : The first phase of SDLC is Preliminary
Investigation. Before any system are developed users, managers or
concerned person have to request for the particular system to be developed.
This activity is called preliminary investigation. When the request is made
at that time the preliminary investigation begins. There are three parts
of Preliminary Investigation which are as follows :

1.1 Request Clarification : This is the main or very important phase
of preliminary investigation. The user and employee should be
cleared about actual requirement because many requests from the
user and employee are not clearly defined. If the requests are not
clearly defined then we cannot develop or improve the new system
or existing system. Before any further steps can be taken, the
project request must be clearly stated.

1.2 Feasibility Study : Before any request is passed or approved a
feasibility study is conducted because you can determine that the
requested system is feasible or not. There are three aspects in
feasibility study which are as follows :

A. Technical Feasibility : This involves the study whether a
current equipment or technology is sufficient or not. Can the
work for the project be done with current equipment, existing
software technology, and available workers ? If new technology
is required then what is the possibility that it can be developed?

B. Economic Feasibility : This study finds out whether the
request in the particular project will be beneficial in future
or not. If the return on the investment is good then it is
advisable to start the project.

C. Operational Feasibility : User acceptance level is checked
in this study. This phase also determines whether user will
accept or reject a new system. Will the system be used if
it is developed and implemented ?

The feasibility study carried out by a small group of people,
who are familiar with information system techniques;
understand the part of the business or organization.

1.3 Request Approval : It is not necessary that all requested projects
are desirable or feasible. However, those projects are not feasible
and desirable should be put into schedule. The management decides
which projects are most urgent and schedule them accordingly.
After a project request is approved, its cost, priority, completion
time, and workers requirement are estimated.

Determination of System Requirements : At the heart of system analysis
is a detailed understanding of all important fact of business are under
investigation. Analysts, working closely with employees and managers,
must study the existing business process to answer the following questions :

v What is being done ?

v" How it is being done ?

4 How frequently does it occur ?
v

How great is the volume (amount) of transaction or decisions ?

How well is the task being performed ?
Does a problem exist ?

If a problem is existing, how series is it ?

D NI NN

If a problem is existing, what is the underlying (basic) cause ?

To answer the above questions, system analyst talks to variety of person
together to collect the details about the business process and their
opinions. Some tools are used in analysis like data flow diagrams,
interviews, on-site observations and questionnaires. Following is the
Information Sources :

v’ User of a system.
v" Forms and documents used in the organization.

4 Procedure manuals and rulebook, which specifies how various
activities are carried out in the organization.

v Various reports used in the organization.
v Computer programs of existing systems.

Design of System / System Design : The design of an information system
produces the details that state how a system will meet the requirements
identified by during system analysis. There are two types of system design
which are as follows:

3.1 Logical Design : The process of how system will meet the
requirements identified during system analysis is known as a Logical
Design. System Specialists often refers to this stage as Logical
Design.

3.2 Physical Design : The process of developing program software,
which is known as Physical Design. System analysts start the
process of designing by identifying reports and other outputs the
system will produce. During the design phase, the logic of the
program is designed, files or database are designed, and program
testing and implementation plans and draw up. Designers are
responsible for providing the program with complete and clearly
outline software applications.

Development of Software : Software development process involves
installation of software, purchase of software or they may write completely
new software. The choice depends on the cost of each opinion, the time
available to write software, and the availability of programmers.
Programmers are also responsible for documenting the program, providing
an explanation of how and why certain procedures are coded in specific
ways. Documentation is essential to test the program and carry—on
maintenance once the application has been installed.

Software Testing : During software testing, the software is used
experimentally to ensure that the software works perfectly. Data are input
in the software and the result of software is checked for that data. Testing
is performed by analyst, users and persons who are not at all connected
with the system.

Introduction to
Software &
Software Engineering

Software Engineering

10

6.

Implementation and Evaluation :

6.1

6.2

Implementation : Implementation is the process of having system
workers to check out, and put new equipment into use, train users,
install the new applications and construct any files or data needed
to use it. During this phase, they will run both old and new systems
in parallel way to complete the result.

Evaluation : Evaluation of the system is performed to identify
its strength and weakness and a plan for its improvements is draw
up. Evaluation consists of four phase which are as follows:

A.

Operational Evaluation : Measurement of the way in which
software functions including difficulty in use, response time,
suitability of information formats, overall reliability, and
level of utilization.

Organizational Impact : Identification and measurement of
the benefits to organization in such areas as financial concern,
operational efficiency, and competitive effects include the
effects of internal and external information flow.

User Manager Assessment : It is the evaluation of attitude
of senior and user managers within the organization, as well
as end-—users.

Development Performance : It is the evaluation of overall
development time and efforts Conformance to budgets and
standards, and other project management criteria.

Check Your Progress — 6 :
Full form of SDLC is

a. Software Development Life Cycle

b. Software Design Life Cycle

c. Software Documentation Life Cycle

d. Software Decision Life Cycle
Explain SDLC with its all phase.

1.7 Software Model :

A software life cycle model also called process model is an expressive
and pictorial representation of the software life cycle. A life cycle model
represents all the activities required to make a software product transit through
its life cycle phases. It also captures the order in which these activities are
to be undertaken. In other words, a life cycle model maps the different activities
performed on a software product from its inception to retirement.

Different life cycle models may map the basic development activities
to phases in different ways. Thus, no matter which life cycle model is followed,

the basic activities are included in all life cycle models though the activities
may be carried out in different orders in different life cycle models. During
any life cycle phase, more than one activity may also be carried out.

1.7.1 Classical Waterfall Model :

The waterfall model is very simple to understand and use, it was first
process model to be announced. It is also known as liner sequential life cycle
model. In a waterfall model, you cannot start with next phase before completed
previous phase. It is used for the project which is small and there are no
undefined requirements. After completion of the certain phases a baseline is
established that "freezes" the product of development at that point. If need
of a change is identified, a formal change process is followed to make the
change. Output from each phase includes documentation.

The phases below the detailed design phase include software as part of
their output. Transition from phase to phase is accomplished by holding formal
reviews which provide insight into the progress. Baselines are established at
critical points on the waterfall model, the last of which is the product baseline.
The Final baseline is going with audits.

WATERFALL

Reguirsmant analysis
Design
Tasting
i

Maintenance

Waterfall Model
. Advantages :
— Easy to implement and maintain.

— The initial phase of difficult examination of requirements and
systems helps in saving time later in the developmental phase.

— The requirement of resources is minimal and testing is done after
completion of each phase.

. Disadvantages :

— It is not possible to alter or update requirements.

— You cannot make changes once you are into the next phase.

— Cannot start the next phase until the previous phase is completed.
1.7.2 Iterative Model :

In this model, iteration play an important role in software development
process. Here iteration means repetition of every step in a cyclic way after
every cycle of SDLC process.

Introduction to
Software &
Software Engineering

11

Software Engineering

12

In this Model, you can start with some of the software specifications

and develop the first version of the software. After the first version if there
is a need to change the software, then a new version of the software is created
with a new iteration. Every release of the Iterative Model finishes in an exact
and fixed period that is called iteration.

1.7.3

ITERATIVE MODEL
Ssguiremeistn RO “
TR
3
E
i

i Tezimg i Dseiry

i

Iterative Model
Advantages :
It is easier to control the risks as high-risk tasks are completed first.
The progress is easily measurable.

Problems and risks defined within one iteration can be prevented in the
next sprints.

Disadvantages :

Iterative model requires more resources than the waterfall model.
The process is difficult to manage.

The risks may not be completely determined even at the final stage of
the project.

Prototyping Model :

Prototype is a working system — not just an idea on paper — that is

developed to test ideas and assumptions about the new system.

v

AN NN NN

used.

Steps in prototyping :

Identify the user's known information requirements and features need in
the system.

Develop a working prototype.

Use the prototype, and expand the lists of known system requirements.
Revise the prototype based on information gained through user experience.
Repeat these steps as needed to achieve a satisfactory system.

As the steps suggest, prototyping is not a trial — and — error development
method.

Both users and analyst collect the sufficient information from the prototype
And determine to meet the requirements they have collected. Usually,

one of the four alternatives is selected.

Rogiinynants
anialyri
m : -- m

Prototype Model

CLsbormes
sl

. Advantages :

- Prototyping involves the use of labor—saving software; this software has
embedded database management system.

- Even personnel computer can provide an effective approach to prototyping
as there is no interfere from another user database can be used.

- Prototyping can be used with SDLC or in combination with SSADM
or independently develop a new system.

. Disadvantages :
- Leads to implementing and then repairing way of building systems.

— Practically, this methodology may increase the complexity of the system
as scope of the system may expand beyond original plans.

- Incomplete application may cause application not to be used as the full
system was designed Incomplete or inadequate problem analysis.

1.7.4 Evolutionary Model :

It is also called successive versions model or incremental model. At first,
a simple working model is built. Subsequently it undergoes functional

improvements & we keep on adding new functions till the desired system is
built.

Large projects where you can easily find modules for incremental
implementation. Often used when the customer wants to start using the core
features rather than waiting for the full software. Also used in object—oriented
software development because the system can be easily portioned into units
in terms of objects.

Introduction to
Software &
Software Engineering

13

Software Engineering

14

1.7.5

Incremental Model

Advantages :

User gets a chance to experiment partially developed system
Reduce the error because the core modules get tested thoroughly.
Disadvantages :

It is tough to divide the problem into numerous types that would be
suitable to the customer which can be incrementally executed & delivered.

Spiral Model :

The spiral model is proposed by Barry Boehm in which prototyping is
used to control cost. The Boehm spiral model has become quite popular among
ADE (Aerospace Defense and Engineering) specialists, and is not so familiar
among business developers. It is particularly useful in projects, which are risky
in nature. Business projects are more traditional. They tend to use mature

technology and to work well-known problems.

SPIRAL 2
Risk &nalysis
anel alternatives
1 X & avaluation
Determination
of ohjectives,
alternatives,

and constraints

4
Mext lveration

planning Development

of dellverables

Spiral Model

. Advantages :
— Risk avoidance chance is enhanced due to the importance on risk analysis.
- It's a good model for complex and large systems.

- Depending on the changed circumstances additional functionalities can
be added later on.

- Software is produced early in the cycle.
. Disadvantages :

— It's a costly model and requires highly specialized expertise in risk
analysis.

- It does not work well in simpler projects.
a Check Your Progress — 7 :
1. Write a note on Waterfall Model.

2. Write a note on Prototype Model.

3. Explain Spiral Model.

4. — model also known as linear — sequential life cycle model.
a. Incremental Model b. Iterative Model
c. Prototype Model d. Waterfall Model

1.8 Let Us Sum Up :

In this unit we have learnt that Software engineering is an engineering
in which product development is carry on by the developers and team by
considering the analysis with development models and methods, which then
going to test by the tester and release to the customer.

We have also seen about the need, goal and task of the software
engineering. It is noted that software development life cycle is a task which
is a mixture of many operations to having goal in terms of software development
and delivery.

Introduction to
Software &
Software Engineering

15

Software Engineering

16

It requires trained and experienced Engineers which will help to increase
likelihood of project success as development for large projects is complex and
follows definite principles in reducing risks linked with project.

1.9 Answers for Check Your Progress

a Check Your Progress 1 :

1. (a) 2. (¢)
a Check Your Progress 2 :

1. (b)
a Check Your Progress 3 :

1. (c), 2. (a) 3. (Refer 1.3)
a Check Your Progress 4 :

1. (d), 2. (Refer 1.4)

a Check Your Progress 5 :
1. (Refer 1.5)
a Check Your Progress 6 :

1. (a), 2. (Refer 1.6)

a Check Your Progress 7 :
1. (Refer 1.7.1) 2. (Refer 1.7.3)
3. (Refer 1.7.5) 4. (d)

1.10 Glossary :

1. Software — It is program which is a collection of related instructions
organized for a common purpose. Software accept input from the user
and gives meaningful output.

2. Engineering — It is a process in which product development by considering

the analysis, development models and methods.

3. Software Engineering — It is an engineering in which product development

is carry on by the developers and team by considering the analysis with
development models and methods, which then going to test by the tester
and release to the customer.

1.11 Assignment :

1. Explain Software Development Life Cycle in detail.

1.12 Activities :

1. Differentiate all the Software Model.

1.13 Case Study :

Comment, Incremental model is more flexible than the waterfall model.

1.14 Further Reading :

1. Software Engineering: A Practitioner's Approach Book by Roger S.
Pressman

2. W. Shewhart, Statistical Method from the Viewpoint of Quality Control,
Dover, 1986.

3. W.E. Deming, Out of the Crisis, SPC Press, 1982; reprinted in paperback
by MIT Press, 2003.

4, T. Gilb, Software Metrics, Little, Brown, and Co., 1976.

5. R. Zultner, "The Deming Approach to Quality Software Engineering,"
Quality Progress, vol. 21, no. 11, 1988, pp. 58-64.

6. W.H. Dana, The X-15 Lessons Learned, tech. report, NASA Dryden
Research Facility, 1993

Introduction to
Software &
Software Engineering

17

Software Engineering

18

2.0
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23

INTRODUCTION TO SOFTWARE
PROJECT MANAGEMENT

Learning Objectives

Introduction

Introduction to Software Project Management
History of Project Management
Software Project

Need of Software Project Management
Software Project Manager

Sub-Team needed in Software Engineering Projects
Software Management Activity

Project Preparation

Resource Organization

Risk Organization

Project Implementation and Monitoring
Project Communication Organization
Configuration Organization

Concept of Tailoring

Extreme Programming

Let Us Sum Up

Answers for Check Your Progress
Glossary

Assignment

Activities

Case Study

Further Readings

2.0

Learning Objectives :

After learning this unit, you will be able to understand :
Software Project management

Software Development Process

Software Project and Need

Software Project Manager and Software Management Activity
Resource Management

Configure Management

Risk analysis and measurement

Basics of Extreme programming

2.1 Introduction :

A project is a collection of numerous processes performed in order to
complete a goal in terms of software development and delivery. Characteristics
of project are as follows :

v' Exclusive and different goal.
v No day-to—day operations.

v' Start time and end time.
v

Goal achieved which serve as temporary phase in lifetime of an
organization.

v Acceptable resources in terms of time, workforce, money, material and
knowledge—bank.

2.2 Introduction to Software Project Management :

A software project is the whole process of software development form
gathering requirement to Implementation and evaluation, which is carried out
according to steps of execution procedures, in a stated time to complete
proposed software product.

The goal of software project management is to understand, plan, measure
and control the project such that it is delivered on time and on budget. This
involves gathering requirements, managing risk, monitoring and controlling
progress, and following a software development process.

Software project management requires trained and experienced Software
Engineers in order to increase the likelihood of project success because software
development for large projects is extremely complex and following strict
engineering principles will help reduce the risks associated with the project.

Software project management is extremely important as :

v It is difficult to predict as only 10% of projects are delivered in particular
budget and on schedule.

v Management result in more effect on success or failure of project than
technology advances.

v There exists too much scrap and rework which results in very immature
process.

0 Check Your Progress — 1 :
1. What is the goal of Software Project Management ?
a. To build a Software
b. To plan, measure and control the project development
c. Maintenance of Software Project
d. None of the above

2. What is Software Project Management ? Explain

Introduction to
Software
Project Management

19

Software Engineering

20

2.3 History of Project Management :

However, project management has been around for thousands of years.
Project management was involved in the planning, coordination, and construction
of the Ancient Wonders of the World. However, project management has grown
to include today's energy production sectors, construction efforts, and more.

Project Management in 18th Century : Elements of Project Management
Transcend Time. The basic principles of project management have remained
the same throughout history, regardless of technology and capacity. These
elements include managing resources, maintaining schedules, and coordinating
of different activities and tasks. However, ancient and other historic marvels
of project management do not routinely involve schedule optimization.

Project Management in 19th Century : In the late 19th century, the
need for more structure in construction, manufacturing, and transportation
sectors gave rise to modern project management tactics. For example, the
creation of the Transcontinental Railroad, corduroy roads, and the rebuilding
of the South after the Civil War were primary feats of project management
applications.

The Transcontinental Railroad is considered to be the first, large—scale
project management undertaking. Often, people forget about the true scope of
this project as it included traversing treacherous terrain and weather to construction
a railway and telegraph line.

Project Management in 1900 to 1950 : The Birth of Modern Project
Management and Henry Gantt.

As the 19th century progressed, business leaders began to face the
challenges of labor laws and regulations from the federal government. Henry
Gantt, considered the founding father of modern project management, developed
planning and control techniques, such as the famous Gantt Chart to ensure
monitoring and control of the project schedule. This basic bar chart shows the
phases of a project from inception to completion.

Project Management in 1911 under Frederic Taylor : Frederic Taylor
published a book, "The Principles of Scientific Management," in 1911, which
was based on his experience in the steel industry. The goal of the book was
to give unskilled workers to opportunity to work on new, complex projects
by learning skills rapidly and through simplicity.

In addition, he identified how many workers would routinely work below
capacity through soldiering to ensure future job security. Furthermore, he
identified the need to create incentive—based wage systems and take advantage
of time saving techniques.

Project Management in 1950 to 1980s : PERT and CPM : After WWII,
project managers began to follow two mathematical ways of conducting and
managing projects. Program Evaluation Review Technique, or PERT, analyzes
individual tasks by asserting a minimum amount of time for completion. The
Critical Path Method, or CPM, factored in all activities, the completion time
of such activities, and how they relate to identify inefficiencies. However, CPM
quickly became riddled with confusion.

Project Management in 1980 to 2000 : Computers and Project
Management: Computers brought connectivity and communication to the forefront
of project management in the 1980s. As technology grew into the 1990s, the

Internet became widely available through dial-up means. Some project
management entities created systems for project management purposes, but it
was not until the late 19th century when the newfound era of computers and
project management truly began.

Project Management in 2000 till today : Rise of Automation and
Maturity of Efficiency: As computer—controlled options and complex algorithms
were developed, project manager began to complete more work in less time
with fewer errors than ever before in history. As the Internet grew, web—based
project management applications were developed. Today, web—based project
management applications may be seen on mobile devices, individual computers,
and wide—scale ERP systems.

a Check Your Progress — 2 :

L. The principles of scientific management are published by
a. Henry Gantt b. Frederic Taylor
c. Both of these d. None of these

2.4 Software Project :

A software project is the whole process of software development form
gathering requirement to Implementation and evaluation, which is carried out
according to steps of execution procedures, in a stated time to complete
proposed software product.

2.5 Need of Software Project Management :

Software is supposed to be an immaterial product. Software development
in a new thing in the business world. Most software is made to fulfill
requirements of the client. As the technology changes and advances so regularly
and fast one software may not be useful to the other one. All such business
and environmental restrictions carry risk in software development hence it is
important to manage software projects efficiently.

Quality
Above image shows three restrictions for software projects. Time, Cost
and Quality is an important part of software organization because deliver the
project on time as per the schedule looking into consideration of client's budget
and deliver the quality product. There are numerous internal and external
factors, which may affect these three restrictions.

Therefore, software project management is important to combine user
requirements along with budget and time restriction.

a Check Your Progress — 3 :

1. Software project management is important to combine user requirements
along with
a. Time b. Cost ¢. Quality d. All of Above

Introduction to
Software
Project Management

21

Software Engineering

22

2.6 Software Project Manager :

A software project manager is a person who accepts the responsibility
of implementing the software project. Software project manager is aware of
SDLC and it's all phase. The project manager controls and manages the activities
of software project, but he is not directly involved in development of the final
product.

A project manager carefully monitors the process of development, makes
and implements various plans, organize required resources, keeps communication
among all team members in order to consider issues of cost, resources, time,
quality and customer satisfaction.

Responsibilities of project manager are as follows :
. Managing People

v Act as project leader

v" Lesion with investors

v' Managing human resources

4 Setting up reporting order etc.
. Managing Project
Defining and setting up project opportunity
Managing project management activities
Monitoring development and performance
Risk study at each phase

Take required step to avoid or come out of problems

NN

Act as project spokesperson
O Check Your Progress — 4 :

1. — is a person who accepts the responsibility of implementing
the software project.

a. Software Project Manager b. Software Design Manager
c. Software Testing Manager d. Software Development Manager
2. Write a note on Software Project Manager.

2.7 Sub-Team needed in Software Engineering Projects :

It is clear that the systematic development of large, modern, software
projects require teams. It is often helpful to think of a software project team
as being made up of several "sub—teams." These sub—teams need not be as
formally constituted as they are described here and, in fact, some of them will
consist of a single person in many cases. In fact, the same person may perform
all the actions of multiple sub—teams. However, the team's activities still need
to be performed, regardless of the overall team organization and the size of

the project. The activities performed by these teams occur regardless of the
software development life cycle used, although the timing of these activities
will almost certainly differ.

Several of these sub—teams are not likely to be in existence during the
entire lifetime of the software project. For some software projects, one or more
of the teams may consist of a single person whose duties may be split among
several projects or activities. In other projects, the teams may be very large
and geographically separated. Team members may even report to different
companies in some of the larger cooperative software development projects.

Some typical software engineering sub—teams and their duties are listed
next. Although all activities are important, this list highlights some cases where
a particular software development life cycle model requires special knowledge
from a sub—team.

Systems Analysis Team — This team is responsible for determining if
the project is feasible. The feasibility study includes cost analysis, estimated
revenues, and an estimate of the difficulty of engineering the project. After
it produces the feasibility study, this team should interact with the requirements
team, receiving its feedback. If the software development process is iterative,
as in the rapid prototyping and spiral models, then the interaction and feedback
should be more frequent and may occur with additional sub—teams.

Planning Team — This team is responsible for developing the overall
management plan for the project and making sure that the project is proceeding
within the expected time frame for various activities. This often involves
staffing, which becomes especially critical for agile software development
processes, to make sure that the team has adequate knowledge of the application
domain to know the capabilities of existing software components and systems.
The same is true for open—source projects.

Requirements Team — The duties of this team are to meet with the
customer and determine a complete, precise set of requirements for this project.
This will require a set of formal and informal meetings with the customer to
finalize the requirements from relatively imprecise and incomplete initial
requirements. If no customer is available, then the requirements team is to obtain
the same information from one or more potential users. If no potential users
are available, then surrogate customers may be used in their place.

After it produces the system's requirements, this team should interact with
the design team, receiving its feedback. If the software development process
is iterative, as in the rapid prototyping and spiral models, then the interaction
and feedback should be more frequent and may occur with additional sub-—
teams. This type of feedback is crucial to agile software development processes.

System Design Team — The duties of this team will be to produce a
detailed design of the system after the requirements have been set by the
requirements team. If the software development process uses the classical
waterfall model, then the system design team should provide feedback to the
requirements team about any difficulties encountered.

After it produces the design, the system design team should interact with
the implementation team, receiving its feedback. If the software development
process is iterative, as in the rapid prototyping and spiral models, then the
interaction and feedback should be more frequent and may occur with additional
sub—teams.

Introduction to
Software
Project Management

23

Software Engineering

24

Implementation Team — The duties of this team will be to implement
the software designed by the system design team. After they produce the
implementation, this team should interact with the testing and integration team,
receiving its feedback. If the software development process is iterative, as in
the rapid prototyping and spiral models, then the interaction and feedback
should be more frequent and may occur with additional sub—teams.

Testing and Integration Team — The duty of this team is the formulation
of test cases for the modules and systems that are created by the implementation
team. This team may take some modules from an incomplete system for testing
by mutual agreement with the implementation team. After it produces the test
plan and tests the software modules produced, this team will integrate the
software modules into a working system. This team should interact with the
implementation team, receiving its feedback. If the software development process
is iterative, as in the rapid prototyping and spiral models, then the interaction
and feedback should be more frequent and may occur with additional sub—
teams. The integration team is responsible for an interface control document
(ICD) that precisely describes the interfaces between major system components.
This can be in the form of specifying APIs, or the interfaces between software
subsystems.

Training Team — This team is responsible for the development and
production of training materials.

Delivery and Installation Team — This team is responsible for the
delivery and installation of the software.

Maintenance Team — This team is responsible for the maintenance of
the software after it is delivered and installed. After the system is delivered
and installed, this team should interact with the implementation team, receiving
its feedback. If the software development process is iterative, as in the rapid
prototyping and spiral models, then the interaction and feedback should be more
frequent and may occur with additional sub—teams.

Quality Assurance (QA) Team — This team has two duties. The first
is to set standards for the adherence of the project team to a set of agreed—
upon processes for the system's creation and set standards for performance of
the software produced. The second is to provide an evaluation of how well
the project teams meet those standards. Standard industry practice is for the
information obtained by this team to be kept internal and not shared with the
customer. The information can be released in the event of a legal action and,
thus, cannot be destroyed. This information is to be presented to the project
manager who will use it to evaluate performance of the QA team.

Metrics Team — This team is responsible for keeping statistics on the
performance of the teams on the project. Depending on the organization's data
collection procedures, some typical statistics kept might be the number of
maintenance requests generated, number of maintenance requests serviced,
number of lines of code written, number of hours performed on each task,
and values produced by the tool on each new version of the system. This team
will interact with the requirements, design, implementation, testing and integration,
and maintenance teams, providing assessments of quality and efficiency, as well
as feedback to these sub—teams.

Documentation Team — This team is responsible for the project
documentation. This includes external documentation of the requirements, design,
source code, and other supporting documents.

System Administration Team — This team is responsible for ensuring
that the underlying computer hardware, software, and network support are
working as needed by the project team. This team often includes the network
administration team.

Reuse and Reengineering Team — This team is responsible for selection
and use of appropriate existing reusable software components. Reengineering
may be necessary if the software project depends upon some old code that
must be changed because of new advances in technology.

It is not surprising that there are several managerial tasks involved here,
one for each sub—team. Of course, if the teams are small enough, a manager
may be one of the technical members of the team (or even the only team
member).

a Check Your Progress — 5 :

1. s responsible for developing the overall management plan for
the project.

a. System Administration Team b. Metrics Team

c. Planning Team d. System Analysis Team

2. — is responsible for keeping statistics on the performance of the
teams on the project.
a. Metrics Team b. QA Team

c. System Administration Team d. Training Team

3. Write a detail notes on sub—team that are required in software engineering.

2.8 Software Management Activity :

Software project management includes numeral of activities, which includes
planning, scope and cost estimation of software product. Software management
activities include following :

. Project Preparation

. Scope Management

. Project Estimation

. Project Preparation : Project preparation is activity, which is completed

before actual software development starts. It is there for software
development but it is not containing concrete movement that has direct
connection with the software development; somewhat it is a set of
multiple process, which enables development.

Introduction to
Software
Project Management

25

Software Engineering

26

Scope Management : Scope management contains all the activities,
process required to perform in order to make a deliverable software.
Scope management is important because it makes boundaries of the
project by clearly defining what would be done and what would not be
done in the project.

During Scope management, it is essential to —

State the possibility

Decide its confirmation and control

Divide the project into smaller parts for ease of management.

Validate the scope

AN NN

Control the scope by including changes to the scope

Project Estimation : There must be accurate estimation of various
measures for an effective management. With the exact estimation, managers
can manage and control the project more professionally and successfully.

Project estimation involves the following :

Software Size Estimation : Size of software estimated either by calculating
number of functions in the software or by KLOC (Kilo Line of Code).
Functions differ according to the requirement of the user.

Effort Estimation : It refers to employee requirement and man—hour
required to produce the software. Software size should be known for
effort estimation. This is done by manager's experience, and old data
of organization.

Time Estimation : It refers to estimation of the time required to develop
the software. Required efforts is separated into sub categories as per the
customer requirements and interdependency of the software components.
Software development is divided into smaller responsibilities, activities
or events by Work Breakthrough Structure (WBS). The responsibilities
are planned on day—to—day basis. The sum of time required to complete
all responsibilities in hours or days is the total time invested to complete
the project.

Cost Estimation : It is the most difficult of all because it depends on
more elements than any of the previous ones. Following criteria is going
to consider in cost estimation :

v' Size of the software

Quality of the Software

Hardware

Additional software or tools, licenses etc.
Skilled employees with task—specific skills
Travel involved

Communication

SN N N N N

Training and support

0 Check Your Progress — 6 :

1. Explain software management activity.

2.9 Project Preparation :

Project preparation refers to roadmap of all activities to be done according
to order and within time slot allotted to each activity.

Project managers define various responsibilities, and project milestones
and then arrange them. They look for tasks which is serious in path in the
plan, which are essential to complete in specific way and strictly within the
time due.

It is necessary to identify below points in scheduling a project :
Break down the project tasks into smaller, manageable form
Find out various tasks and correlate them

Estimate time required for each task

Divide time into work—units

Allocate acceptable number of work—units for each task

Calculate total time required for the project from start to finish

O < X X X < X

Check Your Progress — 7 :

1. Write a short note on Project Scheduling.

2.10 Resource Organization :

All elements used in software development is assumed as resource for
that project. As a resource there may be human, tools, and software libraries.
The available resources are in limited quantity and stay in the organization
as a pool of assets.

The shortage of resources hampers development of the project and it
can pause behind the schedule. Assigning additional resources increases
development cost in the end. It is therefore necessary to estimate and assign
acceptable resources for the project.

Resource management includes —

. Defining organization project by creating a project team and assigning
tasks to each team member

. Defining resources required at a particular stage and their availability

Introduction to
Software
Project Management

27

Software Engineering

28

. Manage Resources by producing resource request when they are required
and de—allocating them when they are no more needed.

a Check Your Progress — 8 :

1. Write a short note on Resource Management.

2.11 Risk Organization :

Risk management is a strategy to deal with hazard and risk, designed
to ensure that priorities are made, action taken and available resources put to
maximum effect.

. Initial Threat Appraisal (Risk Analysis) :

The first stage of a risk strategy is to identify the key issues. An Initial
Threat Appraisal provides a systematic examination of defined risks which could
threaten the operations of a business and in addition, identify those areas where
further operational analysis may be required.

Working in partnership with our client is a fundamental aspect of the
process and the parameters of the project are agreed at the outset with the
client agreeing the areas of risk for investigation.

Threats which may be either insurable or un—insurable may then identified
and evaluated using the widely accepted components of Likelihood, Severity
and Control, and a prioritized action plan is produced.

. Risk Strategy :

Information collected during the initial investigations is used to formulate
a plan designed to reduce risks to a minimum. A program will be organized
over a realistic time frame, usually 2 to 3 years, and will include allocation
of responsibilities, upgrading of policies and procedures where appropriate, and
on—going risk evaluation and management.

Training is a vital component of a Risk Strategy assisting with an
enhanced "risk" culture, and acceptance of responsibility.

. Benefits :
The major features and associated benefits are :

v" Identification of the major threats to a business within prescribed areas
of risk.

\

Relative assessment of threats in terms of the combination of likelihood,
severity and control.

Benchmarking where studies are undertaken at multiple locations.
Development of a prioritized action plan with broad costing indications.
Guidance on the development of an appropriate risk strategy.

Assistance with related Corporate Governance.

AN NN

Measurement of the effectiveness of existing management controls.

v Development of existing risk management initiatives through a program
of education and training.

v Control of the strategic process and over a period a reduction in the
"total cost of risk".

4 Minimum cost for insurance and risk transfer.
Check Your Progress — 9 :

1. Write a note on risk management in software management.

2. What is the first step of Risk Analysis ?
a. Analysis the risk impact
b. Finding solution to minimize risk
c. Identifying the key issues that could threaten the business operations

d. None of these

2.12 Project Implementation and Monitoring :

In this phase, described tasks of the project plans are implemented as
per the time—table. Implementation requires monitoring to check all is working
as per the plan. Monitoring is detecting chance of risk and taking measures
to address the risk or report the status of numerous tasks.

These measures include —

. Monitoring Activity — All events planned within some responsibilities
can be monitored on day—to—day basis. When all events in a task are
completed, it is considered as complete.

. Status Reports — The reports contain status of events and tasks completed
as per given time, generally a week. Status can be marked as finished,
pending or work—in—progress etc.

. Milestones Checklist — Every project is divided into multiple stages
where main tasks are completed (milestones) based on the phases of
SDLC. This milestone checklist is prepared once every few weeks and
reports the status of milestones.

O Check Your Progress — 10 :

1. Write a short note on Project execution and monitoring.

Introduction to
Software
Project Management

29

Software Engineering

30

2.13 Project Communication Organization :

Effective communication plays important role in the success of a project.
It ties gaps between client and the organization, among the team members as
well as other stake holders in the project such as hardware suppliers.

Communication can be oral or written. Communication management
process include the following steps :

. Planning — It refers to the identifications of all the investors in the project
and the method of communication among them. It also reflects if any
extra communication facilities are essential.

. Sharing — It refers to manager focuses on sharing correct information
to the correct person at the correct time. This keeps everyone involved
in the project up—to—date with project progress and its status.

. Feedback — Project managers use feedback and create status and
performance reports. This ensures that input from various investors is
coming to the project manager as their feedback.

. Closure — At the end of each major event, end of a phase of SDLC
or end of the project itself, administrative closure is formally announced
to update every investor by sending email, by issuing a hardcopy of
document or by other mean of effective communication.

O Check Your Progress — 11 :

1. Explain Project Communication Management.

2.14 Configuration Organization :

It refers to a process of tracking and controlling the modification in the
software related to the requirements, design, functions and development of the
product.

IEEE defines it as "the process of finding and defining the objects in
the system, controlling the change of these items throughout their life cycle,
recording and reporting the status of items and change requests, and verifying
the completeness and correctness of items".

Normally, once the SRS is confirmed there is less chance of requirement
of changes from user. If they occur, the changes are addressed only with prior
approval of higher management, as there is a possibility of cost and time
overrun.

. Baseline :

A stage of SDLC is supposed over if it baselined, i.e., baseline is a
measurement that defines completeness of a stage. When all activities relating
to it are finished and well documented a stage is baselined. If it was not
the final phase, its output would be used in next immediate phase.

. Change Control :

It is referred to as a function of configuration management, which ensures
that all modification made to software system are reliable and complete as per
organizational rules and regulations.

A change in the configuration of product goes through following steps —

0 Identification — A modification request arrives from internal or external
source. When change request is recognized formally, it is correctly
documented.

) Validation — Validity of the modification request is checked and its

management procedure is confirmed.

0 Analysis — The effect of modification request is analyzed in terms of
schedule, cost and required efforts. Overall effect of the probable
modification on the system is analyzed.

a Check Your Progress — 12 :

1. Write a detail note on Configuration Management.

2.15 Concept of Tailoring :

Tailoring in Software development is the process of extracting a set of
processes, tasks and artifacts from the organizations established processes, tasks
and artifacts so as to best suit a project to achieve its objectives.

. Practices and Guidelines :

It is very important that we have a set of tailoring guidelines that will
guide the development teams to let them decide what is best for the projects.
The guidelines must also specify is that what is tailorable and what is mandatory.

For example, in software development project if a project manager says
that the project need not maintain a project management plan then it should
be not acceptable as per the tailoring guidelines. So basically, there will be
some processes, tasks and artifacts that will have to be developed and maintained
in a software product development project.

So, these guidelines must take into account multiple aspects before being
released as part of the organization quality management system. These aspects
must look into the current state of process implementation, customer's needs
and objectives, project characteristics etc.

Organizations that are offerings services for different types of projects
like Full life cycle development, maintenance, QA, Technical support must also
look into coming up with life cycle models for each of these type of software
projects. These life cycle models must go hand in hand with the Process
tailoring guidelines established at the organization level.

Introduction to
Software
Project Management

31

Software Engineering

32

0 Check Your Progress — 13 :
1. What is meant by Tailoring ?
Tool for quality assurance

b. Software development tool

c. Process of extracting a set of processes, tasks and artifacts from the
organizations established processes, tasks and artifacts so as to best
suit a project to achieve its objectives.

d. None of these

2.16 Extreme Programming :

Extreme Programming teams use a simple form of planning and tracking
to decide what should be done next and to predict when the project will be
done. Focused on business value, the team produces the software in a series
of small fully—integrated releases that pass all the tests the Customer has
defined.

Extreme Programming is about team responsibility for all code, for coding
in a consistent pattern so that everyone can read everyone's code, about keeping
the system running and integrated all the time.

There are four basic activities that XP proposes for software development
process :

1. Coding : In XP coding is considered the only important product of the
system development process. XP programmers start to generate codes at
the very beginning so "At the end of the day, there has to be a program."”

2. Testing : XP emphasizes to always check if a function works is by testing
it. XP uses Unit Tests which are automated tests, and the programmer
will write tests as many as possible to try to break the break the code
he or she is writing.

3. Listening : Obviously, coding and testing need to be done no matter
how a system is developed, but listening is very important in XP. For
XP developers the ability and expertise in technical aspects should be
accompanied by the ability to be good listeners. This ability will enable
them to understand what customers want and develop solutions which
match customers ? needs and desires as close as possible.

4. Designing : XP’s simplicity principle doesn't mean that it can exclude
designing process. Without proper design in the long run system becomes
too complex and projects could come to a halt. It is then important to
create a design structure that organizes the logic in the system so too
many dependencies in the system can be avoided.

O Check Your Progress — 14 :
1. What is extreme programming ?
a. Coding of software
b. Designing of software
c. Coding, Testing, Listening and Designing of software

d. None of these

2.17 Let Us Sum Up :

In this unit we have learnt that how software project management is
carried on as well as need of software project management such as software
project manager and sub—team needed to perform various operation at different
stages.

We also discussed software project management activity, project scheduling,
resource management, and risk management which plays an important role in
each stage. It is also noted that in each stage of software project management
is monitor by project management so that project can fulfill the user requirements.

2.18 Answers for Check Your Progress :

a Check Your Progress 1 :

1. (b) 2. (Refer 2.2)
a Check Your Progress 2 :
1. (b)
a Check Your Progress 3 :
1. (d)
a Check Your Progress 4 :
1. (a) 2. (Refer 2.6)
a Check Your Progress S :
1. (¢) 2. (a) 3. (Refer 2.7)

a Check Your Progress 6 :
1. (Refer 2.8)

a Check Your Progress 7 :
1. (Refer 2.9)

a Check Your Progress 8 :
1. (Refer 2.10)

a Check Your Progress 9 :
1. (Refer 2.11) 2. (¢)

a Check Your Progress 10 :
1. (Refer 2.12)

a Check Your Progress 11 :
1. (Refer 2.13)

a Check Your Progress 12 :
1. (Refer 2.14)

a Check Your Progress 13 :
1. (¢)

a Check Your Progress 14 :
1. (¢)

Introduction to
Software
Project Management

33

Software Engineering

34

2.19 Glossary :

1.

SPM - Software project management understand, plan, measure and
control of project as delivering on time and budget problems of contiguous
and chained allocation.

Extreme Programming — The team responsibility for codes or coding
in consistent pattern which keeps system running and integrated at all
times.

Risk Management — It is a strategy to deal with hazard and risk, designed
to ensure that priorities are made, action taken and available resources
put to maximum effect.

2.20 Assignment :

L.

Explain Software Project management in detail.

2.21 Activities :

1.

Study activities of all sub—team of software project management.

2.22 Case Study :

Create project scheduling for Hospital Management System.

2.23 Further Reading :

L.

W. Shewhart, Statistical Method from the Viewpoint of Quality Control,
Dover, 1986.

SOFTWARE PROJECT PLANNING
TOOLS AND TECHNIQUES

3.0 Learning Objectives

3.1 Introduction

3.2 Work Breaks Down Structure (WBS)
3.3 Software Sizing

3.4 Milestones Baseline

3.5 Cost Estimation

3.6 Ray Leigh Curve

3.7 LOC and FP Estimation

3.8 Documenting the Schedule

3.9 Developing the Activity Network
3.10 Empirical Relationships

3.11 Effort Distribution

3.12 Empirical Estimation Techniques - COCOMO
3.13 Let Us Sum Up

3.14 Answers for Check Your Progress
3.15 Glossary

3.16 Assignment

3.17 Activities

3.18 Case Study

3.19 Further Readings

3.0 Learning Objectives :

After learning this unit, you will be able to understand:

. Work breakdown structure
. Software sizing
. Cost estimation model

. COCOMO Model

. Software Documentation

3.1 Introduction :

Software project planning actually encompasses all estimation, risk analysis,
scheduling, and SQA/SCM planning. However, in the context of set of resources,
planning includes estimate — your effort to determine how much money, effort,
resources, and time it will take to develop a specific software—based system
or product.

35

Software Engineering

36

3.2 Work Breaks Down Structure (WBS) :

Work Breakdown Structure is a tool project managers use to break
projects down into manageable pieces. The Work Breakdown Structure is an
essential tool to set the project scope. It forms the agreement between you
and your client on what is included and what is not included in your end
deliverable. Creating a Work Breakdown Structure requires a substantial amount
of energy, time and people, but in the end is not rocket science. The Project
Management Body of Knowledge defines the work breakdown structure as a
"deliverable oriented hierarchical decomposition of the work to be executed
by the project team." The work breakdown structure visually defines the scope
into manageable chunks that a project team can understand, as each level of
the work breakdown structure provides further definition and detail.

1 ntecnal
T
| ok

Bundigot

|| Elctical

Wk
Dot
—1.1.1 Rough in Eleatrical
Wark
Budget -
—1.1.2 Inslal and terminate

Work
Budigel

Work Breakdown Structure

A work breakdown structure starts with the project as the top—
level deliverable and is further decomposed into sub—deliverables as shown in
above figure.

The project team creates the project work breakdown structure by
identifying the major functional deliverables and subdividing those deliverables
into smaller systems and sub—deliverables. The following guidelines should be
considered when creating a work breakdown structure:

v The top level represents the final deliverable or project

v Sub—deliverables contain work packages that are assigned to an
organization's department or unit

4 All elements of the work breakdown structure don't need to be defined
to the same level

v The work package defines the work, duration, and costs for the tasks
required to produce the sub—deliverable

v Work packages should not exceed 10 days of duration

v Work packages should be independent of other work packages in the
work breakdown structure

v Work packages are unique and should not be duplicated across the work
breakdown structure

0 Check Your Progress — 1 :

1. What is Work Breakdown Structure ?
a. Division of software development process
b. Tool used for breaking the whole project into manageable pieces
c. Task allocation

d. None of these

3.3 Software Sizing :

Sizing measures are needed to make valid comparisons across (or within)
systems. Without a software sizing measure, productivity cannot be computed.
There are only two software sizing measures widely used today — Lines of
Code (LOC or KLOC) and Function Points (FP). Though each is a sizing
measure, they actually measure different things and have very different
characteristics.

Lines of Code is a measure of the size of the system after it is built.
It is very dependent on the technology used to build the system, the system
design, and how the programs are coded. The major disadvantages of LOC
are that systems coded in different languages cannot be easily compared and
efficient code is penalized by having a smaller size. Capers Jones stated at
a talk to the Chicago Quality Assurance Association on November 22, 1996
that anyone using LOC is "committing profession malpractice." Despite these
problems, LOC is still frequently used by very reputable and professional
organizations.

In contrast to LOC, Function Points is a measure of delivered functionality
that is relatively independent of the technology used to develop the system.
FP is based on sizing the system by counting external components (inputs,
outputs, external interfaces, files and inquiries.) While FP addresses many of
the problems inherent in LOC and has developed a loyal following, it has its
own set of advantages and disadvantages.

a Check Your Progress — 2 :

1. What is the software sizing measures ?
a. Function points (FP) b. Lines of code (LOC)
c. Both a & b d. None of these

3.4 Milestones Baseline

Baseline is an agreed description of the attributes of a product, at a point
in time, which serves as a basis for defining change. A baseline may be a
single work product, or set of work products that can be used as a logical
basis for comparison.

The main goal of baseline is to reduce the software project's vulnerability.
It is generally used in configuration management. While milestone is a point
which shows how far the project is progressed?

a Check Your Progress — 3 :

1. Baseline is used in
a. Project Planning b. Requirement Gathering
c. Configuration Management d. Quality Management

Software Project

Planning Tools and

Techniques

37

Software Engineering

38

3.5 Cost Estimation :

Software costing should be carried out objectively with the aim of
accurately predicting the cost of developing the software. If the project cost
has been computed as part of a project bid to a customer, a decision then
has to be made about the price quoted to the customer. Classically, price is
simply cost—plus profit. However, the relationship between the project cost and
the price to the customer is not usually so simple.

Software pricing must take into account broader organizational, economic,
political and business considerations. Therefore, there may not be a simple
relationship between the price to the customer for the software and the
development costs. Because of the organizational considerations involved, project
pricing should involve senior management, as well as software project managers.

Three main approaches to estimation :
. Empirical
. Heuristic
. Analytical
. Empirical techniques : It is a technique based on past experience.

. Heuristic techniques : This technique is assumed to be the characteristics
that can be estimated to express mathematical expression.

. Analytical techniques : This derives the required results starting from
certain simple assumptions.

O Check Your Progress — 4 :

1. Which of the following cost estimation approach is based on past
experience ?

a. Heuristic b. Empirical c. Analytical d. None of these

3.6 Ray Leigh Curve :

The classic S—shape shown in below figure can be describe as cost
histories of items and shows certain development programs aspects.

T

aa0

s

300

Tima
Curve

The Rayleigh Distribution models show development program's effort
which ramp—up the peak value and over certain time frame.

Rayleigh Cumulative Distribution
_R(t) = C (1- o050

. N

-
-

R(t) = Total cosl or el‘faﬁ d= Schedule Scale Parameler
expended to time, Equivalent lo the Mode Position

ival A in EVM
Equiviist o AW It E = Cosl Scale Parameter

Final Development Cost at Outtum
Distribution Formula

A two Rayleigh curves when combined describes the major project
requirements or variants that comes all through the development. If additional
requirements are obtained before peak, then it is possible to model the total
expenditure by using one Rayleigh Curve as shown in below figure.

[agamnyciiturw ol i Posird in Tame

Two Curves Showing Combination

a Check Your Progress — 5 :
1. Why do we use Ray Leigh Curve ?

a. Development program's effort which rump—up the peak value and
over certain time frame

b. To measure cost
To measure risk

d. None of these

3.7 LOC and FP Estimation :
. LOC Estimation :

LOC is the Line of Code, which is program length used as predictor
of program features like effort and ease of maintenance. The LOC measure
is used to measure size of the software. There are many versions of LOC such
as :

DSI which is Delivered Source Instructions used in COCOMO'81 as
KDSI and explains as :

v Source lines which deliver portion of product like test drivers and support
software's that are obtained by project staff by creating applications
generators,

v' Has single instructions in one line of code or card image,
v In this the instructions are declared with no Comments.
. Advantages of LOC :

v' Simple to measure

Software Project
Planning Tools and
Techniques

39

Software Engineering

40

AN

ANEERNEERN

Disadvantage of LOC :
As defined on code, it is hard to measure size of specification with it.

It is limited to particular size, namely length and has no functionality
or complexity.

It has great line of code due to worst software design.
It depends on certain language.

Hard for users to understand.

FP Estimation :

FP which is Function Points is basic data from which the productivity

metrics could be solved. Such type of data is used in two ways :

v
v

In form of an estimation variable used to size every element of software,

In form of baseline metrics gathered from past projects used in conjunction
with estimation variables to get cost and effort projections.

It is noted that the idea of this is to find and count number of different

functions like :

v
v
v
v

v

External inputs which are normally in shape of file names
External outputs that can be reports, messages etc.
Queries which can be interactive in response

External files or interfaces which are files that are shared with software
systems

Internal files that are not seen outside system

It is noted that such above functions individually assessed for complexity

and weight age which varies from simple to complex internal files.

(NN N N U N N RN

—

Advantages of FP :

It is not specific to code

It has no dependency on language

In the data is seen early in project as detailed specification.
It is more accurate

Drawbacks of FP :

It requires subjective counting

It is very difficult to automate and hard to calculate

It does not considered quality of output

It is more towards traditional data processing applications
Effort prediction by unadjusted function is worse with addition of TCF
Check Your Progress — 6 :

What are the advantages of using Function Point (FP) ?

a. It is not specific to code

b. It is used to measure the size of software

c. It depends on certain language

d. None of these

3.8 Documenting the Schedule :

Documentation of software includes written text that joins computer
software. It explains how it operates or how to use it, and may mean different
things to individuals in different roles. Documentation is an important part of
software engineering. Types of documentation include:

. Requirements — Statements that identify attributes capabilities,
characteristics, or qualities of a system. This is the foundation for what
will be or has been implemented.

Architecture/Design — Overview of software. Includes relations to an
environment and construction principles to be used in design of software
components.

Technical — Documentation of code, algorithms, interfaces, and APIs.

End user — Manuals for the end—user, system administrators and support
staff.

Marketing — How to market the product and analysis of the market

demand.
We see that Project Scheduling includes :

v Split project into tasks and estimate time and resources required to
complete each task.

v Organize tasks concurrently to make optimal use of workforce.

v Minimize task dependencies to avoid delays caused by one task waiting
for another to complete.

v' Dependent on project managers intuition and experience.

. A Create Activir
Ideniifies Identify Estimaate P - [,:-l:r "Ih':-‘:u"url: a ml:‘
. caple to !
Activitles Possible —H Hesources b — > b
Conduct Har Charts
Dependencles i
Activities

Project Scheduling Process
Scheduling for certain projects can be analyzed based on :
v End-date for release of computer—based system
v Releasing of effort by software organization in particular time frame

v Based on end-date which is normally set by software engineering
organization

Problems involved in Scheduling :
v In analyzing difficulty of problems requires heavy cost.

v In this, the productivity does not remain in proportion as compared to
people involved on particular work.

v In this, the project gets delayed, if people get added in between the
project.

v It doesn't allow contingency in planning.

Software Project

Planning Tools and

Techniques

41

Software Engineering

42

O Check Your Progress — 7 :
I. What is software documentation ?

a. Text that accompanies computer software
b. Requirement document

c. Document of project process schedule

o

. None of these

3.9 Developing the Activity Network :

Activity Network is a graphical way to analyze tasks, dependencies and
the critical path in a project. In this, nodes show tasks and dependencies by
way of lines which connects particular job those boxes.

It is seen that an Activity Network Diagram which can be represented
as arrow diagram is particularly applied to find time sequences of events that
appears to be the pivotal to objectives. Such will help the team members to
analyze specific event sequences which are driven by time requirements for
objective achievement. These are useful in case when a project carries multiple
activities that are required for simultaneous management working. Such types
of network diagram are mostly applied in engineering and construction project
management. It is seen that the Critical Path Analysis draws on particular
methodology will find and standardize certain management activities.

Activity Network Diagram normally helps to identify many efficient
sequences of events which are required to complete any project. It allows to
create a realistic project schedule by showing graphically the total time required
to complete project sequence in which the tasks carry out at particular time.

Tasks depandencies
Tash Taak 3
St Tash's Ent
Taak 2 Tk 4

Task 3 bagin unll Tank 1 and Tack 2

gk 445 a prédecessorto
ak 5
Garmplets

and & successor fo Task 2

Activity Network Diagram

In above figure, in the Activity Network diagram, it is shown that
interdependencies exist among tasks by way of boxes and arrows. In this, the
arrows will point in task box which appears from its earlier tasks that must
be completed before the tasks finally start. It is seen in the above figure that
the arrows pointing out of a task box will enter into its previous tasks that
cannot start till the work gets finished off.

0 Check Your Progress — 8 :
1. What is Activity Network ?
Network of various activities used in software development

b. Graphical way to analyze tasks, dependencies and the critical path
in a project

Both of these
d. None of these

3.10 Empirical Relationships :

In software, empirical relational system translates as relations of formal
relational system that explains three relations :

. Inequalities : In this, partial orders on sets of entities gets translate into
inequalities that exist among measures.

. Equalities : It explains about equivalence relations which get translated
in equalities.

. Special Value Assignment : It is the measure of size of empty program
body which is corrected to value zero.

In software, we see that one should start from measurement goal and
explains empirical relational system which exists for external attribute of
interest. It is easy to find sensible measures of external attributes that involves
measure of cost and time or reliability and defects.

0 Check Your Progress — 9 :
1. What is meant by Equalities in empirical relationship ?

a. It is the measure of size of empty program body which is corrected
to value zero.

b. Partial orders on set of entities gets translate into inequalities that
exist among measures.

c. It explains about equivalence relations which get translated in
equalities.

d. None of these

3.11 Effort Distribution :

Software plays important role in systems acquisition and development
which involves large and complex systems. Such type of systems involves
accurate estimates of costs which act as important part of program management.
It is noted that the bulk of software development cost exits because of human
effort and estimation methods required.

Effort distribution is an exercise which is performed in software
development projects in order to produce cost estimation report which is
normally required to get the percentage of every phase. Such type of percentage
of effort distribution was obtained by collection of empirical data in case of
large and small developments.

Effort distribution in software comprises of following phases which finds
percentage of effort required :

. Requirements gathering

Software Project

Planning Tools and

Techniques

43

Software Engineering

44

. Analysis
. Development
. Testing

We see that effort estimation accuracy is normally applied without any
adjustments which made for differences that focuses on scope and quality as
examined while estimating the effort and system working. To improve effort
estimation, a special terminology for software effort estimation is required that
carries certain guidelines :

1. You should not mix estimation of effort with planning, budgeting or
pricing
2. In case of assessing estimation accuracy, you have to make sure that

the estimate and real effort results in comparison.

0 Check Your Progress — 10 :
1. What is Effort Distribution ?
Efforts put in the software development
b. Division of work among them members

c. Itisan exercise used to produce cost estimation report which required
to get the percentage of every phase

d. None of these

3.12 Empirical Estimation Techniques — COCOMO :

It is noted that with Software cost estimation, we can predict the amount
of effort that is needed to create a software system. Software cost estimation
results in continuous activity that starts initially with software life cycle and
continues all through the lift time. We see that there are many ways in which
you can estimate the software cost by following Boehm's classification system
that results in:

. Expert Judgment
. Algorithmic Estimation
. Analogy Based Estimation

COCOMO which is Constructive Cost Models is a form of an algorithmic
method which depends on mathematical models which generates cost estimate
which appears as function of number of variables considered as main cost
factors.

COCOMO models is shown by Barry Boehm in year 1981 that uses
equations and parameters obtained from his early practice and research estimation
of projects. It has code—size S which is given in thousand LOC which results
in person month. With his invention, Barry Boehm suggested following COCOMO
models:

Simple COCOMO :
This is his initial model that has formula
Effort = a x (K LOC)b

In this :
. S is code-size
. a, b are complexity factors

Such type of model uses three sets of a, b depending on complexity
of software. It is noted that basic COCOMO model is simple and easy since
it does not involve many cost factors and can only be applied to do rough
estimation.

Intermediate COCOMO :

This model is called as nominal effort estimation model which is obtained
with power function with a, b along with coefficient a different from basic
COCOMO.

O Check Your Progress — 11 :
1. Which is also called as Nominal effort estimation model ?
a. Basic COCOMO Model
b. Intermediate COCOMO Model
Detailed COCOMO Model
d. None of these

3.13 Let Us Sum Up :

In this unit we have learnt that Work Breakdown Structure is a tool which
is used by project managers in order to break projects into standard manageable
pieces. It is noted that sizing measures are required in order to have valid
comparisons across systems.

It is seen that software costing be done with an objective of accurately
predicting cost of development of software. Software documentation is a text
which accompanies computer software and operates different things to people
in different roles

Activity Network Diagram is an arrow diagram which is mostly applied
to find time sequences of events which appears to be objectives. COCOMO
is Constructive Cost Models which is an algorithmic method that depends on
mathematical models which generates cost estimate that appears as function
of number of variables which serves as main cost factors.

3.14 Answers for Check Your Progress :

a Check Your Progress 1 :
1. (b)

a Check Your Progress 2 :
1. (¢)

a Check Your Progress 3 :
1. (¢)

a Check Your Progress 4 :
1. (b)

a Check Your Progress 5 :
1. (a)

Software Project

Planning Tools and

Techniques

45

Software Engineering

46

a Check Your Progress 6 :

1. (a)

a Check Your Progress 7 :
1. (a)

a Check Your Progress 8 :
1. (b)

a Check Your Progress 9 :
2. (¢)

a Check Your Progress 10 :
1. (¢)

a Check Your Progress 11 :
1. (b)

3.15 Glossary :

1. Activity Network — Activity Network is a graphical way to analyze tasks,
dependencies and the critical path in a project.

2. COCOMO Model — COCOMO (Constructive Cost Models) is a form
of an algorithmic method which depends on mathematical models which
generates cost estimation.

3. Software Documentation — Documentation of software include written
text that joins computer software. It explains how it operates or how
to use it ? or may mean different things to people in different roles.

3.16 Assignment :

1. Write a short note on COCOMO model.

3.17 Activities :

1. Study Empirical relationship in detail.

3.18 Case Study :

Do you think software documentation is required in the Software
development ? Justify your answer with the help of suitable example.

3.19 Further Reading :

1. W. Shewhart, Statistical Method from the Viewpoint of Quality Control,
Dover, 1986.

2. W.E. Deming, Out of the Crisis, SPC Press, 1982; reprinted in paperback
by MIT Press, 2003.

3. T. Gilb, Software Metrics, Little, Brown, and Co., 1976.

4. R. Zultner, "The Deming Approach to Quality Software Engineering,"
Quality Progress, vol. 21, no. 11, 1988, pp. 58-64.

5. W.H. Dana, The X-15 Lessons Learned, tech. report, NASA Dryden
Research Facility, 1993

6. L. Aiken and S. West: Multiple Regression: Testing and Interpreting
Interactions, Sage Publications, 1991.

SOFTWARE PROJECT
MAINTENANCE

4.0 Learning Objectives

4.1 Introduction
4.2 Software Configuration Management
4.2.1 Why do we need Configuration Management ?
4.2.2 Element of Configuration Management
4.2.3 Participant of Software Configuration Management
4.3 Software Maintenance Processes
4.4 Project Planning
4.5 Documentation Standards
4.6 Version Control
4.7 Let Us Sum Up
4.8 Answers for Check Your Progress
4.9 Glossary
4.10 Assignment
4.11 Activities
4.12 Case Study
4.13 Further Readings

4.0 Learning Objectives :

After learning this unit, you will be able to understand :

. Software configuration management
. Software maintenance process

. Project planning

. Documentation standard

. Version control

4.1 Introduction :

Software maintenance is the change of software after delivery to correct
faults, to improve performance or other attributes, or to adjust the software
to a changed environment. It stands for all the modifications done after the
delivery of software. There is numeral of reasons, why changes are required;
some of them are as follows:

Market Conditions — Rules, which changes over the time like taxation
and newly announced restrictions like, how to maintain accounting, may initiation
need for modification.

Client Requirements — Over the time, customer may ask for new features
or functions in the software.

47

Software Engineering

48

Host Modifications — If any of the hardware and/or platform (such as
operating system) of the target host changes, software changes are required
to keep flexibility.

Organization Changes — If there is any business level change at client
end, such as reduction of organization strength, getting another company,
organization offering into new business, need to change in the original software
may arise.

4.2 Software Configuration Management :

Configuration management is a discipline which will find out coordinate,
approves or disapprove and implement changes that appears in object that are
mainly applied to construct and maintain software systems.

Configuration management is an integral part of software development
as it results in special consideration in product line which can be seen as
multidimensional version of configuration management problem for a special
system. Configuration management for product lines is complex for single
systems as it has qualities like parallel development, distributed engineering,
release management, change management, configuration and workspace
management that carry tools, processes and environments.

4.2.1 Why do we need Configuration Management ?

The primary reasons for Implementing Technical Software Configuration
Management System are:

v There are multiple people working on software which is continually
updating

v It may be a case where multiple versions, branches, authors are involved
in a software config project, and the team is geographically distributed
and works concurrently

v Changes in user requirement, policy, budget, and schedule need to be
accommodated.

v Software should able to run on various machines and Operating Systems

AN

Helps to develop coordination among stakeholders

v SCM process is also beneficial to control the costs involved in making
changes to a system

Any change in the software configuration Items will affect the final
product. Therefore, changes to configuration items need to be controlled and
managed.

4.2.2 Elements of Configuration Management :

It is noted that Configuration Management System carries following
elements :

Component Elements : It results as tools which are coupled inside file
management system that gives access to and management of each SCI.

Process Elements : It shows collection of procedures and tasks which
explains effective approach to change management for all stakeholders.

Construction Elements : It is a set of tolls which automates construction
of software which ensures set of assembled components.

Human Elements : It is applied by team as it carries set of tools and Software Project

process features which encompass other elements. Maintenance

Software Configuration Management deals with different technical

difficulties of project plan. It is found that in software organization, good
implementation of software configuration management improves productivity
with increase of coordination among which occur among team members. With
use of Software Configuration Management, the confusion which exists due
to miscommunication among members gets wiped out. Such type of management
system control basic elements like :

Software objects
Program code
Test data

Test output
Design documents

User manuals

4.3.3 Participant of Software Configuration Management :

A

LN XX

Following are the key participants in SCM

Confliguration Manger Developer

= 4

Project
Manager

SCM Operational o

Scenario

Participant of Software Configuration Management
Configuration Manager :

Configuration Manager is the head who is Responsible for identifying
configuration items.

CM ensures team follows the SCM process.
He / She needs to approve or reject change requests.
Developer :

The developer needs to change the code as per standard development
activities or change requests. He is responsible for maintaining configuration
of code.

The developer should check the changes and resolves conflicts.

49

Software Engineering

50

AN

gl

Auditor :

The auditor is responsible for SCM audits and reviews.

Need to ensure the consistency and completeness of release.
Project Manager :

Ensure that the product is developed within a certain time frame.

Monitors the progress of development and recognizes issues in the SCM
process.

Generate reports about the status of the software system.

Make sure that processes and policies are followed for creating, changing,
and testing.

User :

The end user should understand the key SCM terms to ensure he has
the latest version of the software.

Software Configuration Management System has many advantages :
It helps in lowering of redundant work.

It helps in reducing problems related to configuration.

It helps in building team coordination.

It helps in managing tools that are required in building configuration.
It makes sure that all bugs get traced out from its source.

Check Your Progress — 1 :

What are the elements of Configuration Management System ?

a. Component Element b. Process Element
c¢. Human Element d. All of Above

4.3 Software Maintenance Processes :

Software maintenance is normally required in order to support many key

features and product lines which are applied in daily operational cycles. With
Software maintenance, normally bugs get fixed which are reactive to errors
and omissions.

The software maintenance processes comprise of :

Implementation of process that carries software preparation and transition
activities related to conception and creation of maintenance plan

Problem and modification analysis process which execute when application
serves as responsibility of maintenance group.

Process acceptance of modification which confirm modified work with
individual who submit request to ensure modification of solution.

Exceptional migration process features which is not part of daily
maintenance.

In case when an event is not present daily this serves as retirement of
software.

The steps involved in Software project maintenance includes :
Requirements

Design

Coding

Testing

Integrating

Requirements

Coding

Testing

Integration

Steps in Software Project Maintenance
Software Maintenance Categories

Corrective : Corrective maintenance aims to correct any remaining errors
regardless of where they may cause specifications, design, coding, testing,
and documentation, etc.

Adaptive : It refers to changes and updates applied to keep the software
up-to date and changed to the ever—changing world of technology and
business environment.

Perfective : It refers to changes and updates done in order to keep the
software usable over long period of time. It includes new features, new
user requirements for purifying the software and improve its reliability
and performance. Modifications to improve the performance, changeability,
or efficiency of the system.

Preventive : It refers to changes and updates to prevent future problems
of the software. It aims to join problems, which are not important at
this moment but may cause serious issues in future.

a Check Your Progress — 2 :
I. What are the main categories of software project management ?

a. Corrective b. Adaptive c. Perfective d. All of Above
4.4 Project Planning :

The project planning process involves a set of interrelated activities

followed in an orderly manner to implement user requirements in software and
includes the description of a series of project planning activities and individual(s)
responsible for performing these activities. In addition, the project planning
process comprises the following.

Software Project
Maintenance

51

Software Engineering

52

Objectives and scope of the project

Techniques used to perform project planning
Effort (in time) of individuals involved in project
Project schedule and milestones

Resources required for the project

N N N N RN

Risks associated with the project.

Project planning process comprises several activities, which are essential
for carrying out a project systematically. These activities refer to the series
of tasks performed over a period of time for developing the software. These
activities include estimation of time, effort, and resources required and risks
associated with the project.

Ident fication of \I
1 amanis
_ roject fequirements

ri
o

i ™
”~ ; !
K Identification of /) identification of risks
cosl estimates
i, S
.

g e
Identificationof °
colical success In-c!nr.'-/)
i o
" -
"’f Preéparation of \} { Preparation of \"-
\ prapact rhﬂﬂmj 4 praject plan f__gj

N o
Commencement of
the project /)

Project Flanning Actnitios

Project Planning Activities
Project planning process consists of the following activities.

. Identification of Project Requirements : Before starting a project, it
is essential to identify the project requirements as identification of project
requirements helps in performing the activities in a systematic manner.
These requirements comprise information such as project scope, data and
functionality required in the software, and roles of the project management
team members.

. Identification of Cost Estimates : Along with the estimation of effort
and time, it is necessary to estimate the cost that is to be incurred on
a project. The cost estimation includes the cost of hardware, network
connections, and the cost required for the maintenance of hardware
components. In addition, cost is estimated for the individuals involved
in the project.

. Identification of Risks : Risks are unexpected events that have an
adverse effect on the project. Software project involves several risks (like
technical risks and business risks) that affect the project schedule and
increase the cost of the project. Identifying risks before a project begins
helps in understanding their probable extent of impact on the project.

. Identification of Critical Success Ractors : For making a project
successful, critical success factors are followed. These factors refer to
the conditions that ensure greater chances of success of a project. Generally,
these factors include support from management, appropriate budget,
appropriate schedule, and skilled software engineers.

. Preparation of Project Charter : A project charter provides a brief
description of the project scope, quality, time, cost, and resource constraints
as described during project planning. It is prepared by the management
for approval from the sponsor of the project.

. Preparation of Project Plan : A project plan provides information about
the resources that are available for the project, individuals involved in
the project, and the schedule according to which the project is to be

carried out.

. Commencement of the Project : Once the project planning is complete
and resources are assigned to team members, the software project
commences.

Once the project objectives and business objectives are determined, the
project end date is fixed. The project management team prepares the project
plan and schedule according to the end date of the project. After analyzing
the project plan, the project manager communicates the project plan and end
date to the senior management. The progress of the project is reported to the
management from time to time. Similarly, when the project is complete, senior
management is informed about it. In case of delay in completing the project,
the project plan is re—analyzed and corrective actions are taken to complete
the project. The project is tracked regularly and when the project plan is
modified, the senior management is informed.

a Check Your Progress — 3 :

I. What is the first step in software project planning ?
a. Identification of Project Requirement
b. Identification of Cost Estimate
c. Identification of Risk

d. None of Above

4.5 Documentation Standards :

Documentation standards in a software project are important because
documents are the only tangible way of representing the software and the
software process. Standardized documents have a consistent appearance, structure
and quality, and should therefore be easier to read and understand.

There are three types of documentation standards:

Documentation Process Standards : These standards define the process
that should be followed for document production.

Document Standards : These standards govern the structure and
presentation of documents.

Document Interchange Standards : These standards ensure that all
electronic copies of documents are compatible.

Documentation process standards define the process used to produce
documents (example here). This means that you set out the procedures involved

Software Project
Maintenance

53

Software Engineering

54

in document development and the software tools used for document production.
You should also define checking and refinement procedures to ensure that high—
quality documents are produced.

Document process quality standards must be flexible and able to cope
with all types of documents. For working papers or electronic memos, there
is no need for explicit quality checking. However, for formal documents, that
is, those that will be used for further development or released to customers,
you should use a formal quality process.

Document standards should apply to all documents produced during a
software development project. Documents should have a consistent style and
appearance, and documents of the same type should have a consistent structure.
Although document standards should be adapted to the needs of a specific
project, it is good practice for the same "house style? to be used in all of
the documents produced by an organization.

O Check Your Progress — 4 :
1. How many types of documentation standards are there ?

a. One b. Four c. Three d. Five

4.6 Version Control :

Version control is a system that records changes to a file or set of files over
time so that you can recall specific versions later. For the examples in this book,
you will use software source code as the files being version controlled, though
in reality you can do this with nearly any type of file on a computer.

Version control systems are essential for any form of distributed,
collaborative development. Whether it is the history of a wiki page or large
software development project, the ability to track each change as it was made,
and to reverse changes, when necessary, can make all the difference between
a well-managed and controlled process and an uncontrolled "first come, first
served ? system. It can also serve as a mechanism for due diligence for software
projects.

Many people's version—control method of choice is to copy files into
another directory (perhaps a time—stamped directory, if they're clever). This
approach is very common because it is so simple, but it is also incredibly error
prone. It is easy to forget which directory you're in and accidentally write to
the wrong file or copy over files you don't mean to.

Local Computer

Chechout Verzion Database
T Version 3
Version 2
Version 1

Version Control

Developers may wish to compare today's version of some software with
yesterday's version or last year's version. Since version control systems keep
track of every version of the software, this becomes a straightforward task.
Knowing the what, who, and when of changes will help with comparing the
performance of particular versions, working out when bugs were introduced
(or fixed), and so on. Any problems that arose from a change can then be
followed up by an examination of who made the change and the reasons they
gave for making the change.

0 Check Your Progress — 5 :
1. What is version control used ?
a. It keeps track of every version of the software
b. It helps in comparing updates
c. It is helpful in recording changes
d. All of Above

4.7 Let Us Sum Up :

In this unit we have learnt that software maintenance results in alteration
of software product which deliver correct faults in order improve performance
or attributes. It is found that configuration management will find coordinate,
approves or disapprove and implement changes which appears in object which
is mainly applied to construct and maintain software systems.

Software maintenance is required which supports certain features and
product lines which are applied in daily operational cycles. Project planning
is a calculation on process of project completion in required timeframe that
certainly defines stages and required resources. Version control is a system
which will highlight changes to file or set of files over time in order to collect
specific versions.

4.8 Answers for Check Your Progress :

a Check Your Progress 1 :
1. (d)

a Check Your Progress 2 :
1. (d)

a Check Your Progress 3 :
1. (a)

a Check Your Progress 4 :
1. (¢)

a Check Your Progress S :
1. (d)

4.9 Glossary :

1. Software Configuration Management — Software Configuration
management is a discipline which will implement changes that appears
in object that is mainly applied to construct and maintain software.

Software Project
Maintenance

Software Engineering

56

2.

Version Control — Version control is a system that records changes to
a file or set of files over time so that you can recall specific versions
later.

Project Planning — It involves calculation that deals in full process of
project completion in definite timeframe which are normally with certain
defined stages, and designated resources.

4.10 Assignment :

L.

Write short note on software configuration management.

4.11 Activities :

L.

Read more about version control.

Case Study :

Do you think Documentation standards help in improving software quality,

Comment ?

4.13 Further Reading :

L.

W. Shewhart, Statistical Method from the Viewpoint of Quality Control,
Dover, 1986.

W.E. Deming, Out of the Crisis, SPC Press, 1982; reprinted in paperback
by MIT Press, 2003.

T. Gilb, Software Metrics, Little, Brown, and Co., 1976.

R. Zultner, "The Deming Approach to Quality Software Engineering,"
Quality Progress, vol. 21, no. 11, 1988, pp. 58-64.

W.H. Dana, The X-15 Lessons Learned, tech. report, NASA Dryden
Research Facility, 1993

BLOCK SUMMARY :

In this block, you have learnt and understand about the basic of Project

management and Extreme Programming techniques. The block gives an idea

on the study about how to manage Software Development process with concept

on Software Sizing and Empirical Relationships. You have been well explained

on the concepts of Project Planning and basic documentation standards.

The block detailed about the basic of Tailoring techniques with involvement

in terms of software modeling. The concept related to Ray Leigh Curve and

its advantages and measures on software projects are well explained to you.

You will be demonstrated practically about Empirical Estimation Techniques
related to COCOMO technique.

BLOCK ASSIGNMENT :

Short Questions :

Explain Prototyping Model.

Explain Spiral Model.

Explain Project Communication Management.

What is Project Execution and Monitoring ?

What is Software Development ?

Explain version control ?

Explain Software Configuration Management.

What is extreme programming ?

What is software documentation ?

Explain Software Maintenance Process.

Long Questions :

Explain Software Development Life Cycle.

Write a note on Sub—Team needed in Software Engineering Projects.
Write difference between waterfall model and incremental model.

Explain in detail COCOMO Model and its advantage.

57

< Enrolment No. : | |

1. How many hours did you need for studying the units ?

Unit No. 1 2 3 4

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D I:] I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

Feed back to CYP
Question

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

3. Any other Comments

BAOU Dr. Babasaheb Ambedkar BCAR-402

Education Open University Ahmedabad
for All

Software Engineering

BLOCK 2 : SOFTWARE REQUIREMENT, DESIGN, QUALITY
MANAGEMENT & SOFTWARE TESTING

UNIT 5 SOFTWARE REQUIREMENT

UNIT 6 SOFTWARE DESIGN

UNIT 7 SOFTWARE QUALITY MANAGEMENT

UNIT 8 SOFTWARE TESTING TECHNIQUES

SOFTWARE REQUIREMENT,
DESIGN,
QUALITY MANAGEMENT &
SOFTWARE TESTING

Block Introduction :

In this block, we will detail about the basic of software requirement.
Software requirement play an important role in software development life cycle.
To gather requirement analyst will going to interact with number user of all levels.
Analyst will apply different type of requirement initiation techniques to find

requirements.

In this block, we will detail about the basic of software design, strategies,
software user interface design, design complexity and software implementation
which include all criteria of design from basic to advance as design play an

important role.

In this block, we will detail about the basic of software quality and idea
about different variables associated with it. The block will focus on the study and
concept of software testing and associated process. You will give an idea on

software quality control along with necessity of quality in software project.

User acceptance testing is final phase of software testing process where
normally software users perform testing of software so as to handle the required
work as per specifications. In software development testing the software and
quality management are important aspects. Performance testing is a non-functional
technique which is done in order to locate the system parameters which could

be related to responsiveness and stability under different workload.

After studying this block, you will make to learn and understand about the
basic of testing of software techniques along with detailed explanation on
Capability Maturity Model. The concept related to Review and Walkthrough with
respect to software configuration management are well detailed. You will be

demonstrated about User acceptance testing and its standards.

Block Objectives :

After learning this block, you will be able to understand :
Requirement Engineering and it's process

Requirement initiation process and techniques
Characteristics of software requirement

Basic of Software Design

Strategies of Software Design

Software user interface Design

Complexity of Software Design & Software Implementation
Understanding about Software Quality needs

Basic of CMM modeling

Features of software testing

Block Structure :

Unit 5

Unit 6

Unit 7

Unit 8

Software Requirement
Software Design
Software Quality Management

Software Testing Techniques

Unit

OS5)SOFTWARE REQUIREMENT

5.0 Learning Objectives
5.1 Introduction
5.2 Requirement Engineering
5.3 Requirement Engineering Process
5.3.1 Feasibility Study
5.3.2 Requirement Gathering
5.3.3 Software Requirement Specification (SRS)
5.3.4 Software Requirement Validation
5.4 Requirement Initiation Process
5.5 Requirement Initiation Techniques
5.5.1 Interview
5.5.2 Questionnaires
5.5.3 Observation
5.5.4 Document Review
5.6 Software Requirement Characteristics
5.7 Software Requirements
5.7.1 Functional Requirements
5.7.2 Non-Functional Requirements
5.8 User Interface Requirements
5.9 Software System Analyst
5.9.1 Role of System Analyst OR What a System Analyst Does ?
5.9.2 Attributes of a Good System Analyst OR Qualities of System
Analyst
5.10 Let Us Sum Up
5.11 Answers for Check Your Progress
5.12 Glossary
5.13 Assignment
5.14 Activities
5.15 Case Study
5.16 Further Readings
5.0 Learning Objectives :

After learning this unit, you will be able to understand :
Introduction about the Requirement

Idea about Requirement Engineering and it's Process

59

Software Engineering

60

. Detail idea about Software Requirement Specification
. Detail of Software Requirement Validation

. Requirement Initiation Process and Techniques

. Characteristics of Software Requirement

. Idea about Software System Analyst

5.1 Introduction :

The software requirements are explanation of required functionalities of
the aim system. Requirements convey the opportunities of users from the
software product. The requirements can be clear or hidden, known or unknown,
expected or unexpected from client's point of view.

5.2 Requirement Engineering :

Requirements Engineering (RE) refers to the development of defining,
documenting, and maintaining requirements in the engineering process. It provides
the proper mechanism to understand what the customer needs, analyzing the
need, and evaluating possibility, negotiating a practical solution, specifying the
solution clearly, confirming the specifications and managing the requirements
as they are changed into a working system. Therefore, requirement engineering
is the self—controlled application of confirmed principles, methods, tools, and
notation to define a planned system's proposed performance and its related
constraints.

Requirement modelling involves investigation and fact—finding to describe
the current system and define the requirements for the new system such as
Outputs, Inputs, Processes, Performance, and Security.

. Output refers to the electronic or printed information produced by the
system.
. Input refers to the necessary data that enters in the system, either

manually or in an automated manner.

. Process refers to the logical rules that are applied to transform the data
into meaningful information.

. Performance refers to system characteristics such as speed, volume,
capacity, availability, reliability.

. Security refers to hardware, software, and procedural controls that
safeguard and protect the system and its data from internal or external
threats.

a Check Your Progress — 1 :

L. Requirement engineering refers to process of
a. Defining Requirement b. Documenting Requirement
¢. Maintaining Requirement d. All of Above

2. _ refers to printed information produced by the system.
a. Input b. Security c. Output d. Process

5.3 Requirement Engineering Process :

It is a process of four—step process which is as follows :

. Feasibility Study

. Requirement Gathering
. Software Requirement Specification
. Software Requirement Validation

5.3.1 Feasibility Study

A system request must meet several tests to see whether it is meaningful
to proceed further. This series of tests is called a feasibility study and it is
a vital part of every system project.

Feasibility study uses four major standards to measure, or predicts a
system's successes which are as follows : Operational Feasibility, Technical
Feasibility, Economic Feasibility, and Schedule Feasibility.

. Operational Feasibility :

A system that has operational feasibility is one that will be used effectively
after it has been developed. If users have difficulty with a new system, it will
not produce the expected benefits. Operational feasibility depends on several
vital issues. For example, consider the following questions :

v Will the new system result in a workforce reduction ? If so, what will
happen to affected employees ?

v Will the new system require training for users ? If so, is the company
prepared to provide the necessary resources for training current employees ?

v Will users be involved in planning the new system right from the start ?

v' Will customer experience adverse (poor) effects in any way, either
temporarily or permanently ? Will any risk to the company's image or
goodwill result ?

v' Do any legal or ethical issues need to be considered ?
. Technical Feasibility :

A system request has technical feasibility if the organization has the
resources to develop or purchase, install, and operate the system. When accessing
technical feasibility, an analyst must consider the following points :

v Does the company have the necessary hardware, software, and network
resources ? If not, can those resources be acquired without difficulty ?

v Does the company have the needed technical expertise ? If not, can it
be acquired ?

v Does the proposed platform have enough capacity for future needs ? If
not, can it be expanded ?

v Will the hardware and software environment be reliable ? Will it integrate
with other company information systems, both now and in future ? Will
it interface properly with external system operated by customers and
suppliers ?

v Will the combination of hardware and software supply enough
performance ?

Software Requirement

61

Software Engineering

62

v Will the system be able to handle future transaction volume and company
growth ?

. Economic Feasibility :

A system request has economic feasibility if the projected benefits of
the proposed system balance the estimated costs involved in acquiring, installing,
and operating it. Costs can be one time or continuing, and can acquire at various
times during project development and use. When measuring costs, companies
usually consider the total cost of ownership (TCO), which includes ongoing
support and maintenance cost, as well as acquisition costs.

To determine TCO, the analyst needs to estimate costs in each of the
following areas :

v People, including IT staff and users
v Hardware and equipment

v Software, including in—house development as well as purchases from
vendors

Formal and informal training
Licenses and fees
Consulting expenses

Facility costs

AN NN

The estimated cost of not developing the system or postponing the project

In addition to costs, you need to access tangible and intangible benefits
to the company.

1. Tangible Benefits :

Tangible benefits are benefits that can be measured in dollars. Tangible
benefits result from a decrease in expenses, an increase in revenues, or both.

Examples of tangible benefits include the following :
v A new scheduling system that reduces overtime.

v An online package tracking system that improves service and decreases
the need for clerical staff.

v A sophisticated inventory control system that cuts excess inventory and
eliminates production delays.

2. Intangible Benefits :

Intangible benefits are difficult to measure in dollars but also should be
identified.

Examples of intangible benefits include the following :
v' A user—friendly system that improves employee job satisfaction.

v A sales tracking system that supplies better information for marketing
decisions.

v A new website that enhances the company's image.
. Schedule Feasibility :

Schedule Feasibility is defined as the probability of a project to be
completed within its scheduled time limits, by a planned due date. When
accessing schedule feasibility, a system analyst must consider the interaction

between time & cost. For example, speeding up a project schedule might make
a project feasible, but much more expensive.

Other issues that relate to schedule feasibility include the following :
v Has management established a certain time—table for the project ?

v' Will a project manager be appointed ?
5.3.2 Requirement Gathering :

If the feasibility report is positive to task the project, next phase starts
with gathering requirements from the user. Analysts communicate with the client
and end-users to know their ideas on what the software should deliver and
which features they need to include in the software.

5.3.3 Software Requirement Specification (SRS) :

After the requirements are collected from various end—users, system
analyst creates a document called SRS. It describes how the proposed software
will interact with hardware, external interfaces, speed of operation, response
time of system, portability of software across various platforms, maintainability,
speed of recovery after crashing, Security, Quality, Limitations etc.

*The requirements received from client are written in normal language.
It is the duty of the system analyst to document the requirements in technical
language so that they can be known and used by the software development
team.

There should be following features in SRS :
Requirements of user are stated in normal language.
Technical requirements are expressed in structured language.

v
v
v' Design explanation should be written in Pseudo code.
v Format of Forms and GUI screen prints.

v

Conditional and mathematical notations for DFDs etc.

5.3.4 Software Requirement Validation :

The stated requirement in the document should be validated after the
requirement specification and developed. User might ask for illegal, unrealistic
solution or experts may understand the requirements inaccurately. This results
in huge increase cost.

Requirements can be checked against following circumstances :

v' If they can be practically executed
v If they are valid and as per functionality of software
v' If there are any doubts
v'If they are complete
v' If they can be verified
a Check Your Progress — 2 :
L. Requirement engineering process include
a. Feasibility Study b. SRS
c. Requirement Gathering d. All of Above

Software Requirement

63

Software Engineering

64

2.

SRS Stands for

a. Software Requirement System

b. Software Requirement Specification

c. Software Requirement Structure

d. None of Above

Write a detailed note on Feasibility Study.

5.4 Requirement Initiation Process :

Requirement initiation process can be represented using the below diagram :

Organleation g Discussion Specification

Requirements Gathering : The developers discuss with the client and
end users and know their hopes from the software.

Organizing Requirements : The developers arrange the requirements
in order of importance, urgency and accessibility.

Negotiation & Discussion : If requirements are unclear or there are some
conflicts in requirements of various investors, it is then negotiated and
conversed with the investors. Requirements may then be arranged and
practically compromised.

Documentation : All formal and informal, functional and non—functional
requirements are documented and made available for next phase.

Check Your Progress — 3 :

Write a short note on Requirement Initiation Process.

5.5 Requirement Initiation Techniques :

Requirements Initiation is the process finding the requirements for proposed

software by communicating with client, end users, system users, and others
who have a stake in the software system development.

There are various ways which are as follows :

5.5.1 Interview :

An interview is a planned meeting during which you obtain information

from another person. You must have the skills needed to plan, conduct, and

document interviews successfully. The interviewing process consists of these
seven steps :

1. Determine the people to interview.
Establish objectives for the interview.

Develop interview questions.

Conduct the interview.

2

3

4. Prepare for the interview.
5

6 Document the interview.
7

Evaluate the interview.
1. Determine the people to interview :

To get an accurate picture of the system, you must select the right people
to interview and ask them the right questions. During the system analysis phase,
you might need to interview people from all levels of the organization.

Group interviews can save time and provide an opportunity to observe
interaction between the participants. Group interviews also can present problems.
One person might control the conversation, even when questions are addressed
specifically to others. Organization level also can present a problem, as the
presence of upper management in an interview can prevent lower—level employees
from expressing themselves openly.

2. Establish objectives for the interview :

After deciding on the people to interview, you must establish objectives
for the session. First you should determine the general areas to be discussed,
and then list the facts you want to gather.

You also try to request ideas, suggestions, and opinions during the
interview. The objectives of an interview depend on the role of the person
being interviewed. Upper—level manager can provide the picture and help you
to understand the system. Specific details about operations and business processes
are best learned from people who actually work with the system on a daily
basis.

3. Develop interview questions :

Creating a standard list of interview questions helps keep you on track
and avoid unnecessary discussion. If you interview several people who perform
the same job, a standard question list allows you to compare their answer to
the same questions.

The interview should consist of several different kinds of questions :
open—ended questions and closed ended questions.

0 Open-Ended Questions :

- "A question that requires the respondent to express viewpoint is called
an open—ended interview".

- Open—ended questions are useful when you want to understand a large
process or draw out the interviewee's opinions, attitudes, or suggestions.

o Closed-Ended Questions :

- "A question that requires a direct answer to a question is called closed—
ended interview".

Software Requirement

65

Software Engineering

66

- Closed—ended questions limit or restrict the response. You use closed—
ended questions when you want information that is more specific or when
you need to verify facts.

4. Prepare for the interview :

After setting the objectives and developing the questions, you must
prepare for the interview. Careful preparation is essential because this is an
important meeting and not just a casual chat. Schedule a specific day and time
for meeting and place a reminder call to confirm the meeting.

5. Conduct the interview :

After determining the people to interview, setting your objectives, and
preparing the questions, you should develop a specific plan for the meeting.
When conducting the interview, you should begin by introducing yourself,
describing the project, and explaining your interview objectives.

During the interview, ask questions in the order in which you prepared
them, and give the interviewee sufficient time to provide thoughtful answers.
Your primary responsibility during an interview is to listen carefully to the
answers. Analysts sometimes hear only what they expect to hear. You must
concentrate on what is said and notice any nonverbal communication that take
place. This process is called engaged listening.

6. Document the interview :

You should write down a few notes to run your memory after the
interview, you should avoid writing everything that is said. Too much writing
distracts the other person and makes it harder to establish a good relationship.

After conducting the interview, you must record the information quickly.
You should set away time right after the meeting to records the facts and
evaluate the information. For that reason, try not to schedule back—to—back
interviews.

7. Evaluate the interview :

In addition to recording the facts obtained in an interview, try to identify
any possible partiality. Some interviewees might answer your questions in an
attempt to be helpful even though they do not have the necessary experience
to provide accurate information.

The system analyst will evaluate to summaries the information gathered
during the interview and verify it with the user to get accurate and complete
information.

5.5.2 Questionnaires :

In projects where it is desirable to obtain input from a large number
of people, a questionnaire can be a valuable tool. A questionnaire, also called
survey, is a document containing a number of standard questions that can be
sent to many individuals.

Questionnaires are used to obtain information about workloads, reports
received volumes of transactions handled, types of job duties, difficulties, and
opinions of how the job could be performed better or more efficiently. A typical
questionnaire starts with heading, which includes a title, a brief statement of
purpose, the name and telephone number of the contact person, the deadline
date for completion, and how and where to return the form.

Some additional ideas to keep in mind when designing your questionnaires :
Keep the questionnaire brief and user friendly.

Arrange the questions in a logical order.

Use simple terms and wording.

Limit the use of open—ended questions.

Include a section at the end of the questionnaire for general comments.

AN N N N NN

Test the questionnaire whenever possible in a small test group before
finalizing it and distributing to a large group.

5.5.3 Observation :

The observation of current operating procedure is another technique.
Seeing the system in action gives you additional viewpoint and a better
understanding of system procedures. Personal observation also allows you to
verify statements made in interviews and determine whether procedure really
operate as they are described.

Through observation, you might discover that neither the system
documentation nor the interview statements are accurate. Plan your observations
in advance by preparing a check list of specific tasks you want to observe
and questions you want to ask.

Consider the following issues when you prepared your list :

v' Ask sufficient questions to ensure that you have complete understanding
of the present system operation.

v Observe all the steps in a transaction and note the documents, inputs,
outputs, and processes involved.

v Examine each form, record, and report.

v' Talk to the people who receive current reports to see whether the reports
are complete, timely, accurate, and in a useful form.

5.5.4 Document Review :

Document review can help you understand how the current system is
supposed to work. Remember that system documentation is sometimes out of
date. So, you should obtain copies of actual forms and operating documents
currently in use. You also should review blank copies of forms, as well as
sample of actual completed forms. You usually can obtain document samples
during interviews with the people who perform the procedure. If the system
uses a software package, you should review the documentation for that software.

a Check Your Progress — 5 :

L. A question that requires the respondent to express viewpoint is called
a. Questionnaire b. Open—Ended Question
c. Interview d. Closed—Ended Question

2. s used to obtain information from large number of people.
a. Interview b. Document Review
c. Observation d. Questionnaire

Software Requirement

67

Software Engineering

68

3. Write a detailed note on Interview Technique.

5.6 Software Requirement Characteristics :

Gathering software requirements is the basis of the whole software
development project. Hence, they must be clear, accurate, and well-defined.

A complete Software Requirement Specifications must be :

. Clear
J Accurate
. Reliable

. Understandable
. Changeable

. Provable

. Ordered

. Traceable

. Dependable source

0 Check Your Progress — 5 :
1. A complete software requirement specification must be

a. Clear b. Accurate c. Reliable d. All of Above

5.7 Software Requirements :

We should try to know what type of requirements may arise in the
requirement initiation phase and what kinds of requirement are expected from
the software system. Software requirements categorized in two categories which
are as follows :

5.7.1 Functional Requirements

Requirements, that is related to functional part of software fall into this
category. They describe functions and functionality within and from the software
system.

Examples :
Search option given to user to search from various invoices.

User should be able to mail report to management.

It should fulfill business rules and organizational functions.

v

v

v Users can be divided into groups and given separate rights.
v

v Software is developed keeping downward compatibility whole.
5.

7.2 Non—Functional Requirements :

Requirements that are not related to functional part of software fall into
this category. They are understood or predictable characteristics of software,
which users make possibility of.

Non—functional requirements include —
Accessibility

Flexibility

Performance

Interoperability

Storage

Configuration

Security

Logging

Cost

Disaster recovery

O < X 8 X X X X

Check Your Progress — 6 :

—

Write a note on Software Requirement.

5.8 User Interface Requirements

User Interface (UI) is a vital part of any software or hardware or hybrid
system. Software is generally known if it is —

v’ Easy to use

v' Faster response

v Successfully handling operational errors

v Providing simple yet reliable user interface

User acceptance depends upon how user uses the software. Ul is the
only way for users to observe the system. Well performing software must be
prepared with attractive, clear, reliable, and responsive user interface. Else, the
functionalities of software cannot be used in appropriate way. A system is said
to be good if it provides means to use it efficiently.

User interface requirements are stated as follows :
Content presentation

Easy Navigation

Simple interface

Reactive

Reliable UI elements

Feedback mechanism

Default settings

Focused layout

AN Y N N N NN

Strategical use of color and texture

Software Requirement

69

Software Engineering

70

Deliver help information
User centric approach

Group based view settings

O < < X

Check Your Progress — 7 :

—

Write a note on User Interface Requirement.

5.9 Software System Analyst :

"A system analyst is a person who conducts a study, identify activities
and determine the procedure to achieve the objective."

A system analyst researches problem, plans solutions, recommends
software and systems, and manages development to meet business or other
requirements. System analysts are link between vendors and information
technology. They may be responsible for developing cost analysis, design
considerations, and implementation time-lines.

5.9.1 Role of system analyst OR What a system analyst does ?

1. Define Requirements : The first and may be most difficult task of system
analyst is problem definition. Business problems are quite difficult to
define. It is also true that problems cannot be solved until they are
correctly and clearly defined.

2. Gathering data, facts, and opinion of user : Initially system analyst
does not know how to solve a specific problem. He must consult with
managers, users and other data processing professional in defining problems
and developing solutions. We use various methods for data gathering to
get the correct solution of a problem. Also, he is responsible to define
priorities according to requirements.

3. System Analysis : The analyst's sole responsibility is conducting systems
studies to know relevant facts about business activity. Having gathered
the data relating to a problem, the systems analyst then thinks of plan
to solve it. He may not come up personally with best way of solving
a problem but pulls together solution is achieved.

4. Solving Problems : System analyst coordinates the process of developing
solutions. Since many problems have numbers of solutions, the system
analyst must evaluate the advantage of such suggested solutions before
recommending one to the management.

S. Drawing up specification : Systems analysts are often referred to a
planner. A key part of the system analyst is to develop a plan to meet
the management's aims. The specification must be accurate and detailed
so that it can be used by system implementers. The specification must
be non—technical so that users and managers can understand it.

6. Designing System : When the plan has been accepted, systems analyst
is responsible for designing system so that management's goal could be
achieved. System design is a time consuming, complex and precise work.

7. Evaluation System : System analyst often co—ordinates the testing
procedures and helps in deciding whether or not the new system is
meeting standards established in the planning phase.

5.9.2 Attributes of a good system analyst OR Qualities of system analyst :
System analyst must have the following attributes :

1. Knowledge of Business functions : A system analyst must know the
environments in which he or she works.

He must understand the management structure and the relationship between
departments in organizations.

A working knowledge of accounting, marketing and material management
principles is a must.

Since so many systems are built around these areas. He must familiar
with his company's product and services and management's policies in
areas concerning him.

2. Knowledge of people : Since system analyst work with others so closely,
he or she must understand their needs and what motivates them to develop
system properly.

3. Knowledge of data processing principles/Computer system : Most
systems today are computer based. The systems analyst must fully aware
about the potential and limitations of computers.

4. Ability to Communicate : As a coordinator, a system analyst must
communicate properly with people of different levels within an organization.
He should use non—technical language while communicating with other.
System analyst must listen carefully to what others said and include the
thoughts of others into the system development process.

5. Flexibility : System analysts must be flexible in their thinking since they
often do not get their own way. Different sections of organization have
conflicting needs and most systems are result of compromise. The analyst
goal is to produce the system that will be the best for his organization.
This required an open mind, and flexibilities in his ideas.

6. An analytical mind : System analyst often finds themselves with more
data than they required. It requires an analytical mind to select pertinent
data and concentrate on them in defining problems and forming solutions.

7. Well educated with sharp mind : System analysts have to work with
people of all levels in every phase of business. They must know how
to work with all of them and gain their confidence. Analyst must have
sharp mind to learn quickly how people do their job and develop ways
for them to it better.

Software Requirement

71

Software Engineering

72

O Check Your Progress — 8 :
1. What is System Analyst ? Discuss Role and Quality of System Analyst.

5.10 Let Us Sum Up :

In this unit we have learnt that during the software development how
requirements are going to gather from the all level of the organization. As well
feasibility study, requirement gathering, software requirement specification and
validation criteria are going to be carry on in requirement engineering process.

We have also seen about different requirement initiation techniques using
which requirements are going to collect. So, as a part of requirement initiation
techniques interview, questionnaire, observation, and document review are
conducted by the analyst.

Analyst is person who conducts a study, identify activities and determine
the procedure to achieve the objective. So, there are various role that system
analyst has to perform to meet the requirement and there should be analytical
qualities in the analyst.

5.11 Answers for Check Your Progress :

a Check Your Progress 1 :

1. (d) 2. (¢)
a Check Your Progress 2 :
1. (d) 2. (b) 3. (Refer 5.3.1)

a Check Your Progress 3 :
1. (Refer 5.4)
a Check Your Progress 4 :

1. (b) 2. (d) 3. (Refer 5.5.1)
a Check Your Progress 5 :
1. (d)

a Check Your Progress 6 :
1. (Refer 5.7)

a Check Your Progress 7 :
1. (Refer 5.8)

a Check Your Progress 8 :
1. (Refer 5.9)

5.12 Glossary :

1. Requirement Engineering — Requirement engineering (RE) refers to the
development of defining, documenting, and maintaining requirements in
the engineering process.

2. Feasibility Study — A system request must meet several tests to see Software Requirement
whether it is meaningful to proceed further. This series of tests is called
a feasibility study.

3. SRS — After the requirements are collected from various end—user, system

analyst creates a document called SRS.

4. Interview — An interview is a planned meeting during which you obtain
information from another person.

5. Open-Ended Question — A question that requires the respondent to
express viewpoint is called an open—ended interview.

6. Closed—Ended Question — A question that requires a direct answer to
a question is called closed—ended interview.

7. Questionnaire — A questionnaire, also called survey, is a document
containing a number of standard questions that can be sent to many
individuals.

8. System Analyst — A system analyst is a person who conducts a study,
identify activities and determine the procedure to achieve the objective.

5.13 Assignment :

1. Explain all Requirement Initiation Techniques.

5.14 Activities :

1. Differentiate Functional Requirement and Non—Functional Requirement.

5.15 Case Study :

Justify, Interview requirement initiation technique is more flexible than
the Questionnaire.

5.16 Further Reading :

1. Software Engineering : A Practitioner's Approach Book by Roger S.
Pressman

73

Software Engineering

74

6.0
6.1
6.2

6.3

6.4

6.5

6.6

6.7
6.8
6.9
6.10
6.11
6.12
6.13

Unit

06

SOFTWARE DESIGN

Learning Objectives

Introduction

Software Design Basic

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Software Design Level
Modularization
Concurrency

Coupling and Cohesion

Design Verification

Software Design Strategies

6.3.1
6.3.2
6.3.3
6.3.4

Structured Design

Function Oriented Design
Object Oriented Design
Software Design Approaches

Software User Interface Design

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

Command Line Interface (CLI)
Graphical User Interface

User Interface Design Activities
GUI Implementation Tools

User Interface Golden Rules

Software Design Complexity

6.5.1
6.5.2
6.5.3

Halsted's Complexity Measures
Cyclomatic Complexity Measures

Function Point

Software Implementation

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5

Structured Programming
Functional Programming
Programming Style

Software Documentation

Software Implementation Challenges

Let Us Sum Up

Answers for Check Your Progress

Glossary

Assignment

Activities
Case Study

Further Readings

6.0 Learning Objectives :

After learning this unit, you will be able to understand :

. Introduction about the Basic Software Design

. Idea about different Software Design Level and Design Strategies
. Detail of Software User Interface Design

. Software Design Complexity

. Software Implementation

6.1 Introduction :

Software design is a mechanism to convert user requirements into
appropriate form, which helps the developers in software coding and
implementation. It deals with by providing the client's requirement, as defined
in SRS document, into a form, that is, easily implementable using programming
language.

6.2 Software Design Basic :

Software design transfers the problem into solution, which is the first
step in SDLC (Software Design Life Cycle). It attempts to specify how to satisfy
the requirements stated in SRS.

6.2.1 Software Design Level :
There are three levels of software design which are as follows :
. Interface Design
. Architectural Design
. Detailed Design
. Interface Design :

Interface design is the specification of the interaction between a system
and its environment. This phase proceeds at a high level of abstraction with
respect to the inner workings of the system i.e., during interface design, the
internal of the systems are completely ignored.

Attention is focused on the dialogue between the target system and the
users, devices, and other systems with which it interacts. The design problem
statement produced during the problem analysis step should identify the people,
other systems, and devices which are collectively called agents.

Interface design should include the following details :

v Precise description of events in the environment, or messages from agents
to which the system must respond.

v Precise description of the events or messages that the system must
produce.

v Specification on the data, and the formats of the data coming into and
going out of the system.

v Specification of the ordering and timing relationships between incoming
events or messages, and outgoing events or outputs.

Software Design

75

Software Engineering

76

. Architectural Design :

Architectural design is the specification of the major components of a
system, their responsibilities, properties, interfaces, and the relationships and
interactions between them. In architectural design, the overall structure of the
system is chosen, but the internal details of major components are ignored.

Issues in architectural design include :
Gross decomposition of the systems into major components.
Allocation of functional responsibilities to components.

Component Interfaces

N NN

Component scaling and performance properties, resource consumption
properties, reliability properties, and so forth.

v Communication and interaction between components.

The architectural design adds important details ignored during the interface
design. Design of the internals of the major components is ignored until the
last phase of the design.

. Detailed Design :

Detailed design is the specification of the internal elements of all major
system components, their properties, relationships, processing, and often their
algorithms and the data structures.

The detailed design may include :

Decomposition of major system components into program units.
Allocation of functional responsibilities to units.

User interfaces

Unit states and state changes

Data and control interaction between units

AN N N N RN

Data packaging and implementation, including issues of scope and visibility
of program elements

v Algorithms and data structures

6.2.2 Modularization :

Modularization is a method to divide software into multiple independent
modules, which are capable of carrying out tasks independently. These modules
work as basic concepts for the whole software. Designers are responsible to
design modules so that it can be implemented separately and independently.

Modular design accidentally follows the rule of 'divide and conquer'
strategy because many other benefits involved in the modular design of software.

. Advantage of modularization :

v Easier to manage smaller components.

v Program can be divided based on functional characteristics.
v Wanted level of concept can be taken in the program.

v Components can be re—used.

v' Parallel execution can be made possible.

v Wanted from security feature.

6.2.3 Concurrency :

In the early days, software executed sequentially, means coded instruction
executed one after another indicating only one part of program activated at
any given time.

In software design, concurrency is executed by dividing the software into
multiple independent components and executing them in parallel. In other
words, concurrency provides ability to execute more than one part of software
code in parallel to each other.

It is required for the programmers and designers to identify those modules,
which can be made parallel execution.

6.2.4 Coupling and Cohesion :

When software is modularized, its tasks are divided into several modules
based on some characteristics. However, modules considered as a single entity
but, may refer to each other to work together. There are procedures by which
module design quality and their interaction between them can be measured.
These measures are called coupling and cohesion.

. Cohesion :

Cohesion is describing the degree of intra—dependability within elements
of a module. The greater cohesion means better program design.

There are seven types of cohesion which are as follows :

0 Unplanned Cohesion — An unplanned cohesion might be the result of
breaking the software into smaller modules for the sake of modularization.
It may serve confusion to the programmers and is generally not—accepted
because it is unplanned.

0 Logical Cohesion — When logically characterized elements are place
together into a module, it is called logical cohesion.

0 Sequential Cohesion — When elements of module are organized as they
are processed in sequence at given time, it is called sequential cohesion.

0 Practical Cohesion — When elements of module are grouped together,
which are executed sequentially in order to perform a task, it is called
practical cohesion.

0 Communicational Cohesion — When elements of module are grouped
together, which are executed sequentially and work on same data
(information), it is called communicational cohesion.

0 Serial Cohesion — When elements of module are grouped because the
output of one element serves as input to another and so on, it is called
serial cohesion.

0 Functional Cohesion — It is measured to be the highest degree of
cohesion, and it is highly expected. Elements of module in functional
cohesion are grouped because they all contribute to a single well-defined
function. It can also be reused.

. Coupling :

Coupling defines the level of inter—dependability among modules of
software. It states at what level the modules restrict and interact with each
other. The lower the coupling means the better the program.

Software Design

77

Software Engineering

6.2.5

There are five levels of coupling which are as follows :

Content Coupling — When another module is able to access or modify
or refer to the content directly, it is known as content coupling.

Global Coupling — When one or more modules have read and write
access to global data it is known as global coupling.

Control Coupling — If one module decides the function of another
module or modify the flow of execution it is known as control coupling.

Stamp Coupling — When more than one module shares common data
structure and work on different part of it, it is known as stamp coupling.

Data Coupling — When two modules interact with each other by passing
data it is known as data coupling. If a module provides data as parameter,
then the receiving module should use all its components.

Design Verification :

The output of software design includes detailed description, documentation,

and complete logic diagrams of all functional and non—functional requirements.

The next phase is software implementation so it is then necessary to

verify the output before proceeding to the next phase. If design of the outputs
is in formal symbolic form, then design tools should be used for verification
else detailed design review can be used for verification and validation.

Reviewers can detect faults by structured verification method that might

be produced by supervising some conditions. A good design review is important
for good software design, accuracy, and quality.

a
1.

78

Check Your Progress — 5 :

is the specification of the interaction between a system and
its environment.

a. Interface Design b. Architectural Design
c. Detailed Design d. None of Above
Architectural design is specification of

a. Component of a system b. Responsibilities

c. Properties & Interface d. All of Above

is a method to divide a software into multiple independent
modules

a. Concurrency b. Modularization
c¢. Coupling d. Cohesion

Write a note on Coupling & Cohesion.

6.3 Software Design Strategies :

Software design is a process to develop a thought of user requirements
into software implementation. It takes requirements of user as challenges and
goes to develop best solution. While the software is being developed, a plan
is drawn to find the best possible design for implementing the proposed solution.

6.3.1 Structured Design :

Structured design is a process of develop a thought for finding solution
of the problem with well-organized elements. As a benefit it gives better
understanding of how the problem is being solved. It also makes it easy for
designer to focus on the problem more correctly. In Structured design a problem
is divided into small problems and each small problem is independently solved
until the whole problem is solved and problems are solved by means of solution
modules.

Structured design ensures that modules are well organized in order to
get accurate solution. These modules are organized in hierarchy. All modules
are communicating with each other.

A good structured design follows rules for communication between
multiple modules, which are as follows :

. Cohesion — grouping of all functionally related elements.
. Coupling — communication between different modules.

A good structured design has high cohesion and low coupling arrangements.
6.3.2 Function Oriented Design :

The system includes of many smaller sub—systems known as functions
in function—oriented design. These functions are capable of performing important
task in the system. Some properties of structured design where divide and
conquer methodology is used are inheriting in function—oriented design.

This design method divides the entire system into smaller functions,
which provides means of idea by hiding the information and their operation.
These functional modules can share information between themselves by
information passing and using information available globally.

Another characteristic of functions is that when a program calls a function,
the function changes the state of the program. Function oriented design works
well where the system state does not matter and program work on input rather
than on a state.

. Design Process :

v With the help of data flow diagram how data flows in entire system
are seen.

v DFD shows how functions change data and state of the entire system.

v' The entire system is logically divided into smaller parts known as
functions based on its operation in the system.

v Each function is then defined at large.

6.3.3 Object Oriented Design :

Object Oriented Design (OOD) works on the entities and their
characteristics instead of functions involved in the software. The entire concept
of software solution spins around the engaged entities.

Software Design

79

Software Engineering

80

Important concepts of Object—Oriented Design are as follows :

Objects — Object is the basic run—time entities in an object—oriented
system. As an object person, banks, company and customers can be there. Each
entity has attributes and has some methods to perform on the attributes.

Classes — A class is the definition of the behavior and properties of one
or more objects within the system. A class binds the data of an object to
operations that it can perform. A class is a collection of objects of similar
type.

Encapsulation — In OOD, the attributes and methods are bundled together
is called encapsulation. As a attributes data variables and methods operation
on the data are consider. As we seen encapsulation bundles information of an
object together, but also restricts access of the data and methods from the
outside world, it is called information hiding.

Inheritance — OOD permits similar classes to stand up in hierarchical
style where the sub—classes can import, implement and re—use variables and
methods from their immediate super classes it is called inheritance.

Polymorphism — OOD afford a mechanism where methods performing
similar tasks with same name but different arguments it is called polymorphism.

. Design Process :

Software design process can be supposed as series of well-organized
steps. However, it differs according to design approach function oriented or
object oriented.

Design process may have the following steps :
v" A solution design is created from requirement.

v Objects are recognized and grouped into classes on the basis of similarity
in attribute features.

v Class hierarchy and relation between them is defined.

v Framework of the application is defined.

6.3.4 Software Design Approaches :

There are two general approaches for software designing which are as
follows :

. Top—Down Design :

A system is composed of sub—system and it contains a number of
components. Additionally, these sub—systems and components may have their
own set of sub—systems and components, and creates hierarchical structure in
the system.

Top—down design considers the whole system as single entity and then
divides it to get more than one sub—system or component based on some
characteristics. Each sub—system or component is then treated as a system and
decomposed further. This process is carried on until the lowest level of system
in the top—down hierarchy is achieved.

Top—-Down Design

It starts with a generalized characteristic of system and keeps on defining

the more specific part of it. When all the components are composed the entire
system comes into existence.

Top—down design is more appropriate when the software solution needs

to be planned from diagram and specific details are unidentified.

Bottom—up Design :

The bottom—up design starts with most specific and basic components.

It proceeds with combining higher level of components by using lower—level
components. It keeps creating higher level components until the required system
is not developed as single component.

Level 3

Bottom—Up Design

Bottom—up policy is more appropriate when a system needs to be created

from some existing system. Both, top—down and bottom—up approaches are not
practical independently it is good to combine both.

a
1.

Check Your Progress — 2 :

OOD Stands for

a. Object Oriented Development b. Object Oriented Design

c. Object Oriented Detail d. Object Oriented Document
Entities involved in the solution design are known as

a. Objects b. Classes c. Inheritance d. Encapsulation
An object is an instance of a

a. Inheritance b. Encapsulation c. Class d. Object

Software Design

81

Software Engineering

82

4. Write a note on Software Design Approaches.

6.4 Software User Interface Design :

User interface is the area of the application with which user is going
to interact to work with software. With the help of user interface user can
manipulate and control the software as well as hardware. As the today is a
technological era you will find user interface in all digital technology like
computers, mobile, music system, home appliances, cars, airplanes etc.

UI provides basic platform to users for human—computer interaction and
is a part of software using which users looks into the software. As a part of
UI there can be combination of text, graphics, audio, and video depending on
the basic hardware and software.

The software becomes more popular if its user interface is :
Attractive

casy to use

Gives response in short time

Clear to understand

AN NN NN

Reliable on all interfacing screens
Ul is divided into two categories which are as follows :
v Command Line Interface

v Graphical User Interface
6.4.1 Command Line Interface (CLI) :

CLI is a tool of interaction with the computer, where you have to provide
the text-based command to the computer. In other words, CLI provides a
command prompt, the place where the user types the command and feeds to
the system. The user needs to remember the syntax of command and its use.
Earlier CLI were not programmed to handle the user errors effectively.

A command is a text—based reference to set of instructions, which are
expected to be executed by the system. There are methods like macros, scripts
that make it easy for the user to operate.

CLI uses less amount of computer resource as compared to GUIL
. CLI Elements :
A text-based command line interface elements are as follows :

0 Command Prompt — It is text—based notifier that shows the framework
in which the user is working. It is produced by the software system.

0 Cursor — It is a small horizontal line or a vertical bar which represent
position of character while typing. Cursor is typically found in blinking
state. It moves as the user writes or deletes characters.

0 Command — A command is an executable instruction and may have one
or more parameters. After the execution of command an output is shown
on the screen. When output is produced, command prompt is displayed
on the next line.

6.4.2 Graphical User Interface :

Graphical User Interface (GUI) provides graphical way to the user to
interact with the system. Using GUI available options, user interact with the
software in a faster speed with accuracy and more effectively.

. GUI Element :

GUI offers a set of components to work with software or hardware. Every
graphical component provides a way to work with the system. Elements of
GUI system are as follows :

Window — It is referred to an area where contents of application are
shown. Contents in a window can be shown in the form of icons or lists, if
the window represents file structure and it is easy for a user to navigate in
the file system. Windows can be minimized, resized or maximized to the size
of screen. They can be moved anywhere on the screen. A window may contain
another window of the same application, called child window.

0 Tabs — If an application permits executing multiple cases of it, they
appear on the screen as separate windows.

) Menu — Menu is collection of standard commands, grouped together and
placed at top of the application window.

0 Icon — An icon is small picture representing an associated application.
As you clicked or doubled click on, the application window is opened.
Icon displays programs installed on a system in the form of small pictures.

0 Cursor — It refers to interacting devices such as mouse, touch pad; digital
pen is represented in GUI as cursors. Cursors are also called pointers.
It is used to select menus, windows and other application features.

. Application Specific GUI Components :
A GUI of an application contains following GUI elements :

0 Application Window — Most application windows use the concepts
provided by operating systems but many use their own customer created
windows to hold the contents of application.

0 Dialogue Box — It is a child window that includes message for the user
and request for some action to be perform. For Example : Application
generates a dialogue to get confirmation from user to delete a file.

=im &t

Theingge ot semiage ot

g Lo ye warn pyw wwrd b dalrbe bhai Aum

o8 Camial

Software Design

83

Software Engineering

0 Text-Box — It is an area where user types to enter text—based data.
{Enter your name here CiickMal | Thisis Lapel Marcury
VEnus
rextField Button Labeld
Uars
LJupitar
Red = o (11/w0: [thee Emp::n
CheckBox Uranis
Gragn MNepluneg
Elue @ apha Basta Charlie Lizt
Choice CheckBoxGroup
0 Buttons — It is used to submit inputs to the software.
|Enter your name nere (ciicemal | | his is Lavel Marcury
VEnus
TextField Button Label
Uars
LJupitar
Aed - ions | Tibwo: [lthres Emp::n
CheckBox Uranus
Gragn MNeplung
Elue @ apha ¢ 8Bsta O Charie Lizt
Choice CheckBoxGroup
0 Radio—button — It is the element which is used to provide option to

the user from which user can select any one option.

|Enter your name nere

Chick: Mal | This is Label Barcury
VEnus
rextField Button babel
Mars
Lhipiiar
[Red <] Fone Mtwo [mres H”:‘ﬁ
CheckBox ranue
Grag Meplung
Hiue ™ Apha Beta O Charle Lizt
Choice CheckBoxGroup

Check-box — This function is similar to list-box. When an option is
selected, the box is marked as checked user can also select multiple

option.
IEnln_rwur name here Click Mal I This is Label Wercury
Venus
TextField Button Label
dars
Lipiar
[Rea <] FMone two [thres Eﬁpﬁ
CheckBox Uranue
Gregn Heptung
Elug Apha " 8ata Charlie Lizt
Choice CheckBoxGroup

List-box — It provides list of available items for selection. More than
one item can be selected.

|Enter your name nere CiickMal | This s Label Marcury
Venus
rextField Button babel
ars
Lhipiiar
[Red <] Fong [two [fres H”:‘ﬁ
CheckBox ranue
Grag Meplung
Hiue ™ Apha Beta O Charle Lizt
Choice CheckBoxGroup

6.4.3 User Interface Design Activities

There are a number of activities executed for designing user interface.
The process of GUI design and implementation is similar to SDLC. Any model
can be used for GUI implementation among Waterfall, Iterative or Spiral Model.

A model used for GUI design and development should fulfill these GUI
specific steps.

LY St
bty -

L

s]
Sy
R

. GUI Requirement Gathering — The designers should have list of all
functional and non—functional requirements of GUI. Requirement is
gathering from user and their existing software.

. User Analysis — The designer identifies the users who are going to use
the software. The target audience matters as the design details change
according to the knowledge and competency level of the user. If user
is aware of technical things, advanced and complex GUI can be combined.
For a beginner user, more information is included on how—to—use the
software.

. Task Analysis — Designers identifies what task is to be done by the
software solution. Here in GUI, it does not matter how it will be done.
Tasks can be represented in hierarchical manner Tasks provide goals for
GUI presentation. Flow of information between sub—tasks controls the
flow of GUI contents in the software.

. GUI Design and Implementation — It refers to implements into code
and insert the GUI with working software in the background.

. Testing — GUI testing can be done on usability, compatibility, and user
acceptance.

6.4.4 GUI Implementation Tools :

There are many tools available using which the designers can implement
full GUI on a mouse click. Some tools can be fixed into the software environment.
GUI implementation tools provide collection of controls. Customization is also
possible so designers can change the code accordingly.

There are different sections of GUI tools according to their different use
and platform.

Example
Mobile GUI, Computer GUI, Touch—Screen GUI etc.
Example of GUI Tools

. Visual Studio, Android Wavemaker, LucidChart, FLUID

Software Design

85

Software Engineering

86

6.4.5 User Interface Rules :

There are some rules for GUI design which are as follows :

Consistency — It refers to consistent sequences of actions should be
required in similar situations. Identical terms should be used in prompts,
menus, and help screens.

Enable users to use short—cuts — The user should able to use shortcuts,
function—keys, hidden commands during the interaction to reduce the
number of interactions.

Offer feedback — There should be feedback system for every user action.
The feedback gives satisfactory result of the user on the software system
design.

Dialog to produce closing — Sequences of actions should be organized
into groups with a starting, middle, and end.

Simple error handling — If an error is made, the system should be able
to detect it and offer simple, mechanisms for handling the error.

Permit easy reversal of actions — This feature releases nervousness
because the user aware about errors can be undone. It encourages study
of unaware options.

Check Your Progress — 3 :

CLI Stands for

a. Command Line Interface b. Command Line Instruction

¢. Command Line Information d. Command Line Implementation
GUI Stands for

a. Graphical User Instruction b. Graphical User Implementation
c. Graphical User Information d. Graphical User Interface

Write a note on Command Line Interface.

Write a note on Graphical User Interface.

6.5 Software Design Complexity :

The word complexity refers to the events where there is a multiple

interrelated links and extremely complex structure. As the software design is
understood, various element and connection between those elements are step
by step develop to be huge, which becomes too tough to understand at once.

Software design complexity is difficult to measure without using complexity
metrics and measures. There are three important software complexity measures
which are as follows :

6.5.1 Halsted's Complexity Measures :

In 1977, Mr. Maurice Howard Halstead introduced metrics to measure
software complexity. Halstead's metrics depends upon the actual implementation
of program and its measures, which are computed directly from the operators
and operands from source code, in static manner. It allows to evaluate testing
time, vocabulary, size, difficulty, errors, and efforts for C/C++/Java source code.

According to Halstead, "A computer program is an implementation of
an algorithm considered to be a collection of tokens which can be classified
as either operators or operands". Halstead metrics think a program as sequence
of operators and their associated operands.

He defines various indicators to check complexity of module. Following
table states the parameters and the meanings :

Parameter Meaning
nl Number of unique operators
n2 Number of unique operands
N1 Number of total occurrence of operators
N2 Number of total occurrence of operands

When we select source file to view its complexity details in Metric
Viewer, the following result is seen in Metric Report :

Metric Meaning Mathematical Representation
n Vocabulary nl + n2
N Size N1 + N2
\% Volume Length * Log2 Vocabulary
D Difficulty (n1/2) * (N1/n2)
E Efforts Difficulty * Volume
B Errors Volume / 3000
T Testing time Time = Efforts / S, where S=18 seconds.

6.5.2 Cyclomatic Complexity Measures :

To perform some tasks to execute in order every program includes
statements and decision statement which decides which statement need to be
executed. The decision—making statement changes the flow of the program.

If we compare two programs of same size, the one with more decision—
making statements will be more complex as the control of program jumps
frequently.

McCabe, in 1976, proposed Cyclomatic Complexity Measure to quantify
complexity of given software. It is graph based model that is work on decision—
making concepts of program such as if-else, do—while, repeat—until, switch—
case and goto statements.

Software Design

87

Software Engineering

88

Process to make flow control graph :

v Divide program in smaller blocks, enclosed by decision—making concepts.
v Create nodes representing each of these nodes.
v Connect nodes as follows :
If control can branch from block i to block j
Draw an arc
From exit node to entry node
Draw an arc.
To calculate Cyclomatic complexity of a program module, we use the
formula —

VG)=e—-n+2
Where :
e is total number of edges

n is total number of nodes

Code Flow-Chart Flow-Graph

i
Wi

st

statemend |
W expreteien |

te

staiemand &

atamend &

| tiatemant ! |

tiptemnnt]]

| timtemont 5 |

o | UIETETHES ¢

The Cyclomatic complexity of the above module is
e =10

n =38

Cyclomatic Complexity = 10 — 8 + 2 = 4

According to P. Jorgensen, Cyclomatic Complexity of a module should

not exceed 10.

6.5.3 Function Point :

It is broadly used to measure the size of software. Function Point focusses

on functionality of the system. Features and functionality of the system are
used to measure the software complexity.

Function point counts on five parameters, named as External Input,

External Output, Logical Internal Files, External Interface Files, and External
Inquiry. To consider the complexity of software each parameter is further
categorized as simple, average or complex.

Software Program
o~

P o=
o\’-‘] U:"?ﬂ- a:::’

ﬁ{._a !i.. - gl

&/
M N ogpf.b.l:h'lllﬁﬂ_ll;lﬂl- mufiﬂ:[lu

Tutarmal Pragr L _ =
L —

T

. External Input :

In system input from the outside of the system is known as external
input. Uniqueness of input is measured, as no two inputs should have same
formats. These inputs can either be data or control parameters.

Simple — if input count is low and affects less internal files
Complex - if input count is high and affects more internal files
Average — if-between simple and complex.

. External Qutput :

All output provided by the system are known as external output. Output
is measured unique if their output format and/or processing are unique.

Simple — if output count is low

Complex — if output count is high

Average — if-between simple and complex.
. Logical Internal Files :

Every software system maintains internal files in order to maintain its
functional information and to function properly. These files hold logical data
of the system, it may contain both functional data and control data.

Simple — if number of record types are low
Complex — if numbers of record types are high
Average — if-between simple and complex.

. External Interface Files :

Software system may need to share its files with some external software
or it may need to pass the file for processing or as parameter to some function.
All these files are considered as external interface files.

Simple — if number of record types in shared file are low
Complex — if numbers of record types in shared file are high
Average — if-between simple and complex.

. External Inquiry :

An inquiry is a combination of input and output, where user sends some
data to inquire about as input and the system responds to the user with the
output of inquiry processed.

Software Design

89

Software Engineering

90

Simple — if query needs low processing and yields small amount of output
data

Complex — if query needs high process and yields large amount of output
data

Average — if-between simple and complex.

Each of these parameters in the system is specified weightage according
to their class and complexity. The table below mentions the weightage given

to each parameter :

Parameter | Simple | Average | Complex
Inputs 3 4 6
Outputs 4 5 7
Enquiry 3 4 6
Files 7 10 15
Interfaces 5 7 10

The above table produces raw Function Points. These function points
are adjusted according to the environment complexity. System is described using
fourteen different characteristics :

v' Data communications
Distributed processing
Performance objectives
Operation configuration load
Transaction rate

Online data entry,

End user efficiency
Online update

Complex processing logic
Re—usability

Installation ease
Operational ease

Multiple sites

D N N N N N N N N N N N NN

Desire to facilitate changes

These characteristics factors are then rated from 0 to 5, as mentioned

o
&
o
o
=

No impact
Related
Reasonable
Average

Significant

AN N N N NN

Essential

Check Your Progress — 4 :

Write a note on Halsted's Complexity Measures.

Write a note on Cyclomatic Complexity Measures.

Write a note on Function Point.

6.6 Software Implementation :

We will learn about programming methods, documentation and challenges

in software implementation.

6.6.1 Structured Programming :

Structured programming inspires the developer to use functions and loops

instead of using simple jumps in the code, so bringing simplicity in the code
and improving its efficiency. Structured programming also helps programmer
to reduce coding time and organize code properly.

Structured programming defines how the program shall be coded. It uses

three main concepts which are as follows :

1.

Top—down analysis — In top—down analysis, the problem is divided into
small parts where each part has some meaning. Each problem is solved
separately and solving steps are clearly defined.

Modular Programming — While programming, the code is divided into
smaller group of instructions which is known as modules. Modular
programming based on the understanding of top—down analysis. Jumps
are prohibited and modular format is encouraged in structured programming.

Structured Coding — In reference with top—down analysis, structured
coding sub—divides the modules into further smaller units of code in the
order of their execution. Structured programming controls the flow of
the program, whereas structured coding uses control structure to organize
its instructions in definable patterns.

Software Design

91

Software Engineering

92

6.6.2 Functional Programming :

Functional programming is style of programming language, which uses
the concepts of mathematical functions. A function in mathematics always gives
the same result on receiving the same argument.

Functional programming uses the following concepts :

. First class and High—order functions — It refers to functions which
have ability to accept another function as argument or they return other
functions as results.

. Pure functions — It refers to functions that do not include negative
updates, they do not affect any /O or memory and if they are not in
use, they can easily be removed without hampering the rest of the
program.

. Recursion — It refers to programming technique where a function calls
itself and repeats the program code in it unless some pre—defined condition
matches. Recursion is the method of creating loops in functional
programming.

. Strict evaluation — It is referring to a method of evaluating the expression
passed to a function as an argument. Functional programming has two
types of evaluation methods, strict (eager) or non-strict (lazy). Strict
evaluation always evaluates the expression before invoking the function.
Non-strict evaluation does not evaluate the expression unless it is needed.

6.6.3 Programming Style :

Programming style is set of coding rules followed by all the programmers
to write the code. When multiple programmers work on the same project, they
need to work with the program code written by some other developer.

A proper programming style contains using function and variable names
relevant to the planned task, using well-placed indentation, and including
comment in code for the reader comfort. This makes the program code readable
and understandable by all, which in turn makes debugging and error solving
easier.

. Coding Guidelines :

Practice of coding style differs with organizations, operating systems and
language of coding itself. The following coding elements may be defined under
coding guidelines of an organization :

0 Naming conventions — It refers to how to name functions, variables,
constants and global variables.

0 Indenting — It refers to the space left at the beginning of line, usually
single tab.

0 Whitespace — It is generally omitted at the end of line.

0 Operators — It refers to the rules of writing mathematical, assignment
and logical operators. For example, assignment operator '=' should have
space before and after it, as in "x = 2".

) Control Structures — It refers to the rules of writing decision statements
and control flow statement such as if-then—else, case—switch, while—until
and in nested fashion.

0 Line length and wrapping — It refers to how many characters are there
in one line, mostly a line is 80 characters long. Wrapping defines how
a line should be wrapped, if is too long.

0 Functions — It refers to how functions should be declared and invoked,
with and without parameters.

0 Variables — It refers to how variables with different data types are
declared and defined.

0 Comments — The comments included in the code describe what the code
actually does and it is the important component of coding.

6.6.4 Software Documentation :

Software documentation is a vital part of software process. A document
provides information to know about software process and about how to use
the software.

A well-maintained documentation should involve the following documents :
. Requirement Documentation :

As the requirement are gather from various stakeholders by analyst it
uses as key tool for software designer, developer, and the test team to carry
out their respective tasks. It includes all the functional, non—functional and
behavioral description of the software.

Information of this document can be gathered from client using the fact—
finding techniques, or from historical data of the software. It is works as a
basis of the software to be developed and is majorly used in verification and
validation phases.

. Software Design Documentation :

These documentations include all the necessary information, which are
needed to build the software. It contains : (a) Architecture of High—level
software, (b) Detail of Software design, (c) Data flow diagrams, (d) Database
design

These documents work as source for developers to implement the software.
However, these documents do not give any details on how to code the program;
they give all necessary information that is required for coding and implementation.

. Technical Documentation :

These documentations are managed by the developers and actual coders
which represent information about the code. While writing the code, the
programmers also mention objective of the code, who wrote it, where will it
be required, what it does and how it does, what other resources the code uses,
etc.

This documentation increases the understanding among various
programmers working on the same code. It enhances re—use capability of the
code. It makes debugging easy and traceable.

. User Documentation :

This documentation is different from all the above, this explains how
the software product should work and how it should be used to get the wanted
results.

Software Design

93

Software Engineering

94

These documentations may include software installation procedures, how—

to guides, user—guides, uninstallation method and special references to get more
information like license updations etc.

6.6.5 Software Implementation Challenges :

There are some challenges faced by the development team while

implementing the software are as follows :

Code-reuse — Programming interfaces of present—day languages are very
sophisticated and are equipped huge library functions. Still, to bring the
cost down of end product, the organization management prefers to re—
use the code, which was created earlier for some other software.

Version Management — As the technology enhances day by day every
time new software is issued to the customer, developers have to maintain
version and configuration related documentation. This documentation
needs to be highly accurate and available on time.

Target—Host — The software program, which is being developed in the
organization, needs to be designed for host machines at the customers
end.

But at times, it is impossible to design software that works on the target

machines.

O Check Your Progress — 5 :

1. Write a note on Structured Programming.
2. Write a note on Functional Programming.
3. Write a note on Programming Style.

4. Explain Software Documentation.

5. Explain Software Implementation Challenges.

6.7 Let Us Sum Up :

In this unit we have learnt Basic Software Design, Idea about different
Software Design Level and Design Strategies. As part of Software Design
Interface Design, Architectural Design and Detailed Design play an important
role.

We have also seen about the modularization is a method to divide a
software into multiple independent modules, which are capable of carrying out
tasks independently. Software design is a process to develop a thought of user
requirements into software implementation.

We also learnt about User interface is the area of the application with
which user is going to interact to work with software. With the help of user
interface user can manipulate and control the software as well as hardware.

We also discussed about the Software Implementation in which structured
programming, functional programming, programming style, and software
documentation are going to be consider and make implementation successful.

6.8 Answers for Check Your Progress :

a Check Your Progress 1 :

1. (a) 2. (d) 3. (b) 4. (Refer 6.2.4)
a Check Your Progress 2 :

1. (b) 2. (a) 3. (¢) 4. (Refer 6.3.4)
a Check Your Progress 3 :

1. (a) 2. (d)

3. (Refer 6.4.1)

a Check Your Progress 4 :
1. (Refer 6.5.1)

a Check Your Progress S :
1. (Refer 6.6.1)
4. (Refer 6.6.4)

N

. (Refer 6.4.2)

[\

. (Refer 6.5.2) 3. (Refer 6.5.3)

[\S}

. (Refer 6.6.2) 3. (Refer 6.6.3)
. (Refer 6.6.5)

9]

Software Design

95

Software Engineering

96

6.9 Glossary :

1. Interface Design — Interface design is the specification of the interaction
between a system and its environment.

2. Architectural Design — Architectural design is the specification of the
major components of a system, their responsibilities, properties, interfaces,
and the relationships and interactions between them.

3. Detailed Design — Design is the specification of the internal elements
of all major system components, their properties, relationships, processing,
and often their algorithms and the data structures.

4. Cohesion — Cohesion is describing the degree of intra—dependability
within elements of a module.

5. Coupling — Coupling defines the level of inter—dependability among
modules of software.

6. Command Prompt — It is text—based notifier that shows the framework
in which the user is working.

7. Command — A command is an executable instruction and may have one
or more parameters.

8. Icon — An icon is small picture representing an associated application.

9. Menu — Menu is collection of standard commands, grouped together and
placed at top of the application window.

10. Cursor — It is a small horizontal line or a vertical bar which represent
position of character while typing.

6.10 Assignment :

1. Write a detailed note on Graphical User Interface.

6.11 Activities :

1. Explain GUI Implementation Tool.
6.12 Case Study :

Discuss Halsted's Complexity Measures and Cyclomatic Complexity
Measures.

6.13 Further Reading :

1. Software Engineering : A Practitioner's Approach Book by Roger S.
Pressman

2. Braude, Formal Inspections in Software Quality Assurance, 1998

3. Beck, A.C.; Mattos, J.C.B.; Wagner, F.R.; Carro, L. CACOPS : General
Purpose Configurable Power Simulator, 2003.

SOFTWARE QUALITY
MANAGEMENT

7.0 Learning Objectives

7.1 Introduction

7.2 Software Quality

7.3 Verification & Validation (V & V)

7.4 Quality Control

7.5 Inspection

7.6 Walkthrough and Review

7.7 Why Standards ?

7.8 Software Quality Metrics or Parameters
7.9 Five levels of Capability Maturity Model (CMM)
7.10 Let Us Sum Up

7.11 Answers for Check Your Progress

7.12 Glossary

7.13 Assignment

7.14 Activities

7.15 Case Study

7.16 Further Readings

7.0 Learning Objectives :

After learning this unit, you will be able to understand :

. The quality management process

. Quality management activities

. Explain role of standards in quality management

. Concept of software metric, predictor metrics and control metrics
. Idea about measurement in assessing software quality

7.1 Introduction :

Software quality management is related with ensuring the required level
of quality which Software should have in order to work with its product.
Appropriate quality standards and procedures will make sure that such quality
standard in software needs to be adopted. It is moreover going well with quality
culture that appears due to creation and maintenance of certain standards with
responsibility.

Quality Management Activities :

. Quality Assurance : It is related to establishing organizational quality
standards and procedures.

Software Engineering

98

. Quality Planning : This will adopt and select applicable quality standards
and procedures for particular software project.

. Quality Control : This will encompass quality standards and procedures
that are followed at the development time by development team.

7.2 Software Quality :

In software, quality is related to different variables that depend on
external and internal quality factors. In case of external quality, it shows that
the user experiences come in consideration in terms of running and handling
software matters, while internal quality concern with designing of software by
use of codes which appears to be at backhand and is not visible to end—user.
It is noted that external quality is main aspect to the user, while internal quality
is basically for software developer.

Software quality appears as a result from use and working of end user.
It is noted that software quality cannot be reactive action to external defects.
The quality in software is related with working and development right from
scratch using certain design and development principles and methodologies
which has to focus on three prime factors :

. Testability
. Coverage
. Flexibility

First table shows criteria to be followed during External Quality, while
Second table shows criteria to be followed during internal quality.

User Developer Measurable
External Qualities
Feature X Yes
Speed X X Yes
Space X X Yes
Network Usage X X Yes
Stability X X Yes
Robustness X X Somewhat
Ease—of—Use X X Subjective
Determinism X X Yes
Back—Compatibility X Yes
Security X Difficult
Power Consumption X Difficult

[External Qualities]

User Developer Measurable
Internal Qualities
Test Coverage X Yes
Testability X Hard
Portability X Somewhat
Thread—Safeness X Hard
Conciseness X Somewhat
Maintainability X Hard
Documentation X Subjective
Legibility X Subjective
Scalability X Somewhat

[Internal Qualities]

It is seen that many quality criteria are objective that can be measured
accordingly, while some quality criteria are subjective that are obtained with
more arbitrary measurements. We see that quality in software means that a
product should meet all necessary requirements which can be :

v' Problem for software systems

v Shows discrepancy among customer quality and software developer
requirements

v Difficult to specify in a definite way
v Incomplete and inconsistent

It seems that quality management is not simply related with lowering
defects but also with several other features and qualities. There are certain
Quality Standards which should be kept in mind during development :

v Product standards with features using components related to style of
program or skills.

v Process standards with features highlighting process implementation

AN

Encompassing best practices to avoid previous mistakes

v Designing as per organizational priorities with interference of new team
members

With this we see that there is certain standard which have to be adopted
and followed in order to keep the quality standard high in software which are :

Functional suitability
Reliability
Operability

Quality performance
Security
Compatibility
Maintainability

AN N N N N Y N N

Transferability

Software Quality
Management

929

Software Engineering

100

In a quality model, there appears following characteristics features such

as
Effectiveness

v' Efficiency

v’ Satisfaction

v’ Safety

v' Usability

The table below shows the responsibility of Management related to
quality.

Management Responsibility Quality System

Control of non—conforming products Design Control

Handling, Storage, Packaging and Delivery | Purchasing

Product Identification and
Traceability

Purchaser—Supplied Products

Process Control Inspection and Testing

Inspection and Test Equipment Inspection and Test Status

Control Review Corrective Action

Document Control Quality Records

Internal Quality Audits Training

Servicing Statistical Techniques

[Management responsibility regarding standard]

O Check Your Progress — 1 :
1. Internal qualities are linked with :

a. Software b. Coding c. Programming d. Development

7.3 Verification & Validation (V & V) :

Verification and Validation is a methodology that will find and assess
correctness and standard of quality in software all the way in software life
cycle. This methodology focuses on ensuring required parameters to be adopted
which software should meet that lead to correct objectives and helps in
managing risk.

Verification is a process of finding the development phase work products
of software development lifecycle so as to check whether the verification is
done in right track at time of creating final product. Validation on the other
hand is also a process which finds out whether the software is meeting the
required business needs during the final product.

Such method is good which when initiated at the time of acquisition
process and all the way in life cycle software development. In this, the level
is a range of values which shows :

v' Complexity in software
v' Criticality
v Risk

Level of safety Software Quality
Level of security Management
Required performance

Reliability

AN N N NN

Project unique characteristics

This methodology makes use of following techniques in order to verify
software at the time of development process :

v' Peer Reviews

v Documentation inspections

v Requirements/design/code reading
v' Test witnessing

v' Installation audits

It is noted that both Verification and Validation tasks is different during
the development lifecycle phase. Verification and validation are done in every
phase of lifecycle such as :

In Planning :
v Contract Verification

v Finding the Concept document

<

Working with risk analysis
In Requirement :

Finding software needs
Analyze and locate interfaces

Framing of test plans in system

N NN

Framing of Acceptance test plan

In Design :

<

Finding design for software

<\

Analyze User Interface

Framing of Integrated test plan :

<

Framing of Component test plan

<

Framing of test design
In Implementation :
Finding source code
Finding of documents
Framing of test cases

Finding the test procedure

NN NN

Finalization of Components test cases
In Testing :

Working on systems test case
Finding of acceptance test case

Updating traceability metrics

N NN

Framing of Risk analysis

101

Software Engineering

102

In Installation and checkout :

v Auditing the installation and configuration

AN

Implement the final test installation from candidate
v Framing of final test report

In Operation :

<

Finding new constraint

\

Evaluating change proposed
In Maintenance :

Finding of anomalies
Estimation of migration
Estimation of retrial features

Estimation of proposed change

AN NN

Finding production issues

Benefits of Verification and Validation :

<

With this method, we can locate leads much before in order to create
better solution instead of fixing them.

v Finding the solution using correct problem against software needs.

v Shows objective evidence of software and system fulfillment in terms
of quality standards.

v Shows process improvements along with feedback on quality of
development process and products

O Check Your Progress — 2 :
1. Verification is related to :
a. Finished Product
b. Final Delivery of Product
c. In between Product Development

. None of Above

o

7.4 Quality Control :

Quality Control in Software carries various activities which ensure quality
in software products. The idea behind quality control in software is to check
whether the project follows its standards processes and procedures. Also, it
checks for software project that produces required deliverable products which
can be internal and external.

Every Organisation defines its own internal quality standards, processes
and procedures and develops the product based on certain criteria and parameters.
The process of assurance from stakeholders presents standards and procedures
that are normally concern in terms of quality control including verification.

. Design

. Code

. Deployment Plan
. Test Plan

. Test Cases

. Unit Testing

. Integration Testing
. System Testing

. Acceptance Testing

Software Quality Control is restricted to Review or testing phases of
Software Development Life Cycle. Its main idea is to make sure that the
products should meet particular specifications or requirements.

It is seen that process of Software Quality Control is managed by
Software Quality Assurance which is oriented towards prevention while Software
Quality Control is oriented towards detection. It is a wide practice which is
applied for assuring quality of products or services where constant effort
enhances the quality practices in an organization that lead to regular improvements
and enhancement of product. In many Organisations, process programmers
allocate for enhancing processes and procedures along with quality assurance
team.

Moreover, we can see that Software Quality Control is concern with :

. Measures and controls of quality in software product being developed.
. Routine checking of quality to make sure about errors in software.

. Identification and addressing of product errors and defects.

. Development of final product without intervention of errors.

. Testing activities related to product.

O Check Your Progress — 3 :
1. Software Quality is related to :
a. Following Instruction b. Software Standard

c. Software Parameters d. All of Above

7.5 Inspection :

Software inspection or code inspection relates to design and documentation
along with source code. Inspection is a kind of reviews or a strategy which
is adopted during static testing phase of software.

Informal

Walkthrough
Technical Review

Inspection

[Testing Phases]

Inspection is done by trained staff which does peer examination of
product. It is formal and worked using checklists and rules. It serves as review

Software Quality
Management

103

Software Engineering

104

process that uses entry and exit features and rules. Inspection requires pre—
meeting preparation which prepares a report which is shared with developer
for correct actions.

Code inspections are good test method that takes more time and could
locate 80% of contained faults. A proper code inspection takes days and require
tools to browse symbols so as to find places where required. Proper inspections
can be applied for almost all work products in the software life cycle. Initially
it requires time but statistical evaluations show whole life cycle of software
development which save resources and improves quality of product.

There are certain elements involved in inspection process :

. Explicit entry

. Exit criteria

. Individual preparation by inspectors

. Roles of moderator, reader, producer, and recorder
. Training for moderators

. Use of checklist

. Limitation to identify and classify defects
. Needs successful completion of rework for proper inspection
. Formal data collection, reporting, and analysis

The idea behind inspection is to :

. Helps in improving quality of document under inspection
. Remove defects efficiently
. Improve product quality
. Create understanding by exchanging information
. Prevent occurrence of defects
0 Check Your Progress — 4 :
1. Software Inspection could be carried out by :
a. New Joined b. New Developer
c. Trained Quality Checker d. None of Above

7.6 Walkthrough and Review :

Review is concern with work product that examines the defects by an
individual who may not be a developer. Work Product is important deliverable
which is designed at the time of requirements, designing, coding or testing
phase of software development. It is seen that reviews seems to be the best
ways in order to make sure the quality requirements which gives maximum
return on investment. It helps in finding defects which make sure about product
compliance to specifications, standards or regulations.

Walkthrough is a procedure where developer describes product and look
on the comments send from the end user. This program explains the user about
the product information rather than entering into product rectification part. It
is normally done at the time of testing which can be :

. Formal process

. Led by developer

. Process of guiding participants by document as per the process

. Required for non—software professional who have no idea about process
of software development.

The basic idea behind walkthrough is to :

. Show documents inside and outside software discipline to have information
on topics under documentation.

. Explain or transfer knowledge by evaluating contents of document
. Achieve understanding and taking feedback.

. Examine and discuss validity of proposed solutions

0 Check Your Progress — 5 :
1. Walkthrough is a procedure that explain about :

a. Product b. Process c. Issues d. All of Above

7.7 Why Standards ?

It is not that there could be issues related to quality and process while
developing software product. For formalization of product, many software
companies are nowadays coming with their own standards that carry effective
key features which are favorable for effective quality management. Standards
could be international, national, organizational or related to any project.

It is seen that product standards explains about the characteristics where
every components exhibit a common programming style. Whereas process
standards define how the software process should be performed.

There are many reasons for Quality Standards in Software :

. Ensuring best practice by avoiding repetitive mistakes

. Involving certain quality assurance checking standard compliance

. Makes new join to understand better about the quality produced and
standards

Quality Standards involves :

. Practitioners which could be an Engineer to understand the rationale of
particular standard

. Reviewing of standards with proper utilization.
. Certain tool which supports quality with less of clerical work.
There are certain attributes related to Quality standards :
Safety Understandability Portability
Security Testability Usability
Reliability Adaptability Reusability
Resilience Modularity Efficiency
Robustness Complexity Learnability

a Check Your Progress — 6 :
1. Standard could be in terms of :

a. Software b. Project c. Plan d. All of Above

Software Quality
Management

105

Software Engineering

106

7.8 Software Quality Metrics or Parameters :

Measurement allows an organization in improving the process, planning,
tracking and controlling of software projects and thereby proper assessing of
quality. It is a measure of particular attributes of process, project and product
which is used to calculate software metrics. Metrics are analyzed and provides
a dashboard to management on overall progress of process, project and product.
Generally, the validation of metrics is regular phenomena where spanning of
multiple projects takes place. Type of metrics used normally account for
checking of quality requirements that can be achieved during software
development process. In quality assurance process, metric is required to revalidate
all time when applied.

Software Metrics is of classes :

Process Metrics :

. It measures the efficiency of processes

. It stretches on quality achieved as a result of managed process
. It is a reusable data mostly applied for prediction

. It is a form of defect removal efficiency

Project Metrics :
. It will assess the status of projects

. It helps in tracking of risk

. It finds the problem areas
. It balances the work flow
. Examples are :

. Effort/time per SE task

. Defects detected per review hour

. Scheduled vs. actual milestone dates

. Distribution of effort on SE tasks
Product Metrics :

. It will measure predefined product attributes

. It stresses on quality of deliverables

. Examples are : Code or design complexity, Program size, Defect count,
Reliability

It is found that software quality metrics is a subset of software metrics
which stresses on quality of product, process and project. It is closely linked
with process and product metrics as compared to project metrics. It carries
project parameters like number of developers with skill levels, schedule, size,
and affecting product quality of an Organisation. It is broadly divided into :

. End—product quality metrics
. In—process quality metrics

Quality metrics is used at the time of software design and for non—
embedded systems. In case of embedded system, community is not ready to
use certain new software technique which tends to lose major evolution of
software design methodologies. Using quality metrics in software product at

the time of software designing will help in evaluating several levels which
can be a solution confirming all requirements with better architecture, good
reusing conditions and flexibility.

It is found that Hewlett—Packard on using Software Quality Metrics

follows five quality parameters which are in terms of :

Functionality
Usability
Reliability
Performance
Serviceability

It is noted that for many most software quality assurance systems,

common software metrics which checks for improvement relates to :

Source lines of code

Cyclical complexity of code

Function point analysis

Bugs per line of code

Code coverage

Number of classes and interfaces
Cohesion and coupling among modules
Common software metrics include :
Bugs per line of code

Code coverage

Cohesion

Coupling

Cyclomatic complexity

Function point analysis

Number of classes and interfaces

Number of lines of customer requirements
Order of growth

Source lines of code

Robert Cecil Martin's software package metrics

Software Quality Metrics focus on the process, project and product. By

analyzing the metrics, the organization, the organization can take corrective
action to fix those areas in the process, project or product which are the cause
of the software defects.

a
1.

Check Your Progress — 7 :

Standard could be in terms of :

a. Distribution of effort b. Design Complexity
c. Program Size d. Reliability

Software Quality
Management

107

Software Engineering

108

7.9 Five levels of Capability Maturity Model (CMM) :

Capability Maturity Model also CMM is a model of process maturity
for software development. It is an evolutionary model of progress of company's
abilities in order to frame software. In software Development Company there
are standards for processes of development, testing and application which work
with certain rules for appearance of final program code, components, interfaces,
etc.

The CMM model describes five—level path showing organized and
systematically arranged processes. It was framed by Software Engineering
Institute which happens to be an R&D center of U.S. Department of Defense.

This model is similar to ISO 9001 with one ISO 9000 series of standards
that was specified by International Organization for Standardization. ISO 9000
standards show prominent quality system for manufacturing and service industries
and deals with development and maintenance of software. As seen, ISO 9001
specifies least acceptable quality level for software processes, while CMM uses
framework for continuous process improvement and is more functional as
compared to ISO standard.

5 -Optimizing [0

PO R mEEnner and

R R R e e |
| =4
5 Ep e Frn ety L - ey prnss seey S ihe s et
Procmpen gew rhgrpieeiged for ypeofic presscty snd

2 = R’Epﬂ'atﬂble E R ELLE I 4% §L T DR b

Frezezarmn | i tetde . moadt i pasrifrnliared e Pt e

[Level of CMM Model]
The CMM model defines five levels of organizational maturity :

Initial Level : This is the basic level which compares with next levels.
It a company the initial level conditions are not fit for any development of
good software; hence the outcome depends on higher authorities or on manager's
approach and programmers' experience. So, this level depends on higher
authorities.

Repeatable Level : It is the next level where project management
technologies take part which includes project planning and management. It
results in experience and standards of particular employees for producing
software's with exercise on special quality management.

Defined Level : This level employs in designing and framing of standards
used at the processing of software development and maintenance. These are
documented along with a standard that uses effective technologies. It comprises
of superior quality management department which creates building and
maintenance standards which can only be possible with advanced training in
order to achieve better quality. In this level, degree of organizational dependence
on qualities of developer decreases with no possibility of rolling back of process
to previous level in certain critical situations.

Managed Level : This level carries quantitative indices as software and
process which originates in an organization. In this, high project management
is obtained with the result of decrease of digression in various project indices.

On the other hand, good variations in process efficiency results in different
from random variations in mastered areas.

Optimizing Level : This level is engaged with improvement related to
procedures in existing processes along with evaluation of efficiency for newly
innovative technologies. The idea behind this level in an organisation is to
permanently improve the existing processes that anticipate possible errors and
defects. With this, there result decrease in the costs of software development
by way of using and developing previously used components.

0 Check Your Progress — 8 :

1. Which among following levels depends on Higher Authority Decisions ?
a. Initial Level b. Repeatable Level
c. Defined Level d. Managed Level

7.10 Let Us Sum Up :

In this unit we have learnt that software quality is related to various
variables which rely on external and internal quality factors. The external quality
is about user experiences in terms of running and handling software matters,
while internal quality is designing of software using codes.

The idea about verification and validation involves methods which finds
and assess correctness and quality standards in software in software life cycle.
Quality Control in Software relates to activities that make sure about quality
in software products which checks for project standardize processes and
procedures.

Software inspection or code inspection relates to design and documentation
along with source code. Review is work product that examines defects by an
individual while walkthrough is a procedure where developer describes product
and comment on end user comments. Capability Maturity Model is a process
maturity for software development which shows progress of company's abilities
to frame software.

7.11 Answers for Check Your Progress :

a Check Your Progress 1 :

1. (b)

a Check Your Progress 2 :
1. (¢)

a Check Your Progress 3 :
1. (d)

a Check Your Progress 4 :
1. (¢)

a Check Your Progress 5 :
1. (a)

a Check Your Progress 6 :
1. (d)

Software Quality
Management

109

Software Engineering a Check Your Progress 7 :
1. (a)
a Check Your Progress 8 :
1. (a)
7.12 Glossary :

1. Software Quality — Activities that depends on external and internal
quality factors.

2. External Quality — Parameters on which user experiences depends in
terms of running and handling software.

3. Internal Quality — Parameters concern with designing of software using
codes.

4. Verification — To cross check or very document before start of software
project or development.

5. Validation — It is methods that locates and assess correctness and quality
standards in SDA cycle.

6. Quality Control — It is measure related to quality standard of software.

7.13 Assignment :

1. Explain about verification and validation in terms of software ?

7.14 Activities :
L. Explain about CMM model.

7.15 Case Study :

Discuss various standards adopted by companies to maintain quality in
software ?

7.16 Further Reading :

1. McConnell's, Software Project Survival, 2011
2. Braude, Formal Inspections in Software Quality Assurance, 1998

3. Beck, A.C.; Mattos, J.C.B.; Wagner, F.R.; Carro, L. CACOPS : General
Purpose Configurable Power Simulator, 2003.

4. Chatzigeorgiou, A.; Stephanides, G. Evaluating Performance of Procedural
Programming Software Technologies, 2002.

110

SOFTWARE TESTING
TECHNIQUE

8.0 Learning Objectives
8.1 Introduction
8.2 Software Validation & Verification
8.3 Manual VS Automated Testing
8.4 Testing Approaches
8.4.1 Black—Box Testing
8.4.2 White-Box Testing
8.5 Testing Levels
8.5.1 Unit Testing
8.5.2 Integration Testing
8.5.3 System Testing
8.5.4 Acceptance Testing
8.5.5 Regression Testing
8.6 Function Test Plan
8.7 Process of Testing
8.8 Testing Documentation
8.8.1 Before Testing
8.8.2 While Being Tested
8.8.3 After Testing
8.9 Grey Box Testing
8.10 Non-Functional Testing
8.11 Testing Artifacts
8.12 Let Us Sum Up
8.13 Answers for Check Your Progress
8.14 Glossary
8.15 Assignment
8.16 Activities
8.17 Case Study
8.18 Further Readings
8.0 Learning Objectives :

After learning this unit, you will be able to understand :
Software Validation & Verification
Testing Approaches

Testing Level
111

Software Engineering

112

. Function Test Plan
. Process of Testing
. Testing Documentation
. Non—Functional Testing

. Testing Artifacts

8.1 Introduction :

Software testing is the procedure of assessment a software product to
detect differences between given input and expected output. Testing assesses
the quality of the product. Software testing is a process that should be done
during the development process.

In other words, software testing is a verification and validation process.
There are two fundamentals of software testing which are as follows :

. Black box testing
. White box testing

. Black box Testing : Black box testing is a testing technique that ignores
the internal mechanism of the system and focuses on the output generated
against any input and execution of the system. It is also called functional
testing.

. White box Testing : White box testing is a testing technique that takes
into account the internal mechanism of a system. It is also called structural
testing and glass box testing.

8.2 Software Validation & Verification :

Software testing includes Validation and Verification which are as follows :
. Software Validation :

Validation refers to process where it is going to check about specified
requirement of user is fulfill or not. It is carried out at the end of the SDLC.
If developed software fulfill user's requirement then it is validated.

v Validation ensures that software is as per the user requirements.

v Validation answers the question — "Are we developing the product which
attempts all that user needs from this software ?".

v Validation underlines on user requirements.
. Software Verification :

Verification is the procedure of confirming that the software is fulfilling
the business requirement and is developed by following the specification and
methodologies.

v Verification ensures the software being developed is as per the design
specifications.

v' Verification answers the question— "Are we developing this product by
firmly following all design specifications ?"

v' Verifications focus on the design and system specifications.

There are some targets of the test which are as follows :

. Errors — It is referring to coding errors made by developers. As well
there is a difference in output of software and required output, is known
as an error.

. Fault — When there is an error exist fault occurs. A fault, also called

as a bug, is a result of an error which can cause system to fail.

. Failure — failure is refers to the inability of the system to perform the
required task. Failure occurs when fault exists in the system.

a Check Your Progress — 1 :
1. ___ ensures that software is as per the user requirements.

a. Verification b. Validation c. Both a and b d. None of Above
2. — ensures that software is as per the user requirements.

a. Verification b. Validation c. Both a and b d. None of Above

3. — isrefers to the inability of the system to perform the required
task.

a. Errors b. Fault c. Failure d. All of Above

8.3 Manual VS Automated Testing :

Testing can be performed either manually or automated which are as
follows :

. Manual — In manual testing software tester makes test cases for various
segments and level of code, executes the test cases and provides the
results to the manager. It is time consuming process as well tester need
to check whether proper test cases are used or not.

. Automated — In automated testing, testing procedure is done with the
help of automated testing tools. Automated test tools overcome the
limitations of manual testing.

Simple testing like webpage can be opened in Internet explorer or not
this can be done with manual testing very easily. But web—server can take
the load or not then it is impossible to test manually. There are various software
and hardware tools are available which helps tester in checking load testing,
stress testing, regression testing.

a Check Your Progress — 2 :
1. Write a note on Manual VS Automated Testing.

8.4 Testing Approaches :

There are two approaches with which tests can be conducted which are
as follows :

1. Functionality testing

2. Implementation testing

Software Testing
Technique

113

Software Engineering

114

In functionality testing, functionality is tested but implementation in not
considering it is known as black—box testing. On the other hand, not only
functionality is tested but implementation is also analyzed it is known as white—
box testing. For a perfect testing complete tests are performed where every
possible value of input and output is tested.

8.4.1 Black-Box Testing :

Black box testing involves looking at the specifications and does not
require examining the code of a program. Black box testing is done from
customer's viewpoint. Black box testing is the testing where inputs and outputs
are defined but process is not defined.

Black box test is convenient to administer because they use the complete
finished product and do not require any knowledge of its construction.

. Why Black Box Testing :

Black box testing helps in the overall functionality verification of the
system under test.

0 Black box testing is done based on requirements : It helps in identifying
any incomplete, inconsistent requirement as well as any issues involved
when the system is tested as a complete entity.

0 Black box testing addresses the stated requirements as well as implied
requirements : Not all requirements are stated clearly, but are considered
implicit. For example, inclusion of dates, page header, and footer may
not be clearly stated in the report generation requirements specification.

0 Black box testing includes the end user viewpoint : Since we want
to test the behavior of a product from an external viewpoint, end—user
views are an important part of black box testing.

0 Black box testing handles valid and invalid inputs : It is a natural
for users to make errors while using a product. Hence, it is not sufficient
for black box testing to simply handle valid inputs. Testing from end
user view includes testing for these error or invalid conditions. This
ensures that product behaves as expected in a valid situation and does
not hang or crush when provided with an invalid input. These are called
positive or negative test cases.

. When to do Black Box Testing

v Black box testing activities require involvement of the testing team from
the beginning of the software project life cycle, regardless of the software
development life cycle model chosen for the project.

v' Testers can get involved right from the requirements gathering and
analysis phase for the system under test.

v Test scenarios and test data are prepared during the test construction phase
of the test life cycle, when the software is in the design phase.

v Once the code is ready and delivered for testing, test execution can be
done.

v All the test scenarios developed during the construction phase are executed.

8.4.2 White-Box Testing :

White box testing is a way of testing the external functionality of the
code by examining and the testing the program code that realizes the external
functionality. This is also known as clear box, or glass box or open box testing.

White box testing is the testing where process is defined but input and
output are not defined. White box testing considers the code, structure, flow
of internal design of program. A number of defects come about because of
incorrect translation of requirements and design into program code.

Some other defects are created by programming errors and programming
language characteristics.

. Static Testing :

Static testing is type of testing which requires only the source code of
the product, not the binaries or executables. Static tasting does not involve
executing programs on computers but involves select people going through the
code to find out whether

v The code works according to the functional requirement;

v The code has been written in accordance with the design development
in the project life cycle;

v' The code for any functionality has been missed out;
v The code handles errors properly.
0 Static testing by Humans :

These methods rely on the principle of humans reading the program code
to detect errors rather than computer executing the code to find errors.

This process has several advantages.
v Sometimes humans can find errors that computers cannot.

v By making multiple humans read and evaluate the program, we can get
multiple views and therefore have more problems identified honest than
a computer could.

v A human evaluation of the code can compare it against the specifications
or design and thus ensure that it does what is intended to do.

v A human evaluation can detect many problems at one go and can even
try to identify the root causes of the problems.

There are multiple methods to achieve static testing by humans which
are as follows :

1. Desk checking of the code : Desk checking normally done manually
by the author of the code, desk checking is a method to verify the portions
of the code for correctness. Such verification is done by comparing the
code with the design or specifications to make sure that the code does
what it is supposed to do and effectively.

2. Code walkthrough : This method and formal inspection are group—
oriented methods. Walkthroughs are less formal than inspections. The line
drawn in formalism between walkthrough and inspections is very thin
and varies from organization to organization.

3. Code review / Code inspection : Code review — also called Fagan
Inspection — is a method, normally with a high degree of formalism.

Software Testing
Technique

115

Software Engineering

116

The focus of this method is to detect all faults, violations, and other
side—effects.

a Check Your Progress — 3 :

L. s the testing where inputs and outputs are defined but process
is not defined.

a. White Box Testing b. Black Box Testing
c. Unit Testing d. System Testing
2. __ is the testing where process is defined but input and output
are not defined.
a. White Box Testing b. Black Box Testing
c. Unit Testing d. System Testing
3. Explain white box testing in detail.

8.5 Testing Levels :

As the software development is carry on parallelly testing procedure is
also performed so the current phase is tested, validated and verified before
the move to the next phase, so testing is performed at various levels of SDLC.

To ensure that there are no any hidden bugs in the software testing is
perform separately. Software is tested on various levels which are as follows :

8.5.1 Unit Testing

This initial part of structural testing corresponds to some quick checks
that a developer performs before exposing the code to more extensive code
coverage testing or code complexity testing.

This can happen by several methods which are as follows :

1. Initially, the developers can perform certain clear tests, knowing the input
variables and the corresponding expected output variables. This can be
a quick test that checks out any clear mistakes.

2. For modules with complex logic or conditions, the developer can build
a "debug version" of the product by putting intermediate print statement
and making sure the program is passing through the right loops and
iterations the right number of times.

3. Another approach to do the initial test is to run the product under a
debugger or an Integrated Development Environment (IDE). These tools
allow single stepping of instructions, setting break points at any function
or instruction, and viewing the various system parameters or program
variable values.

8.5.2 Integration Testing :

A system is made up of multiple components or modules that can
comprise hardware and software. Integration is defined as the set of interactions

among components. Testing the interaction between the modules and interaction
with other systems externally is called integration testing.

Integration testing starts when two of the product components are available
and end when all components' interfaces have been tested. The final round
of integration involving all components is called Final Integration Testing (FIT),
or system integration.

. Integration Testing as A Type of Testing :

Integration testing means testing of interfaces. When we talk about
interfaces, there are two types of interfaces that have to be kept in mind for
proper integration testing. They are internal interfaces and exported or external
interfaces.

Internal interfaces are those that provide communication across two
modules within a project or product, internal to the product, and not exposed
to the customer or external developers.

Exported interfaces are those that are visible outside the product to third
party developers and solution providers.

There are several methods of integration testing which are as follows :

1. Top—Down Integration : Integration testing involves testing the topmost
component interface with other components in same order as you navigate
from top to bottom, till you cover all the components. In Top to down
approach, testing takes place from top to down following the control flow
of the software system.

Top Down

[
Module
2

—]—'i

Module |
4

2. Bottom-Up Integration : Bottom—up integration is just opposite of top—
down integration, where the components for a new product development
become available in reverse order, starting from the bottom. In the
bottom—up strategy, each module at lower levels is tested with higher
modules until all modules are tested. It takes help of Drivers for testing.

Module
6

Bottom
o

Software Testing
Technique

117

Software Engineering

118

8.5.3 System Testing :

System testing is defined as a testing phase conducted on the whole
integrated system, to assess the system arrangement with its specified
requirements. It is done after unit, component, and integration testing phases.

A system is complete set of integrated components that together deliver
product functionality and features. A system can also be defined as a set of
hardware, software and other parts that together provide product features and
solutions.

System testing is the only phase of testing which tests the both functional
and non—functional aspects of the product. On the functional side, system testing
focuses on real-life customer usage of the product and solutions. On the non—
functional side, system brings in different testing types also called quality
factors, some of which are as follows :

1. Performance/Load testing : To evaluate the time taken or response time
of the system to perform its required functions in comparison with
different versions of same product or a different competitive product is
called performance testing.

2. Scalability testing : A testing that requires huge amount of resource to
find out the maximum capability of the system parameters is called
scalability testing.

3. Reliability testing : To evaluate the ability of the system to perform
its function repeatedly for a specified period of time is called reliability
testing.

4. Stress testing : Evaluating a system beyond the limits of the specified
requirement to ensure the system does not break down unexpectedly is
called stress testing.

5. Interoperability testing : This testing is done to ensure that two or more
products can exchange information, use the information, and work closely.

6. Localization testing : Testing conducted to verify that the localized
product works in different languages is called localization testing.

0 Why is System Testing Done ?

An independent test team normally does system testing. The behavior
of the complete product is verified during system testing. Tests that refer to
multiple modules, programs, and functionality are included in system testing.

System testing helps in identifying as many defects as possible before
the customer finds them in deployment. System testing is conducted with an
objective to find product level defects and in building confidence before the
product is released to the customer.

To summarize, system testing is done for the following reasons.
v Provide independent viewpoint in testing.
v Bring in customer perspective in testing.

v Provide a "fresh pair of eyes" to discover defects not found earlier by
testing.

v Test product behavior in a complete and realistic environment.

v Test both functional and non—functional aspects of the product.

v" Build confidence in the product.
v' Analyze and reduce the risk of releasing the product.

v Ensure all requirements are met and ready the product for acceptance
testing.

8.5.4 Acceptance Testing :

Acceptance testing is a phase after system testing that is normally done
by the customers. A customer defines a set of test cases that will be executed
to qualify and accept the product. These test cases are executed by customers
themselves to quickly judge the quality of product before deciding to buy the
product. Acceptance test cases failing in a customer site may cause the product
to be rejected and may mean financial loss or may mean rework or product
involving effort and time.

0 Acceptance Criteria :
There are basically three acceptance criteria which are as follows :
1. Product Acceptance :

During the requirements phase, each requirement is associated with
acceptance criteria. It is possible that one or more requirements may be mapped
to form acceptance criteria. Whenever there are changes to requirements, the
acceptance criteria are accordingly modified and maintained. Testing for
faithfulness to any specific legal or contractual terms is included in the
acceptance criteria.

2. Procedure Acceptance :

Acceptance criteria can be defined on the procedures followed for delivery.
An example of procedure acceptance could be documentation and release media.

Some examples of acceptance criteria of this nature are as follows :

v' User, administration and troubleshooting documentation should be part
of the release.

v" Along with binary code, the source code of the product with build script
to be delivered in a CD.

v A minimum of 20 employees are trained on the product usage prior to
deployment.

— These procedural acceptance criteria are verified/tested as part of acceptance
testing.

3. Service Level Agreements :

Service level agreements can become part of acceptance criteria and are
generally part of a contract signed by the customer and product organization.
The important contract items are taken and verified as part of acceptance testing.

For example, time limits to resolve those defects can be mentioned part
of SLA such as

v' All major defects that come up during first three months of deployment
need to be fixed free of cost;

v Downtime of the implemented system should be less than 0.1%;

v' All major defects are to be fixed within 48 hours of reporting.

Software Testing
Technique

119

Software Engineering

120

8.5.5 Regression Testing :
. What is Regression Testing ?

Regression testing is a type of testing which ensures that a recent code
change has not harmfully affected current features of the software. In this testing
executed test cases re—executed full or partial to ensure existing functionalities
work proper.

. Types of Regression Testing :
There are two types of regression testing which are as follows :
1. Regular Regression Testing :

A regular regression testing is done between test cycles to ensure that
the defect fixes that are done and the functionality that were working with
the earlier test cycle continue to work. A regular regression testing is performed
to verify that the build has NOT broken any other parts of the application
by the recent code changes for defect fixing or for enhancement.

2. Final Regression Testing :

A final regression testing is done to validate the final build before release.
A "final regression testing" is performed to validate the build that hasn't changed
for a period of time. This build is deployed or shipped to customers.

. When to do Regression Testing ?

Whenever changes happen to software, regression testing is done to
ensure that these do no harmfully affect the existing functionality. Regression
testing is done between test cycles to find out if the software delivered is as
good as or better than the builds received in the past. As testing involves large
number of resources, a quick testing is needed to assess the quality of build
and changes to software.

It is necessary to perform regression testing when :
v A reasonable amount of initial testing is already carried out.
v A good number of defects have been fixed.
v' Defect fixes that can produce side—effects are taken care of.

Regression testing may also be performed periodically, as a pro—active
measure.

0 Check Your Progress — 4 :

1. Write a detail note on Integration Testing.

2. Write a detail note on System Testing.

3. Explain Acceptance Testing in detail.

4. Write a note on Regression Testing.

8.6 Function Test Plan :

By functional test plan we do not mean with testing of underlying
implementation of application components, but it relates to testing of application
from the customer's angle. It is related with how the application is meeting
business requirements and specifications. In this, a functional test plan is
prepared which serves as dynamic document that must regularly reflect continuous
changing of business requirements. So, even when the document is completed,
it will most likely need to change.

QMR
L

|r % _. Y 4
¢ e Developmant Team
C e

A | S T

i L.u il s
v
i
—
Ligss mviss = l it
N N
'1 ;) _'i_-,';“}'. L b i "'-._‘F__-._{
g 5,
A\, A
i 1 Furutsewund 1ost L]
Rzaiihe

00 il oy

[Structure of Functional Test Plan]

We see that the participants interactions with functional test plan takes
place. The developer or concern owner will create and revise test plan which
will cover :

. Test cases
. Expected results
o Pre and posttest setup

In this, the tester will execute test plan with the use of actions which
is highlighted in every test case and records as per the results in separate

Software Testing
Technique

121

Software Engineering

122

document which serves as duplicate copy of function test plan with actual test
results. The Reviewer compares actual test results with expected results and
calculates whether the test case passed or failed the functional requirements.

The functional test plan consists of following sections :

Update History : In the update history section, there appear lists names,
dates and update descriptions of document.

Document Purpose : It contains list of functions that are being tested
by test plan. It should carry use—case diagram which give different
perspective of functions that are to be examined.

Pre—test Setup : The pre setup section carries instructions where test
cases require persistence state to run through the steps. In this, the
instructions will guide on how to run scripts to generate persistent data
which is stored or created using another application.

Test Cases : It carries list of test cases in which each test case verifies
set of clear—defined functions of use—case. It will check for valid user's
accessibility to the system and also declares that valid users cannot access
system without entering valid password.

1. Functional Test Plan Scope

In Scope Out of Scope

In Scope List functions that are tested. Out of Scope List functions that are not tested.

1. Functional Test Plan Assumptions and Constraints

Functional Test Plan Assumptions

Assumptions List the functional test plan assumptions.

Functional Test Plan Constraints

Constraint List the functional test plan constraints.

1. Functional Test Team Roles & Responsibilities

Name Roles Responsibilities

Name List name of people involved
in functional testing.

Name Add more rows if needed.

nctional Test Entry Criteria

1. F
ID

Criteria

4.1

Entry Criteria factors that must be present to enable the start of the functional test. Example:
Testing environment/ data is available.

1. Functional Test Cases
ID | Test Cases
5.1 | Test Cases Identify the test cases along with expected results.
Example:
Test Procedure:
Login with a corporate user account.
Username: abc
Password: abc
Expected Results:
An error will be displayed for the wrong credentials.

1. Functional Test Results

ID | Test Cases Pass/Fail | Tested | Date
By Tested
6.1 | Test Cases Name the test case. mm/dd/yyyy
Example:
Test Procedure:

Login with a corporate user account.

Username: abc

Password: abc

Expected Results:

An error will be displayed for the wrong credentials.

Test Case Add more rows if needed.

[Layout of Function Test Plan]

The layout of the function test plan is shown in above figure. It is seen
that functional test planning is a process and plan which serves as good way
of communication with members of project team, testers, peers, managers and
stakeholders. Such type of communication will allow test plan to manipulate
project team and influence of project team on test plan mostly in areas of
organization wide testing policies and motivations, test scope, objectives and
testing areas, project and product risks, resource considerations and constraints
along with testability of item under test.

Further the functional test plan will help in managing changes in
information. As the project evolves and situations change, we adapt our plans.
By updating the plan at major milestone helps us to keep testing aligned with
project needs. As we run the tests, we make final adjustments to our plans
based on the results.

0 Check Your Progress — 5 :

1. Write a note on Function Test Plan.

8.7 Process of Testing :

Software testing strategy is a road map which is used and followed by
developing team in order to maintain quality and serves as a bridge between
customer road map which shows steps to be conducted at the time of testing.
The customer road map carries steps that are planned which can be undertaken
and judged in terms of effort and resources. Hence any testing strategy should
use test planning, test case design, test execution and resultant data collection
and evaluation.

Software Testing
Technique

123

Software Engineering

124

The Fundamental Test Process comprises five activities :

. Planning

. Specification
. Execution

. Recording

. Checking for Test Completion
1. Test Planning :

The initial idea is to have a good plan. All good testing is based upon
good test planning. For this, an overall test strategy should be planned along
with project test plan. The Test Planning activity will generate test plan which
is specific to level of testing. Such test level will specifically test plans which
shows how test strategy and project test plan need to be applied to that level
of testing and state any exceptions to them.

2. Test Specification :

In this, the fundamental test process shows activity related to as designing
of test cases with certain techniques which to be followed at the time of
planning. It is noted that for every test case, there should be specific objective
with initial state of software along with input sequence and expected outcome.
In this, specification can be considered as separate tasks :

. Identify test conditions
. Design test cases
. Build test cases

3. Test Execution :

The idea of this is to work with every test case which can be done either
manually or with test execution automation tool. Here the way in which test
cases are executed is significant where most important test cases should get
executed first. Generally, important test cases find serious faults and may also
those that stress on most important parts of system.

4. Recording :

Recording of test is done in parallel with Test Execution. For this, we
need to record versions of software under test along with specification and
for each test case, the outcome is recorded along with test coverage levels.

In this, the current situation should be compared with expected and any
discrepancy found should be noted and logged and further analyzed to establish
position of fault. The fault may lie in the environment set—up or be the result
of using the wrong version of software under test.

5. Checking for Completion :

This will check the records against completion criteria which gets laid
off for test plan. On failing of such criteria requires previous specification stage
in order to specify test cases to meet completion features.

a
L.

Check Your Progress — 6 :

Write a note on Process of Testing.

8.8

Testing Documentation :

8.8.1

Testing documents are prepared at different phases which are as follows :
Before Testing :

Before testing is starts with preparation of test cases, it requires documents

for reference which are as follows :

8.8.2

SRS document — It is a document which define Functional Requirements
of the software.

Test Policy document — This defines how far testing should take place
before releasing the product.

Test Strategy document — It refers to detail characteristics of test team,
responsibility matrix and rights/responsibility of test manager and test
engineer.

Traceability Matrix document — This is SDLC document, which is
related to requirement gathering process. As new requirements come, they
are added to this matrix.

While Being Tested :

The following documents may be required while testing is started and

is being done :

8.8.3

Test Case document — It is referring to list of tests required to be
conducted. It contains Unit test plan, Integration test plan, System test
plan and Acceptance test plan.

Test description — It is referred to detailed description of all test cases
and procedures to execute them.

Test case report — It is referred to document that contains test case report
as a result of the test.

Test logs — It is referred to document contains test logs for every test
case report.

After Testing
The following documents may be generated after testing :

Test summary — It is referred to collective analysis of all test reports
and logs. It summarizes and completes if the software is ready to be
launched. The software is released under version control system if it is
ready to launch.

Software Testing
Technique

125

Software Engineering

126

O Check Your Progress — 7 :

1. Write a note on Testing Documentation.

8.9 Grey Box Testing :

Grey Box Testing is software testing method that results from mixture
of Black Box Testing and White Box Testing methods. It is seen that in case
of Black Box Testing, internal structure of item that gets tested is known to
the tester while in White Box Testing, internal structure in known. The testing
using Grey Box shows that the internal structure is partially known which gives
access to internal data structures and algorithms with the idea to design test
cases with testing at user or black box level.

Since the software program is like semitransparent impression to the
tester, so this type of software testing is known as Grey Box Testing. It is
noted that when codes for two units are studied for designing test cases where
actual tests get carried out with exposed interfaces, then such testing procedure
is called to be Grey Box Testing.

There are certain advantages of Grey Box testing :

v It allows tester to know about the functionality of application along with
its architecture and data flow.

v It lowers the overhead of long drawn functional and non—functional types
of testing cycles.

v' Tt allows the developer to fix errors because of the ability of speeding
up of development cycle with complete rudimentary unit testing.

a Check Your Progress — 8 :
1. What is Grey Box Testing ?
a. Black—Box Testing
b. Acceptance Testing
c. Combination of Black Box and White Box Testing
d. Stress Testing

8.10 Non—Functional Testing :

Non—functional testing in software is related with non—functional
requirements and is mainly designed to find the readiness of system based on
certain criteria that are not included by functional testing. It is seen that non—
functional testing allow to measure and compare testing results of non—functional
attributes of software systems. It can be seen as testing of an application or
system against client's requirement or performance. There are certain examples
of non—functional testing which are :

. Performance

. Security

a
L.

Usability

Reliability and Dependability
Endurance

Localization and Internationalization
Ergonomics

Installation and Configuration
Compatibility and Interoperability
Maintainability and Availability

Non-Functional

[Non—Functional Testing Example]
Check Your Progress — 9 :
What is included in non—function testing ?

a. Performance b. Testing c. Endurance d. All of Above

8.11 Testing Artifacts :

Test Artifacts is a scenario where a product what has developed in various

phases of software testing life cycle being shared with owner/user. Such artifacts
get prepared by software test team which takes final sign off from owner/user
just to make sure that there exists no communication gap among customer and
testing team members. These artifacts help in tracking the changes which occurs
during the testing process.

There are certain deliverable test artifacts such as :

Test Strategy : It is a static document which is written by higher officials
for testing team in order to write objectives of test stages and techniques
which they have used or applied. Such strategies form the basis for
creation of standard document set and explain communication about test
processes.

Test Plan : It is form of document which explains about the scope,
approach, resources and schedule of required test activities. Such type
of document is normally prepared by Test Lead that identifies test items,
features to be tested, testing tasks, resources and necessary risks factors
which could occur in the process. The idea of this plan is share information
to owner/user about the scope, responsibilities, timeline and deliverables
for project under test.

Test Scenario : Test scenario appears to be a small statement which
verifies particular area of application and is prepared after reviewing

Software Testing
Technique

127

Software Engineering

128

functional needs. It is noted that a particular area or module of application
can have one or many scenarios based on complexity.

. Test Case : It is a single set of conditions which a tester follows in
order to check whether the feature or function of software what is created
is as per business requirement or not. The test case can be written by
two ways which help the tester to verify functionalities of object inside
software application.

v" Positive Test Cases are written on system to check the application
behavior on positive test data input.

v' Negative Test Cases are written on system to check the system
behavior on negative test data input.

. Traceability Matrix : This is also a document which is prepared and
maintained in table format that correlates with two documents and shows
relationship that exists among them. It is a part of software testing which
is normally applied to link between detailed requirements and test design
with end product as Requirement Traceability Matrix which checks
whether all present project requirements are covered by designed test
cases or not.

. Test Report : Test report shows the testing results which is defined in
Test Plan. The test report gives information to customers about stability
of current development so that they can redesign or implement immediate
changes depending on the defects.

0 Check Your Progress — 10 :
I. What are the test artifacts ?
a. Test Plan b. Test Strategy c. Test Scenario d. All of Above

8.12 Let Us Sum Up :

In this unit we have learnt that software testing involves evaluation of
software item which will find differences among given input and expected
output. It is seen that testing of software be carried out at beginning of
development that helps in reducing overhead cost and consumes less time in
rework to generate error—free product.

It is noted that functional test plan relates to how application is meeting
business requirements and specifications which is prepared as dynamic document
that reflect continuous changing of business requirements.

It is found that software testing strategy provides a road map for the
software developer, the quality assurance organization, and the customer— a
road map that describes the steps to be conducted as part of testing, when
these steps are planned and then undertaken, and how much effort, time, and
resources will be required.

8.13 Answers for Check Your Progress :

a Check Your Progress 1 :

1. (b) 2. (a) 3. (¢)
a Check Your Progress 2 :

1. (refer 8.3)

a Check Your Progress 3 :

1. (b) 2. (a) 3. (refer 8.4.2)
a Check Your Progress 4 :

1. (refer 8.5.2) 2. (refer 8.5.3)

3. (refer 8.5.4) 4. (refer 8.5.5)

a Check Your Progress 5 :
1. (refer 8.6)

a Check Your Progress 6 :
1. (refer 8.7)

a Check Your Progress 7 :
1. (refer 8.8)
a Check Your Progress 8 :

1. (¢)

a Check Your Progress 9 :
1. (d)

a Check Your Progress 10 :
1. (d)

8.14 Glossary :

1. Software Quality — Activities that depends on external and internal
quality factors.

2. Verification — To cross check or very document before start of software
project or development.

Quality Control — it is measure related to quality standard of software.

4. Testing — It is related to software testing that enables the programmer
to use necessary specification to develop a project.

8.15 Assignment :

1. Write a detailed note on Testing Artifacts.

8.16 Activities :

1. Give detailed analysis of Non—Functional Testing.

8.17 Case Study :

Concept related to Software Testing.

8.18 Further Reading :

1. Braude, Formal Inspections in Software Quality Assurance, 1998

2. Beck, A.C.; Mattos, J.C.B.; Wagner, F.R.; Carro, L. CACOPS : General
Purpose Configurable Power Simulator, 2003.

Software Testing
Technique

129

130

BLOCK SUMMARY :

In this block, we have learnt about the basic of software requirement.
Software requirement play an important role in software development life cycle.
Detail about the basic of software design, software design strategies, software
user interface design, software design complexity and software implementation
which include all criteria of design from basic to advance as design play an

important role.

We discussed about the basic of software quality and idea about different
variables associated with it. the basic of testing of software techniques along
with detailed explanation on Capability Maturity Model. The concept related
to Review and Walkthrough with respect to software configuration management
are well detailed. You will be demonstrated about User acceptance testing and

its standards.

User acceptance testing is final phase of software testing process where
normally software users perform testing of software so as to handle the required
work as per specifications. In software development testing the software and
quality management are important aspects. Performance testing is a non—
functional technique which is done in order to locate the system parameters

which could be related to responsiveness and stability under different workload.

BLOCK ASSIGNMENT :

10.
11.
12.

Short Questions :

Write a note on Requirement Engineering.
Explain Software Design Level.

Write a note on Coupling and Cohesion.
Explain Command Line Interface.

Explain golden rules of User Interface.
Write a note on Software Quality.

Write a note on CMM.

Write a note on Software Validation & Verification.

Explain Integration Testing.

Explain System Testing.

Explain Acceptance Testing with its criteria.
Write a note on Regression Testing.

Write a note on Process of Testing.

Long Questions :

Write a detailed note on Feasibility Study.
Explain Requirement Initiation Technique.
Explain role and attributes of good system Analyst.
Explain Graphical User Interface in detail.
Explain Software Implementation.

Explain Software Quality Metrics and Parameters.
Explain Black Box and White Box Testing.

Explain Function Test plan in detail.

131

< Enrolment No. : | |

1. How many hours did you need for studying the units ?

Unit No. 1 2 3 4

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D I:] I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

Feed back to CYP
Question

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

3. Any other Comments

132

BAOU Dr. Babasaheb Ambedkar BCAR-402

Education Open University Ahmedabad
for All

Software Engineering

BLOCK 3 : SOFTWARE RISK ANALYSIS & MANAGEMENT

UNIT 9 SOFTWARE RISK ANALYSIS

UNIT 10 SOFTWARE RISK MANAGEMENT - I

UNIT 11 SOFTWARE RISK MANAGEMENT - II

SOFTWARE RISK ANALYSIS
& MANAGEMENT

Block Introduction :

Risk is expected in business organization at the time of taking projects. It
is seen that project manager requires to make sure that risks are kept to lower
level. Contingency Planning defines function of Risk Management on certain
project. It is required in order to cater in case when initial level of risk tackling

strategy fails to succeed.

In this block, we will detail about the basic of risk involved in companies
and role of HR professional in minimizing risk. The block will focus on the study
and concept of Software Risk analysis along with software project development
process. You will give an idea on how human resources will minimize risk during

software projects.

In this block, you will make to learn and understand about the basic of
Contingency Planning techniques. The concept related to risk identification and
minimization of risk in SDLC are well explained to you. You will be demonstrated

practically about various phases in which the development occurs.

Block Objectives :

After learning this block, you will be able to understand :
Risk Analysis in Project Management

Detail of Risk Identification

Idea about Qualitative Risk Analysis

Idea about Quantitative Risk Analysis

About Software Risk Management

Basic of Risk Identification

Idea about Analysis and Planning

Features of Contingency Plans

Concept about Human Resource and Risk Management

Generalization of HR Executive and Risk Control

Block Structure :
Unit 9 : Software Risk Analysis
Unit 10 : Software Risk Management — I

Unit 11 : Software Risk Management — I1

Unit

09) SOFTWARE RISK ANALYSIS

9.0 Learning Objectives

9.1 Introduction

9.2 Risk Analysis in Project Management
9.3 Risk Identification

9.4 Qualitative Risk Analysis

9.5 Quantitative Risk Analysis

9.6 Let Us Sum Up

9.7 Answers for Check Your Progress
9.8 Glossary

9.9 Assignment

9.10 Activities

9.11 Case Study

9.12 Further Readings

9.0 Learning Objectives :

After learning this unit, you will be able to understand :
. Risk Analysis in Project Management
. Identification of Risk
. Analysis of Qualitative Risk
. Analysis of Quantitative Risk

9.1 Introduction :

There is two parts of Risk : chance of something going wrong, and the
negative interpretations if it does.

It is hard to identify the risk however, let alone to prepare for and manage.
And, if you are success by an importance that you had not planned for, costs,
time, and reputations could be on the line. Similarly, overestimating or overreacting
to risks can create panic, and do more harm than good.

This makes Risk Analysis an important tool. It can help you to identify
and understand the risks that you could face in your duty. In turn, this helps
you to manage the risks, and reduce their effect on your plans.

a Check Your Progress — 1 :
1. What is Risk ?

133

Software Engineering

134

9.2 Risk Analysis in Project Management :

It is referring to a procedure that helps you to identify and manage
possible problems that could challenge key business creativities or projects.
However, it can also be applied to other projects outside of business, such
as organizing events or even buying a home!

To carry on a Risk Analysis, you must find the possible threats, then
estimate their likely impacts if they were to happen, and finally estimate the
possibility that these threats will arrive.

Risk Analysis can be complex, because you need to draw on detailed
information such as project plans, financial data, security protocols, marketing
forecasts, and other relevant information. However, it is an important planning
tool, and that can save time, money, and reputations.

. When to use Risk Analysis ?
Risk analysis is useful in many situations which are as follows :

v" When you are planning projects, that help you to do in advance and
deactivate possible problems.

v When you are deciding whether or not to move forward with a project.

v When you are improving safety and managing possible risks in the
workplace.

v When you are preparing for events like technology failure, theft, staff
sickness, or natural disasters.

v When you are planning for changes in your environment, like new
competitors coming into the market, or changes to government policy.

. How to use Risk Analysis ?
To carry out a risk analysis, follow these steps :
1. Identify Threats :

The first step in Risk Analysis is to identify the existing and possible
threats. These can come from various different sources. For Example,

v Human — There may be possible risk by human like Illness, death, injury,
or other loss of a main individual.

v' Operational — Interruption to supplies and operations, loss of access to
important resources, or failures in distribution.

v Reputational — There may be loss of customer or employee confidence,
or damage to market reputation.

4 Procedural — Failures of accountability, internal systems, or controls,
or from fraud.

v' Project — Going over budget, taking too long on key tasks, or experiencing
issues with product or service quality.

v Financial — Business failure, stock market fluctuations, interest rate
changes, or non—availability of funding.

v Technical — Due to advances in technology, or from technical failure.

<

Natural — Weather, natural disasters, or disease.

v Political — Changes in tax, public opinion, government policy, or foreign
influence.

v Structural — Dangerous chemicals, poor lighting, falling boxes, or any
situation where staff, products, or technology can be harmed.

To carry out detailed analysis you can use a number of different methods
which are as follows :

v Create a list of threats as above and check any of these threats are
relevant.

v Run through a list such as the one above to see if any of these threats
are relevant.

v Think about the systems, processes, or structures that you use, and analyze
risks to any part of these. What weaknesses can you spot within them ?

v' Ask others who might have different views. If you are leading a team,
ask for input from your people, and consult others in your organization,
or those who have run similar projects.

2. Estimate Risk :

Once you have recognized the threats, you need to calculate both the
probability of these threats being understood, and their possible impact.

One way of doing this is to make estimate of the probability of the event
occurring, and then to multiply this by the amount it will cost you to set things
right if it happens. This gives you a value for the risk :

Risk Value = Probability of Event x Cost of Event

As a simple example, imagine that you've identified a risk that your rent
may increase substantially.

You think that there's an 80 percent chance of this happening within the
next year, because your landlord has recently increased rents for other businesses.
If this happens, it will cost your business an extra 500,000 over the next year.

So, the risk value of the rent increase is :

0.80 (Probability of Event) x 500,000 (Cost of Event) = 400,000 (Risk
Value)

0 Check Your Progress — 2 :
1. The first step in Risk Analysis is to identify the existing and possible

a. Risk b. Treats c. Risk Analysis d. Risk Probability
2. Threats can come from ___ sources.
a. Human b. Financial c. Technical d. All of Above

3. What is Risk Analysis in Project Management ?

Software Risk
Analysis

135

Software Engineering

136

9.3 Risk Identification :

Risk identification is the process of determining risks that could potentially
prevent the program, enterprise, or investment from achieving its objectives.
It includes documenting and communicating the concern.

The objective of risk identification is the early and continuous identification
of events that, if they occur, will have negative impacts on the project's ability
to achieve performance or capability outcome goals. They may come from
within the project or from external sources.

There are multiple sources of risk. For risk identification, the project
team should review the program scope, cost estimates, schedule (to include
evaluation of the critical path), technical maturity, key performance parameters,
performance challenges, stakeholder expectations vs. current plan, external and
internal dependencies, implementation challenges, integration, interoperability,
supportability, supply—chain vulnerabilities, ability to handle threats, cost
deviations, test event expectations, safety, security, and more.

In addition, historical data from similar projects, stakeholder interviews,
and risk lists provide valuable insight into areas for consideration of risk.

Risk identification is an iterative process. As the program progresses,
more information will be gained about the program (e.g., specific design), and
the risk statement will be adjusted to reflect the current understanding. New
risks will be identified as the project progresses through the life cycle.

Risk identification enables businesses to develop plans to minimize
harmful events before they arise. The objective of this step is to identify all
possible risks that could harm company operations, such as lawsuits, theft,
technology breaches, business downturns, or even a Category 5 hurricane.

Safety management professionals must understand that risk identification
is not a one—time process. Instead, the process should be rigorous, thoughtful,
and ongoing.

. Ways to Identify Risks :

There are many ways to identify an organization's risks, however, some
of the more common examples include brainstorming, thinking pessimistically,
and seeking employee feedback.

1. Brainstorming : Risk managers may find that brainstorming the probability
of various catastrophic events with other company stakeholders, such as
managers and certain C—level staff, can help identify new threats.

2. Thinking Negatively : Careers in safety management often entail planning
for the worst while expecting the best. Although doubt isn't often
encouraged in the workplace, taking time to ponder "what is the worst
possible thing that could happen to the company" may be helpful in
identifying risks.

3. Seek Employee Feedback : Upper—level management's perspective of
an organization's risks can be starkly different from the perspective that
employees hold. Employees may encounter new risks in their day—to—
day activities that may not have otherwise been encountered. For example,
insufficient training on a piece of operating equipment may be placing
staff at risk of injury. As such, employees are an invaluable source of
first-hand information.

0 Check Your Progress — 3 :

1. What are the ways to identify risk ?
a. Brainstorming b. Thinking Negatively
c. Seek Employee Feedback d. All of Above

9.4 Qualitative Risk Analysis :

It is referring to the procedure of evaluating the probability of a risk
occurring and the impact it would have on a project if it happened.

. Types of Analysis :

As there is different demand of the project in the market there is various
types of qualitative risk analysis. Employee experience and available resource
are useful into the decision of identifying the project's risk.

There are five types of qualitative risk analysis which are as follows :
1 Probability Environment
2 Bow-Tie Analysis
3. Delphi Method
4 SWIFT Analysis
5 Pareto Principle

1. Probability Environment :

Probability is the standard process of finding risk seriousness. Risk is
often different in size, but it is necessary to take action against risk. It gives
practical method to give priority to the seriousness by considering the occurrence
and compared to the impact of the risk.

By risk priority you will define major things from where risk is defined.
This helps you in identifying how to handle the risk based on its projecting
drivers.

2. Bow-tie Analysis :

Bow-tie analysis starts by considering risk event and it is going to plan
in two directions. On t =he left side all the reasons of possible event are going
to list and on right side all consequences of possible event are going to list.
So, this is the most practical method to identify the risk reasons.

3. Delphi Method :

In Delphi method experts reply to number of rounds of questionnaires
and these responses are combined and shared with the group after each round.

This method is used to identify risk and impact of the risk in risk
management. The experts are asked to form an opinion on how expected the
risk is to occur, and the consequence of its occurrence. These responses are
combined and reviewed by the experts until a solution is achieved.

4. SWIFT Analysis :

SWIFT stands for "Structured What—If Technique", it is a systematic,
team—based method for identifying risk analysis. Teams investigate how changes
from an approved plan, may affect a project through a series of "What if"
considerations.

Software Risk
Analysis

137

Software Engineering

138

5. Pareto Principle :

It is well known as "80/20 Rule", it is helps in defining risk which is
most effective. It is considered as 8020 because 80% is based on initiate
understood success and 20% based on efforts.

Risk managers use Pareto analysis as a tool for fast finding the most
critical 20% of risks that will effectively mitigate 80% of the impact.

The task for risk managers knows how to successfully cut each risk.
Large projects may require multi—attribute increments for business different
priorities like security data, and operational or agreement policies.

But once you get the idea about where to look and what to look at will
help you to improve in on the most important 20%. This offers a crucial leg
up in managing the threats and weaknesses that have the potential to have
the largest impact.

. Qualitative Risk Analysis Process :

When you are starting to identifying the risk at that time you are blank
you have no ideas about how to start to define the risk, so at that time qualitative
risk analysis is best method which is divide into smaller steps which are as
follows :

1. Finding Risks

2. Effect Analysis

3. Risk Handling

4. Review & Monitor
1. Finding Risks :

Finding risk is the possibly most important part of qualitative risk
analysis. If you will not find the risk on time then it becomes extremely
challenging to manage them.

There is a simple trick to find risk, start thinking of the things which
gives undefined effect on the project. Taking in to consideration by clear risk
will help you to solve the risk in more linear way. Risk finding is all about
quantity. So, reach out to as many people as you can to get a wide range
of views.

There are various tools for Risk Identification which are as follows :
Awareness plans

Questionnaires

Interviews

Documentation review

Checklist investigation

SWOT Investigation

L N N N N RN

Effect Analysis :

Once you find the possible risks, the next step is to study the impact
of the risk.

v Distinct the risks into threats and opportunities.

v Using qualitative risk analysis, estimate the impact of each risk on a
scale from 1 to 5 or low/medium/high/extreme.

v' Next, estimate the possibility of each risk occurring, using a similar scale.

4 At the end, take those scores and combine them to create a total risk
ranking.

Easiness is the major benefit of qualitative risk analysis because there
is no statistical model that depends deeply on the quality of the data you use.

3. Risk Handling :

The next phase in the qualitative risk analysis is to apply actions to each
risk. This can be processed in many numbers of ways depending on your
industry or process. A simple example could show five options when it comes
to risk action, but these are by no means final :

A. Accept

B Reasonable
C Exploit

D. Transfer

E Avoid

A. Accept : If a risk has low effect and possibility, or the cost of stopping
it is too high, sometimes it's more cost—effective to accept it.

B. Reasonable : Some risks have a high possibility, means you cannot avoid
it. In order to reduce the impact of a risk when it becomes an issue,
you can select practical way.

C. Exploit : Some risks can be exploited to the benefit of your project.
Having the capacity to identify exploitable risks can be very useful and
highlights the importance of seeking out experienced risk experts who
can spot these chances.

D. Transfer : Risks with financial effects are a common example of risks
that can be transferred to a third party. Insurance is designed to adopt
a risk on your behalf, so you don't suffer as hard an effect if something
goes wrong. Similarly, it is possible to transfer risk via a contract to
a supplier or contractor.

E. Avoid : If you can't reasonable or transfer a risk, and that risk is too
high to accept, the only way is to avoid it. Risks can be avoided by
changing or removing certain possibility objects or changing the method.

Likelihood Planning :

If a risk becomes an issue, you need a plan, which are as follows :
. What to do
. Who come to be informed ?
. Who does what ?

Documenting a possibility plan saves time and money. When you know
what to do in the event of an issue, you can reduce its effect by responding
faster. The nature and detail of your possibility planning will depend on the
nature of the risks themselves.

4. Review & Monitor :

Risk management is never ended, not even after the project has ended.
As the project developments, it is important to keep up to date logs of risk.

Software Risk
Analysis

139

Software Engineering

140

At each phase of the project, risk possibility will vary. Some risks will disappear,
while others might increase in possibility. Studying your risks regularly will
help keep you on top of these changes.

After the project, a full reviewing is carry on which will provide important
data and knowledge for future projects, making the next one more secure and
helping to further your risk maturity.

O Check Your Progress — 4 :

1. The most common types of analysis are
a. Bow-Tie Analysis b. Delphi Technique
c. SWIFT Analysis d. All of Above

2. — respond to several rounds of questionnaires.
a. Delphi Technique b. Swift Analysis
c. Probability d. Pareto Principle

9.5 Quantitative Risk Analysis :

Quantitative risk analysis is a numeric estimate of the overall effect of
risk on the project objectives such as cost and schedule objectives. The results
provide insight into the likelihood of project success and are used to develop
contingency reserves.

. Why Perform Quantitative Risk Analysis ?
. Better Overall Project Risk Analysis

Individual risks are evaluated in the qualitative risk analysis. But the
quantitative analysis allows us to evaluate the overall project risk from the
individual risks plus other sources of risks.

. Better Business Decisions :

Business decisions are rarely made with all the information or data we
desire. For more critical decisions, quantitative risk analysis provides more
objective information and data than the qualitative analysis. Keep in mind :
While the quantitative analysis is more objective, it is still an estimate. Wise
project managers consider other factors in the decision—making process.

. Better Estimates :

A project manager estimated a project's duration at eight months with
a cost of $300,000. The project actually took twelve months and cost $380,000.
What happened ?

The project manager did a Work Breakdown Structure (WBS) and estimated
the work. However, the project manager failed to consider the potential impact
of the risks (good and bad) on the schedule and budget.

. When to Perform Quantitative Risk Analysis :

First, we identify risks. Then we can evaluate the risks qualitatively and
quantitatively. Consider using Quantitative Risk Analysis for :

v Projects that require a Contingency Reserve for the schedule and budget.

v' Large, complex projects that require Go/No Go decisions (the Go/No
Go decision may occur multiple times in a project).

O Check Your Progress — 5 :
1. What is Quantitative Risk Analysis ?
9.6 Let Us Sum Up :

In this unit we have learnt that during the software development Planning

defines function of Risk Management on certain project. We focused on the
study and concept of Software Risk analysis along with software project
development process. We have also seen about idea about the qualitative and
quantitative risk analysis.

9.7

Answers for Check Your Progress :

a

Check Your Progress 1 :
1. (refer 9.1)

a Check Your Progress 2 :

1. (b) 2. (d) 3. (refer 9.2)
Q Check Your Progress 3 :
1. (d)

a Check Your Progress 4 :
1. (d) 2. (a)

a Check Your Progress S :
1. (refer 9.5)

9.8 Glossary :

1. Risk : Risk is made up of two parts : the probability of something going
wrong, and the negative consequences if it does.

2. Risk Analysis : It is referring to a procedure that helps you to identify
and manage possible problems that could challenge key business creativities
or projects.

3. Risk Identification : Risk identification is the process of determining
risks that could potentially prevent the program, enterprise, or investment
from achieving its objectives.

4. Qualitative Risk Analysis : It is referring to the procedure of evaluating
the probability of a risk occurring and the impact it would have on a
project if it happened.

5. Quantitative Risk Analysis : Quantitative risk analysis is a numeric
estimate of the overall effect of risk on the project objectives such as
cost and schedule objectives.

9.9 Assignment :
1. Explain Risk Identification.

Software Risk
Analysis

141

Software Engineering

142

9.10 Activities :

1. Explain Qualitative Risk Analysis Process

9.11 Case Study :

Explain difference between qualitative and quantitative risk analysis.

9.12 Further Reading :

1. Bruegge, B. and A. H. Dutoit (2000). Object—Oriented Software Engineering
: Conquering Complex and Changing Systems. Upper Saddle River, NJ,
Prentice Hall.

2. Cockburn, A. (2001). Agile Software Development. Reading, Massachusetts,

Addison Wesley Longman.

3. Gluch, D. P, "A Construct for Describing Software Development Risks,"

Software Engineering Institute, Pittsburgh, PA CMU/SEI-94-TR-14.

SOFTWARE RISK
MANAGEMENT - 1

10.0 Learning Objectives
10.1 Introduction

10.2 Software Risk Management Implementation
10.3 Planning Risk Responses

10.4 Monitoring and Controlling Risks

10.5 Let Us Sum Up

10.6 Answers for Check Your Progress

10.7 Glossary

10.8 Assignment

10.9 Activities

10.10 Case Study

10.11 Further Readings

10.0 Learning Objectives :

After learning this unit, you will be able to understand :
. Software Risk Management Implementation
. Planning Risk Responses
. Idea about Monitoring Risk
. Idea about Controlling Risks

10.1 Introduction :

This type of risk management shows conserve environment that is applied
for taking practical decision making so as to analyses what goes wrong with
development process. It shows the type of risks which is quite useful in dealing
and which implements in such a way that will avoid risks.

Software risk management is a type of planning process which concerns
with strategy that caters risk management and its process along with techniques
using certain methods and tools which applies to support risk management
process.

It is seen that risk management process normally requires corporate
clearance about risk that serves as main consideration. It is found that in
corporate organization, senior management supports project risk management
activities through :

v Supplying of excess professionals, budget, schedules and tools

v Checking of required training which is to be implemented in finding,
managing and lowering of software risk

v Giving training to project personnel in conducting risk management work.

143

Software Engineering

144

O Check Your Progress — 1 :
1. What is Software Risk Management ?

10.2 Software Risk Management Implementation :

There are 9steps Software Risk Management Implementation which are
as follows :

1. Define the end goal before starting :

It's impossible to begin any kind of project without a thorough understanding
of where you're going. Doing so will lead to confusion, frustration, and wasted
resources as the team moves in multiple directions at once without any noticeable
results.

Since you've already gone through the process of selecting a risk
management system, you know what issues need to be solved and where the
system is needed. Formalize this knowledge by creating a document that defines
exactly what your organization needs from the system and how this can be
accomplished.

If you're going to use the risk management system in multiple areas,
determine your priorities. These should be the areas with the most issues;
highlighting these problems will allow the team to tackle them first.

In addition, define success for your risk management system. Are you
aiming for a lower number of claims ? Would you like to see a reduction
in costs ? Should your team reduce time spent on redundant tasks by 50% ?
Whatever the goal, pre—defining success ensures you can measure the effectiveness
of the system through implementation and going forward.

2. Set a timeline :

Implementing a risk management system is a complex process. It's
important to understand exactly what is involved and what that means in terms
of a timeline. The vendor and your team must find a balance : if an implementation
is too quick, something may be missed; if the implementation takes too long,
the team may lose faith in the system or become upset with the vendor.

Consider these stages in the implementation process :

v First, the risk management system must be set up. The vendor will need
to import historical data and complete any necessary customization.

v The system must be tested to ensure it will work correctly throughout
the organization.

v All users must be trained in the proper use of the system.

Project management is key when implementing a risk management system.
Determine milestones that can be easily measured throughout the process to
keep all stakeholders on track, and consider appointing a project champion who
is responsible for seeing the implementation through.

3. Build a relationship with the vendor :

In many situations, the internal risk team views the vendor implementation
team as external stakeholders who are only present for a few weeks or months.
This is the wrong mindset. Risk management vendors have high levels of
knowledge, insight, and resources that can help you manage both new and
existing risks at any time.

By building a relationship with the vendor, you've widened your risk
management network and increased the size of your risk management team.
This can only benefit you as you seek to achieve your goals with the risk
management system.

4. Be open to vendor suggestions :

Risk management systems are built a certain way for a reason. Vendors
have extensive experience with the needs of organizations much like yours.
You should always be open to their suggestions, especially if they're recommending
a particular process.

Many teams fall into the trap of purchasing a risk management system
only to use it in exactly the same way as their old system. For example, a
team that switches from Excel spreadsheets may continue to manually add and
report on data in the system, even when automation is possible. This mistake
can be critical : the team continues to poorly utilize resources while extra
resources are used to pay for the new system.

To avoid this problem, carefully consider all vendor suggestions on how
their risk management system can truly improve your organization.

5. Customize where necessary :

While vendor suggestions and knowledge are valuable, sometimes they
may not realistically fit into your organization or goals. Some aspects of an
out—of-the—box system may not be right for you. In this case, some customization
is ideal.

For example, consider your organization's hierarchy, the ideal usage of
the system, and your reporting needs. Only you can determine exactly how
a risk management system will best fit into these requirements.

6. Be flexible :

Adapting to changing circumstances is important when implementing a
risk management system. Tasks may take more time than expected, there may
be technical difficulties, or an employee may have a particularly hard time
during training.

You must understand that difficulties like these are bound to happen and
typically only involve a small adjustment. Being ready to re—prioritize or modify
existing plans allows all stakeholders to feel comfortable through the
implementation process, even if not everything goes as planned.

7. Involve users and decision—makers :

Another common mistake in the implementation of risk management
systems is involving only decision—makers. While executives and top managers
may be able to pick the system that best suits organizational goals, they aren't
the ones that will be working inside the system every day.

Involving users from the beginning ensures that the entire risk team is
onboard or even excited about the change. They can also provide valuable

Software Risk
Management - I

145

Software Engineering

146

insight into implementation : they may have needs or desires that decision—
makers wouldn't know about and can reduce complications in the implementation
process.

8. Communicate :

Any significant organizational change is likely to fail without regular
and proper communication. When implementing a risk management system,
there are two critical communication avenues : the vendor and employees.

No matter how robust their system, vendors cannot read your mind. You
must explain your system, timeline, and security requirements as well as how
involved you expect them to be in the implementation process. This will keep
both teams on the same page and prevent frustrating back—and—forth conversation.

On the employee side, users need to be taught what to expect from the
system. In some cases, users may feel that they are being replaced by the system;
it is your job to reassure them that the system will actually make their jobs
easier and more meaningful by streamlining complicated processes. Tell your
employees what will change and how it will impact them individually, and
make them aware of these changes well in advance. Educating them on the
role they must play in the implementation of the risk management system will
simplify the process.

9. Implement in stages :

While risk management systems often have extensive functionality, it can
be overwhelming for a team to implement them all at once. This is frustrating
to employees and can actually lower the chances of system success. Instead,
choose the one area that is most in need of the system and start there. This
allows the team to gradually become comfortable with the system and then
expand their capabilities.

Using one small change as an example of the effectiveness of the system
can also help win over resistant employees and prove that the system has value.

Risk management system implementation can seem like a daunting task.
Following this advice will put you well on your way towards achieving your
risk management goals.

a Check Your Progress — 2 :

1. __ Stepis not part of Software Risk Management Implementation.
a. Set a timeline b. Be flexible
c. Communicate d. Do not customize

2. Any significant organizational change is likely to fail without regular
and proper
a. Communicate b. Implement in stages
c. User Involvement d. All of Above

10.3 Planning Risk Responses :

Once the risks to the project have been identified, their probability and
impact given a value, and an overall priority established, risk responses should
be drawn up. For each response plan, trigger conditions should be identified.

. When you need a Risk Response Plan :

A proper risk management plan does not need to include response plans
for all risks within the risk register. The risk register contains all risks that
are significant enough to warrant tracking and monitoring. It is not feasible
or necessary to develop response plans for everyone.

All risks fall within a range. On the one extreme it does not affect the
project enough to warrant tracking and monitoring. In the middle, the event
should be tracked and monitored but response plans do not need to be developed
in advance. And on the other extreme, the risk is substantial enough that a
response plan needs to be developed.

Generally, risk response plans are required for risks that are high in both
probability and impact. For example, a nuclear power repair project might have
response plans developed for radiation exposure events.

. Four Risk Responses :
There are four possible ways to deal with risk.

1. Avoid : Remove the threat or protect the project from its effect. Here
is a list of common actions that can eliminate risks.

v Change the scope of the project.
Extend the schedule to eliminate a risk to timely project completion.
Change project objectives.

Clarify requirements to eliminate ambiguities and misunderstandings.

SRR NERN

Gain expertise to remove technical risks.

2. Transfer : This involves moving the impact of the risk to a third party.
Direct methods might be through the use of insurance, warranties, or
performance bonds. Indirect methods such as unit price contracts instead
of lump sum, legal opinions, and so forth.

3. Mitigation : Reduce the probability or impact of the risk. This is not
always possible and often comes with a price that must be balanced
against the value of performing the mitigating action.

4. Accept : All projects contain risk. As a minimum, there is the risk that
it does not accomplish its objective. Thus stakeholders, by definition,
must accept certain risks. Accepting risk is a strategy like any other, and
should be documented and communicated like any other strategy. Risk
acceptance can be passive, whereby the consequences are dealt with after
the risk occurs, or active, whereby contingencies (time, budget, etc.) are
built in to allow for the consequences of the risk to the project.

The four risk response strategies can be applied to overall project risk
as well.

a Check Your Progress — 3 :

1. _ considered as a risk response.

a. Avoid b. Transfer c. Mitigation d. All of Above
2. — is reduce the probability or impact of the risk.

a. Mitigation b. Accept c. Transfer d. Avoid

Software Risk
Management - I

147

Software Engineering

148

10.4 Monitoring and Controlling Risks :

Project risk control and risk monitoring is where you keep track of about
how your risk responses are performing against the plan as well as the place
where new risks to the project are managed.

You must remember that risks can have negative and positive impacts.
Positive risk is a risk taken by the project because its potential benefits outweigh
the traditional approach and a negative risk is one that could negatively
influence the cost of the project or its schedule.

The purpose of project risk control is to
v Identify the events that can have a direct effect in the project deliverables

v Assign qualitative and quantitative weight—the probability and consequences
of those events that might affect the project deliverables

v Produce alternate paths of execution for events that are out of your control
or cannot be mitigated

v Implement a continuous process for identifying, qualifying, quantifying,
and responding to new risks

The main goals to risk monitoring and control :
To confirm risk responses are implemented as planned
To determine if risk responses are effective or if new responses are needed

To determine the validity of the project assumptions

DN NN

To determine if risk exposure has changed, evolved, or declined due to
trends in the project progression

<

To confirm policies and procedures happen as planned

AN

To monitor the project for new risks
v To monitor risk triggers

Risk triggers are those events that will cause the threat of a risk to become
a reality. For example, you have identified the fact that you only have one
pump set available and the replacement takes six weeks to arrive. In the middle
of your irrigation and recycling process tests, you discover that water pressure
tends to fluctuate beyond pump tolerance levels. If you do not find a way
to solve this problem, your risk will become a reality.

Make sure that for each identified risk, you must provide a response
plan. It is not much help to you if the risk becomes a reality or issue and
you do not have an alternate execution path or some other emergency procurement
plan.

Main inputs to effectively monitor and control risks :
Risk management plan

Risk Register / Risk Tracker

Risk response plan

Project communications

New risk identification

AN N N N RN

Scope changes

Outputs of Risk Monitoring and Risk Control :

v" Workaround plans

v Corrective / Preventive actions

v' Change requests

v' Risk response plan updates

v" Risk database

v" Checklist updates

0 Check Your Progress — 4 :

L. _ considered as an input to monitor and control risks.
a. Scope Changes b. Risk Tracker
c. New Risk Identification d. All of Above

2. — known as an output of risk monitoring and control.
a. Change Request b. Risk Database
c. Checklist updates d. All of Above

10.5 Let Us Sum Up :

In this unit we have learnt that Software risk management is concern
with process orientation, methods and tools that helps in managing risks which
appears in software project development process. We have also seen that there
are various steps of Software Risk Management Implementation.

We also learnt about project risk control and risk monitoring is where
you keep track of about how your risk responses are performing against the
plan as well as the place where new risks to the project are managed. We
have is seen that risk management process normally requires corporate clearance
about risk that serves as main consideration.

10.6 Answers for Check Your Progress :

a Check Your Progress 1 :
1. (refer 10.1)

a Check Your Progress 2 :

1. (d) 2. (a)

a Check Your Progress 3 :
1. (d) 2. (a)

a Check Your Progress 4 :
1. (d) 2. (d)

10.7 Glossary :

1. Software Risk Management — Software risk management is concern
with process orientation, methods and tools that helps in managing risks
which appears in software project development process.

2. Mitigation — Reduce the probability or impact of the risk.

10.8 Assignment :

1. Explain 9 steps of Software Risk Management Implementation.

Software Risk
Management - I

149

Software Engineering

150

10.9 Activities :

1. Write a note on planning risk responses.

10.10 Case Study :

Explain about monitoring and controlling risks and also give difference.

10.11 Further Reading :

1. Bruegge, B. and A. H. Dutoit (2000). Object—Oriented Software Engineering
: Conquering Complex and Changing Systems. Upper Saddle River, NJ,
Prentice Hall.

2. Cockburn, A. (2001). Agile Software Development. Reading, Massachusetts,

Addison Wesley Longman.

3. Gluch, D. P, "A Construct for Describing Software Development Risks,"

Software Engineering Institute, Pittsburgh, PA CMU/SEI-94-TR-14.

SOFTWARE RISK
MANAGEMENT - 11

11.0 Learning Objectives
11.1 Introduction

11.2 Human Resource and Risk Management
11.3 The HR Executive and Risk Control
114 Team Risk Management

11.5 Let Us Sum Up

11.6 Answers for Check Your Progress

11.7 Glossary

11.8 Assignment

11.9 Activities

11.10 Case Study

11.11 Further Readings

11.0 Learning Objectives :

After learning this unit, you will be able to understand :
. Software Risk Management
. Human Resource and Risk Management
. Idea about HR Executive
. Idea about Risk Control

. Detail of Team Risk Management

11.1 Introduction :

Risk is expected in business organization at the time of taking projects.
It is seen that project manager requires making sure that risks are kept to lower
level.

Risk management, in regards to human resources, doesn't stop once
background checks, references and education confirmation is completed. The
human resource department and the risk management department must continue
to collaborate together to ensure employee related risks are continuously identified
and strategies established for mitigation of identified risks.

Employee or human factors are some of the most critical sources of risk
and extremely difficult to plan and prepare for. The human factors in regards
to risk is very different from the risk introduced by machines or automated
processes, as the human factors are highly dynamic and difficult to regulate
in relationship to controls for machines and automated processes. After all the
reason you are employing an individual is to allow her to work in an environment,
which allows her to feel free to perform at her best, with a strong support
and trust of management.

151

Software Engineering

152

11.2 Human Resource and Risk Management :

Human resources have two roles in risk management. First, people are
a source of risk, e.g., shortage of employees, people doing sloppy work, an
employee refusing to take on additional responsibility, or a key employee
leaving two months after completion of a one—year training program.

Second, people are important in handling risk, e.g., people using their
ingenuity to solve unexpected problems, employees going the extra mile for
the good of the organization, a key employee redesigning her own job to avoid
unnecessary delays in getting work done, or an employee persuading a talented
friend to apply for a position in the business.

Human resource management is a process that can be broken down into
specific activities :

. Job analysis, Writing job descriptions,

. Hiring,

. Orientation, Training,

. Employer/Employee interactions,

. Performance appraisal, Compensation, and Discipline.

Understanding these activities helps explain the relationship between
human resources and risk. Failure to successfully carry out these activities
increases risk and penalizes the business by not taking advantage of what its
people could be contributing.

The first activity is job analysis and writing job descriptions. Job
analysis is 8 The emphasis is on what the farm needs rather than on who wants
to be promoted or who could be easily hired. The tasks that must be carried
out to accomplish the firm's goals determine duty and skill requirements. Job
descriptions summarize for both employees and employers just what a job
entails : job title, duties, compensation, and skills, knowledge, and abilities
to do the job. In family farm businesses, job descriptions for family members
often include both management and labor responsibilities.

Hiring is the next human resource management activity. The objective
of hiring is to staff each job with a person who can succeed in the position.
In today's exceptionally tight labor market, hiring is one of the most difficult
human resource activities. The position must be described carefully and creatively
to potential applicants. From among the pool of applicants, people must be
carefully chosen if they and the employer are to have a successful relationship.

The next activity after hiring is orientation and training. Orientation
socializes new people to the business. It introduces them to the business'
mission, its history, and its culture. It gives them the information essential for
getting off to a good start. Training and experience give the employees the
knowledge, skills, and abilities necessary to succeed in the position.

Day-to—day employer/employee interaction includes leadership,
motivation, and communication that build on hiring, orientation, and training.
Employer/employee interaction cannot make up for an ill-defined job, having
hired the "wrong" person, or inadequate orientation and training.

The last three activities are closely related : performance appraisal,
compensation, and discipline. Performance appraisal is the continuous

assessment, in cooperation with the employee, of how she or he is doing relative
to the standards and expectations laid out in the job description and follow—
up training. Performance appraisal also includes identifying with the employee
whatever corrective action may be necessary and steps by which the employee
can advance his or her career.

a Check Your Progress — 1 :

1. —is determining the duties and skill requirements of a job and
the kind of person to fill it.

1. Hiring 2. Job Analysis
3. Training 4. Writing Job Description
2. — introduces new people to the business' mission, its history,

and its culture.
a. Orientation b. Training c. Hiring d. Job Analysis

3. — give the employees the knowledge, skills, and abilities necessary
to succeed in the position.

a. Training b. Hiring c. Job Analysis d. Orientation

11.3 The HR Executive and Risk Control :

The HR executive may identify a risk and a specific need that is not
being addressed. For example, there is a deviation between what should be
occurring operationally and what is occurring. This deviation is causing
productivity to drop slowly but steadily. Upper management is aware of this
drop in productivity and is motivated to rectify the situation.

The HR executive having identified a risk, the drop in productivity for
example, goes on to define the risk in terms of the human element. This is
the underlying cause of the drop in productivity. Perhaps the line manager is
not communicating effectively with staff, perhaps he/she is not delegating, or
perhaps the workers feel they are not being listened to.

In this example, the HR executive meets with the manufacturing line
managers, and their direct reports. The executive should ask questions to assess
the risk, determine the extent of the problem and prioritize the risk. These
should include :

v Questions about the business and performance needs of both line managers
and their reports.

v Questions regarding work environment and how it must support the
performance and or business needs.

v Questions to determine who is ultimately responsible for delivering these
needs from the perspective of the managers and the direct reports.

Having met with and interviewed the line managers and their staff, the
HR executive should be in a position to recommend a strategy to deal with
the risk if he/she feels it is warranted. In the example of the manufacturing
drop organization, the HR professional may recommend management development
training, team building, and or coaching to fill the needs of management and
their staff. The appropriate HR initiative effectively identified and applied will
result in a return to productivity and elimination of this particular business
risk.

Software Risk
Management - II

153

Software Engineering

154

The practical partnership between today's HR executive and strategic and
operational business managers is discussed in Performance Consulting.
"Performance consultants take the initiative to meet, work with, and gain the trust
of managers and others within their organization. It has frequently been said that
building trust takes time; it does not happen overnight. Performance consultants
actively forge these relationships. Partnerships can, and should, be formed with
various people in an organization : senior managers, other managers and
supervisors, and thought leaders and subject matter experts, whatever their title.
Partnerships are also forged with customers and suppliers to the organizations."

The HR Executive and Risk Control :

The HR executive has a vital role in controlling risk. A major component
of Risk Management planning is risk avoidance. Many risks can be avoided
by controlling and planning the human side of the corporate equation. Succession
planning, adequate severance and outplacement, executive coaching and
development will ensure that an organization has the means to deal with current
and future challenges.

Risk resolution and control are important responsibilities for HR executives.
Identifying crucial attributes for key executives within an organization, coaching
and developing these attributes and monitoring the executives on an ongoing
basis will help to minimize and resolve potential areas of risk such as employee
turnover, low morale, potential litigation from misunderstandings arising between
staff and management and negative publicity resulting from these or other
human issues.

For example, a global organization based in the Bay Area plans to open
a distribution center in Malaysia. The corporate goal is to increase sales and
productivity in this growing region. The company has plans to grow their market
share by establishing a local presence. The risk manager is concentrating on
property exposure in this new region as well as political and environmental
risk. The staffing plans include the transfer of two senior executives from the
company headquarters in Silicon Valley.

The issues from the standpoint of Risk Management and HR are as
follows :

Risk : Property exposure
HR Initiatives :

v Hiring professional engineers and surveyors to minimize the risk of fire,
ensure building meets highest standards possible.

Risk : Political risk
HR Initiatives :

v Training and development of executives charged with running the new
facility. Ensure they are sensitive to cultural differences.

v' Hiring qualified public relations and local negotiations team.
Risk : Business Interruption/ drop in productivity
HR Initiatives :

v" Succession planning.

\

Diversify talent pool to ensure each key executive has a successor.

v Management development, team building and executive coaching.

Risk : Directors and officers

HR Initiatives :

Succession planning.

Diversify talent pool to ensure each key executive has a successor.

Management development, team building and executive coaching.

<N X X

Diversity training.

Risk : Employment practices liability

HR Initiatives :

Human resources handbooks and manuals.

Documented employee hiring and training and termination procedures.
Internal employee surveys.

Outplacement services.

SN N N

Management, team building and executive coaching.

Not all Risk Management issues can be addressed by HR. These issues
would include the risk of natural disaster as it relates to property. However,
hiring appropriately trained professionals can minimize an organization's risk
of engineering and design defects. In addition, even the effects of a devastating
natural disaster can be minimized by training staff to effectively and efficiently
respond to disaster.

A major Risk Management issue for high—tech companies in the Silicon
Valley arises from the fact that up to 80% of engineers come from outside
the United States, especially from countries such as the former North Korea,
China and India. Companies could be at risk for the loss of an important part
of their work force if foreign employees chose to return to their native lands
due to political and economic changes that would allow them to earn western
style salaries, be near families, and raise children in their traditional cultures.

The HR initiative addressing this risk might include helping employees
to gain U.S. citizenship, purchase homes and truly settle down here, giving
them more roots to our culture. Another HR/Risk Management initiative to
address engineer turnover would provide adequate management training to
technical managers so they are better able to assign projects among members
of the technical staff thereby reducing the risk of competitor run—off. Software
companies are particularly at risk of losing bored engineers who feel unappreciated
and underutilized to companies who promise them more exciting responsibilities.

HR executives can monitor the success of their risk control initiatives
through employee surveys, team building exercises and ongoing 360—degree
multi—raters. The results can be tracked and as each goal is recognized,
benchmarked. Clearly the disciplines of HR and Risk Management must be
integrated to maximize productivity and positively impact the bottom line of
any organization.

0 Check Your Progress — 2 :

1. — identify a risk and a specific need that is not being addressed.
a. HR Executive b. Risk Control
c. Risk Executive d. None of Above

Software Risk
Management - II

155

Software Engineering 2. Hiring professional engineers and surveyors to minimize the risk of fire,
ensure building meets highest standards possible is done by

a. Political Risk b. Directors and Officers
c. Property Exposure d. None of Above
3. Explain issue from the standpoint of Risk Management and HR.

11.4 Team Risk Management :

Team Risk Management describes the structure, operational activities for
handling risks throughout all phases of the development of organization, such
that all persons within the organizations, groups, departments, and agencies who
are directly involved in the development and active as a team member.

Team risk management practices bring together persons within an
organization and between organizations to create working teams.

The team risk management method is built upon the nine principles which
are as follows :

No. Principle Effective Risk Management Requires

1 |Shared vision of product A shared vision for success based upon
unity of purpose, shared ownership, and
shared assurance.

2 |Forward-thinking search for|Thinking in the direction of tomorrow,
doubts anticipating possible outcomes, identifying
doubts, and handling program resources
and activities while recognizing these
doubts.

3 [Open communications A free flow of information at and between
all levels through formal, informal, and
unplanned communication and consensus-
based processes.

4 [Value of Individual awareness [The individual voice which can bring
unique knowledge and awareness to the
identification and management of risk.

5 |Systems viewpoint That software development be viewed
within the larger systems-level definition,
design, and development.

6 |Combination into program |That risk management be an important
management part of program management.

7 |Practical policies Practical policies that include planning
and executing program activities based
upon anticipating future events.

156

8 |Systematic and adaptable|A systematic approach that is adaptable
methodology to the program's infrastructure and culture.

9 [Routine and nonstop processes| A nonstop observance considered by
routine risk identification and management
activities throughout all phases of the life
cycle of the program.

These principles combine the SEI risk management model as shown in
below figure and the ideas of helpful teams to create the foundation for a
complete set of processes, methods, and tools for managing risks in software—
dependent development programs.

oo L o

Eﬁr

7z

=
. Communicale
-
&
o
&'F"-b-'

Risk Management Model

1. Identify : Search for and locate risks before they become problems
adversely affecting the project.

2. Analyze : Process risk data into decision making information.

3. Plan : Translate risk information into decisions and actions and implement
those actions.

4. Track : Monitor the risk indicators and actions taken against risks.
5. Control : Correct for originality from planned risk actions.

6. Communicate : Provide visibility and feedback data internal and external
to your program on current and emerging risk activities.

. Team Risk Management Processes :

The team risk management procedures shown graphically in below figure
include nonstop processes and a one—time process activity, the starting point
of risk calculation. The nonstop processes of team risk management include
all five steps of risk management model into four processes by joining the
identification and analysis steps into the routine risk identification and analysis
process.

Similarly, the starting point risk calculation joins the identification and
analysis steps of the model into a single process activity that establishes the
initial set of risks and starts the continuous process activities. The team review
process defines cooperative risk management activities between the partner
organizations.

Software Risk
Management - II

157

Software Engineering

158

Baaaling Risk
Azsmaament

Routine Risk
Identification
and Analyris

Team
Reviews

Action 1
Planning

Continuous
Processes

Tracking

Control

— . One-Tims Inira-
|_| Orpanizational Activity

Inter-Qrganizational E Dual-Role Process
Process

Team Risk Management Process

The basic classifications of team risk management processes are
summarized as follows :

Classification

Description

Continues Processes

The dual-role continuous risk management
processes involve identification, analysis, planning,
tracking, and control as well as inter—organizational
activities, including regularly planned team reviews
as well as unscheduled informal meetings and
communications.

Starting point Activities

The initial, one—time identification and analysis of
activities that establish the starting point set of
risks shown by each partner organization,
government and contractor.

1.

A.

Overview of Nonstop Team Risk Management Process :

The basic activities in nonstop team risk management have five parts
as follows :

Routine risk identification and analysis

Team assessments
Action planning
Tracking

Control

All of the activities are tied together through informal and formal
communication processes. These activities improve the helpful interactions and
trust among partners and team members, and build and support the shared
program vision required for effective team risk management.

Routine Risk Identification and Analysis :

Routine risk identification and analysis includes the input of employees
throughout the organization and combines the processes of identification and
analysis into a set of separate team risk management activities. The approaches
which can be working in routine risk identification and analysis are summarized
as follows :

employees as risks are
identified.

Method Description Characteristics
Routine Risk Form|Routine distribution and|Separate input
Processing processing of risk forms, [Nonstop

submitted by program |Unidentified

Irregular Risk

Irregular reporting of risks

Separate input

Interview Sessions

program.

Reporting by program employees. Irregular scheduled event
Irregular Irregular interviews of|Separate input
Individual individuals throughout the [Irregular scheduled event

Confidential
Non-attribution

Periodic Risk
Calculations

Abbreviated versions of the
starting point risk calculation
which are held periodically
based upon time milestone

Peer group

Irregular scheduled event
Confidential
Non-attribution

events.

B. Team Assessments :

The team assessment is a combined meeting of the government and
contractor program managers and their immediate staff to discuss and order
risks. It carries together each program manager's list of current top risks,
maintains continuity between these risks and those that were most important
at the previous meeting, promises that there is a common understanding of
the most important risks to the program, and assigns new action items. Its
purpose is to build and maintain energy in government/contractor team risk
management.

Each program manager will have the list of prioritized risks, the Joint
List of Risks, from the previous team review meeting; this list will be the
starting point for the team review. However, new risks will also have been
identified in the organizations through the routine risk identification and analysis
process. From these new risks, each program manager will select candidates
for inclusion in the Joint List of Risks on the basis of responses to three
questions :

v Which of these new risks informs the other party of a serious risk that
they should be aware of ?

v Which may need to be transferred or delegated to the other party ?
v Which will require joint action to resolve ?
C. Action Planning :

Action planning for risks is the determination and implementation of
actions necessary to manage a program's risks. This is where the integration
of risk management processes with existing program management becomes most
evident. Planning, in general, is an integral part of program management,
whether planning how to meet specific milestones or determining the best design
strategy for meeting specified requirements. Risk planning requires a systems
perspective to maximize the effective use of rare resources within a program.

Software Risk
Management - II

159

Software Engineering

160

D. Tracking and Control :

The risk tracking and control procedures include creating and maintaining
risk status information, defining action plans, and taking action based upon
the status information. The important elements of risk tracking and control are
very similar to the equivalent processes in traditional program or project
management and can be readily integrated into a program's established tracking
and control processes and methods.

2. Starting point Risk Assessment :

In a starting point risk calculation, a variety of methods and tools are
used to initially recognize and analyze a set of risks and produce the initial
Master Lists of Risks, one for the government and one for the contractor.

Paradigm Method/Tools Communication Characteristics
Recognize |Group interview Non—Judgmeptal
Text-based questionnaire Non-attrlb.utlon
Confidential
Peer grouping
Analyze Criteria filtering Individual voice
Individual Top 5 Mutual understanding

Minimal group technique | Agreement
Comparison risk ranking

a Check Your Progress — 3 :

1. Explain Continuous Team Risk Management Process.

11.5 Let Us Sum Up :

In this unit we have learnt that risk is expected in business organization
at the time of taking projects. It is seen that project manager requires to make
sure that risks are kept to lower level. It is noted that risk management carries
human resources that has regular full-time employees with management and
Labour personnel along with family and non—family members those working
for full-time or part-time or seasonal.

It is studied that in order to keep track of progress of HR professional,
it is clear that it should involves various phases of development.

11.6 Answers for Check Your Progress :

a Check Your Progress 1 :

1. (b) 2. (a) 3. (a)
a Check Your Progress 2 :
1. (a) 2. (¢) 3. (refer 11.3)

a Check Your Progress 3 :
1. (refer 11.4)

11.7 Glossary :

1.

Job Analysis — Job analysis is determining the duties and skill requirements
of a job and the kind of person to fill it.

Team Risk Management — Team Risk Management defines the
organizational structure and operational activities for managing risks
throughout all phases of the life—cycle of a software—dependent development
program such that all individuals within the organizations, groups,
departments, and agencies directly involved in the program are participating
team members.

11.8 Assignment :

1.

Explain Human Resource and Risk Management.

11.9 Activities :

1.

Write a note HR Executive and Risk Control.

11.10 Case Study :

Explain Team risk management and give difference between Continues

Team Risk Management Process and Baseline Risk Assessment.

11.11 Further Reading :

1.

Bruegge, B. and A. H. Dutoit (2000). Object—Oriented Software Engineering
: Conquering Complex and Changing Systems. Upper Saddle River, NJ,
Prentice Hall.

Cockburn, A. (2001). Agile Software Development. Reading, Massachusetts,
Addison Wesley Longman.

Gluch, D. P, "A Construct for Describing Software Development Risks,"
Software Engineering Institute, Pittsburgh, PA CMU/SEI-94-TR-14.

Software Risk
Management - II

161

162

BLOCK SUMMARY :

In this block, you have learnt and understand about the basic of risk
management techniques with role of human resources. The block gives an idea
on the study and concept of software risk analysis with its characteristic
associated with risk management. You will be detailed with knowledge of risk

identification issues with relative risks measures in software project.

The block detailed about the basic of insertion of risk management
principles and practices appearing in software life cycle. The concept related
to role and responsibilities of HR in maintaining risk for company growth and
prosperity are also well detailed. You will be demonstrated practically about

contingency plan technique.

BLOCK ASSIGNMENT :

Short Questions :

Write a note on Risk.

Write a note on Risk Identification.

Explain Quantitative Risk Analysis.

What is Planning Risk Responses ?

Write a note on Monitoring and Controlling Risks.
Write a note on Human Resource and Risk Management
Long Questions :

Explain Risk Analysis in Project Management.

Explain Qualitative Risk Analysis with its types and its process.

Explain Software Risk Management Implementation.
Explain HR Executive and Risk Control.

Explain Team Risk Management in Detail.

163

< Enrolment No. : | |

1. How many hours did you need for studying the units ?

Unit No. 1 2 3

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D |:] I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

Feed back to CYP
Question

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

3. Any other Comments

164

BAOU Dr. Babasaheb Ambedkar BCAR-402

Education Open University Ahmedabad
for All

Software Engineering

BLOCK 4 : CASE STUDIES

UNIT 12 CASE STUDY - I : WASTE MANAGEMENT INSPECTION
TRACKING SYSTEM

UNIT 13 CASE STUDY - II : LIBRARY MANAGEMENT SYSTEM

UNIT 14 CASE STUDY - 1II : SOFTWARE PROJECT MANAGEMENT

CASE STUDIES

Block Introduction :

In this block we will go through the various case studies. In case study are
going to identify the different criteria like customer's requirement, existing system
analysis, cost & time to develop the system and design of the software product

or system.

As a part of case study there is a Waste Management Inspection Tracking
System (WMITS) is going to manage by identifying requirements, risk, design,

scheduling, team and control mechanism.

Furthermore, as a part of second case study there is Library Management
System which help Students, Library administrator and Teachers to access the
library in a computerized way. We found that if our Library Management system
is automated or computerized then it will be very easy to search any book. It saves

our time and our total Library Management system become very easy.

Block Objectives :

After learning this block, you will be able to understand:
Basic Project Plan

Project Estimation

Risk Management

Project Scheduling

Project Team Organization

Tracking and Control Mechanism

Block Structure :

Unit 12 : Case Study — I : Waste Management Inspection Tracking
System

Unit 13 : Case Study — II : Library Management System

Unit 14 : Case Study — II : Software Project Management

CASE STUDY -1
WASTE MANAGEMENT
INSPECTION TRACKING SYSTEM

12.0 Learning Objectives
12.1 Introduction

12.2 Waste Management System
12.2.1 Basic Project Plan
12.2.2 Project Estimates
12.2.3 Risk Management
12.2.4 Project Schedule
12.2.5 Project Team Organization
12.2.6 Tracking and Control Mechanism
12.3 Let Us Sum Up
12.4 Glossary
12.5 Assignment
12.6 Activities
12.7 Case Study
12.8 Further Readings

12.0 Learning Objectives :

After learning this unit, you will be able to understand :
. Idea about Basic Project Plan
. Project Estimation
. Detail about Risk Management
. Idea about Project Scheduling
. Project Team Organization

. Tracking and Control Mechanism

12.1 Introduction :

In this we will learn about how the Waste Management Inspection
Tracking System (WMITS) is going to manage by identifying requirements,
risk, design, scheduling, team and control mechanism.

The main purpose of WMITS is to help automate the entire process that
the Department of Environmental Quality (DEQ) Waste Management Division
(WMD) staff members perform throughout an inspection. Which will minimize
the time span of any inspection, paper work, provide searchable database, and
automated channel for the public to request information.

165

Software Engineering

166

12.2 Waste Management System :

12.2.1 Basic Project Plan :
12.2.1.1 Goals and Objectives :

The main purpose of WMITS is to help automate the entire process that
the Department of Environmental Quality (DEQ) Waste Management Division
(WMD) staff members perform throughout an inspection. The goals of WMITS
are :

v To minimize the time span of any inspection

v" To minimize the amount of paper work required

v To provide a searchable database of all past inspections

v To provide an automated channel for the public to request information
12.2.1.2 System Statement of Scope :

1. General Requirements :

The following general requirements were laid out for our project named
WMITS :

v A way in which DEQ could add new facilities to the database.
A way in which DEQ could generate electronic checklists.

A search on all electronic checklists.

< X

A way in which they could generate letters to be sent out to facilities
based on inspection results.

A way in which all letters and checklists could be stored electronically.
A way to search for existing facilities.

A way to print blank checklists and staff reports.

DN NN

A way in which they could view data which was entered into the database
prior to our software.

<

DEQ wanted a product that would allow them to easily add new checklists
and letters or change existing checklists and letters.

. Interface Enhancements : Staff members of WMD have requested a
lot of interface enhancements that will increase the usability of the
product for the staff.

. Database Administrative Interface : There is currently no documented
interface for WMD staff members to maintain the checklist and letter
templates. Should no such interface existed, Cyber Rovers will have to
implement one from scratch.

. Online Help : To develop an extensive help menu for the users and
also to setup the online help for the need of the help in the future.

. Training : The staff members have also requested throughout training
for the entire staff for use with the software.

2. Extended Enhancement :

. Palm Pilot Integration : Out of the two extended enhancement requests
(palm pilot integration & online record access), the team and client both
agree on doing the palm pilot integration. From the design point of view,
online record access has a major security risk, which the team has little

or no experience on it. Palm pilot integration on other hand, needs only
long programming, which can be (and will be) achieved by the team.
We also suggest to the DEQ that they can make the online record request
to be the next semester's project.

Before we decide on what kind of Palm Pilot we use, the team and the
client have explored several options.

. Database Restructuring : The current database structure is not optimized
at all. We will try to improve it as we go along.

3. System Context :

Eventually, multiple users will be using the product simultaneously.
Therefore, concurrent connection will be an issue for implementation. In
addition, this is a pilot product that hopefully, if successful, can be used in
other locations as well. This leads to issues about future support for a larger
user base.

4. Major Constraints :

. Time : We only have about two months to finish all documentation,
software creation and enhancements. We have a lot of ideas but cannot
implement them due to time constraint. One of the major ones is to move
the application to be completely browser—based.

. Funding : To develop and implement the Palm Pilot integration, we will
need funding to buy at least one Palm Pilot.

12.2.2 Project Estimates :

This portion of the document provides cost, effort and time estimates
for the project using various estimation techniques, which will be elaborated
in the appropriate section.

12.2.2.1 Historical Data Used for Estimates :

Although this project is to enhance the existing software, we were unable
to obtain cost information from the previous project team.

12.2.2.2 Estimation Techniques Applied and Results :

Two estimation techniques have been used to generate two independent
results for higher accuracy.

. Process—based
. Lines of Code (LOC) — COCOMO Model
1. Process—Based Estimation :

For process—based estimation, the process is decomposed into a relatively
small set of activities or tasks. Then, the effort required to accomplish each
task is estimated. Based on the project scope, the following software functions
are defined :

. User Interface Re—engineering UIR
. Database Re—engineering DR

. Database Administrative Interface DAI
. Existing Bug Fixing EBF
. PalmPilot Integration PI

Case Study - I

Waste Management
Inspection Tracking

System

167

Software Engineering

168

Activity Cust. | Planning Risk Engineering Construction Cust. | Totals
> Comm. Analysis Release Eval.

Task > Analysis | Design Code Test

Function

UIR 0.40 0.02 0.02 0.02 0.50 0.30 1.00 0.05 2.31
DR - 0.01 0.10 0.10 0.30 0.10 0.10 - 0.71
DAI 0.20 0.01 0.05 0.05 0.40 0.20 0.06 0.05 1.02
EBF 0.20 0.01 0.02 0.01 0.02 0.50 0.08 0.05 0.89
PI 0.25 0.02 0.04 0.20 0.50 0.30 1.00 0.06 2.37
Total 1.05 0.07 0.23 0.38 1.72 1.40 2.24 0.21 7.30
% Effort 14.38 0.96 3.15 5.21 23.56 19.18 30.68 2.88 100

2. LOC-Based Estimation :

Table 1 — Process—based Estimation Table

The following estimates are based on "best—effort" estimation from

previous programming experiences and existing software size.

Functions Estimated LOC
User Interface Re—engineering UIR 2,300
Database Re—engineering DR 200
Database Administrative Interface DAI 1,000
Existing Bug Fixing EBF 800
PalmPilot Integration PI 1,000
Total Estimated Lines of Codes 5,300

12.2.2.3 Project Resources :

1. People :

This project will require three programmers in order to be finished in
time. Each of the members will have to have specific skills (either obtained
previously or on the fly). Team members will have to work in an interrelated

network environment (ego—less) where everyone needs to communicate with
everyone else on the regular basis.

2. Minimal Hardware Requirements :

Development :

Three IBM PC or compatibles with the following configurations

. Intel Pentium II 333MHz processor
. 64MB SDRAM
. 500MB Hard disk space

. Internet Connection

User Client—side :

IBM PC or compatibles with the following configurations

. Intel Pentium 166MHz processor
. 32MB SDRAM
. 20MB Hard disk space

User Server—side :
IBM PC or compatibles with the following configurations
. Intel Pentium II 333MHz processor
. 64MB SDRAM
. 500MB Hard disk space
3. Minimal Software Requirements :
Development :
. Windows 98
. Windows NT Workstation
. Windows NT Server
. Visual Basic 6.0 (three user licenses)
. Microsoft Access 97 and 2000
. Microsoft Word 97 and 2000
User Client-side :
. Windows 98/NT Workstation
. Microsoft Access 97/2000 (optional)
. Microsoft Word 97/2000 (optional)
User Server—side :
. Windows NT Server
. Microsoft Access 97/2000 (optional)
. Microsoft Word 97/2000 (optional)

12.2.3 Risk Management :
12.2.3.1 Scope and intent of RMMM activities :

We want the software to be free of any defects or errors, but it is hard
or at times almost impossible to develop a system that is free of any defects.
To be safe we would like to have a risk management plan to counter any
difficulties that may impact the development or the creation of the software.
Our goal is to assist the project team in developing a strategy to deal with
any risk. For this we will take a look at the possible risks, how to monitor
them and how to manage the risk.

For software development to avoid any risk both the developer and client
have to work together. Client has to spend time with the developer in the
beginning phase of the software development. If client decides to change the
software, meaning if client wants to add some more functions into the software
or to change the requirement, this will have major effect on the development
of the software.

12.2.3.2 Risk management organizational role :

Everyone associated with the software has responsibility of managing
the risk. That is if everyone participated and paid close attention to all the
details during the early phase of the software development many risks can be
avoided.

v Software development can avoid having risk by double—checking their
schedule, product size, estimates regarding costs of the development etc.

Case Study - I

Waste Management
Inspection Tracking

System

169

Software Engineering

170

v Customer can help avoid risk by providing all necessary software
information during the early phase of the development.

v Software development team can avoid risk by getting all the details of
the equipment that are provided or are accessible to them.

v Client can avoid risk by making all necessary business changes before
initiating request for the software.

12.2.3.3 Risk Description :

This section describes the risks that are likely to be encountered during
this project.

Risk is made up of two parts : the probability of something going wrong,
and the negative consequences if it does.

1. Description of Risks

Business Impact Risk : This is the risk where concern is that of the
not being able to come up or produce the product that has impact on the client's
business. If the software produced does not achieve its goals or if it fails to
help the business of clients improve in special ways, the software development
basically fails.

Customer Risks : This is the risk where concern is client's motivation
or willingness in helping the software development team. If the client fails
to attend meeting regularly and fails to describe the real need of the business
the produces software will not be one that helps the business.

Development Risks : If client fails to provide all the necessary equipment
for the development and execution of the software this will cause the software
to become a failure. So, in other words customer has to be able to provide
time and resources for the software development team. If all the requested
resources are not provided to the software development team odds for the
software development to fail rises greatly.

Employee Risk : This risk is totally dependent on the ability, experience
and willingness of the software development team members to create the
working product. If the team members are not experience enough to use the
application necessary to develop the software it will keep pushing the development
dates until it's too late to save the project. If one or more members of the
software development team are not putting in all the effort required to finish
the project it will cause the project to fail. Employee risk is one of the major
risks to consider while designing the software.

Process Risks : Process risk involves risks regarding product quality.
If the product developed does not meet the standards set by the customer or
the development team it is a failure. This can happen because of the customer's
failure to describe the true business need or the failure of the software
development team to understand the project and then to use proper equipment
and employees to finish the project.

Product Size : This risk involves misjudgment on behalf of the customer
and also the software development team. If the customer fails to provide the
proper size of the product that is to be developed it will cause major problems
for the completion of the project. If software development team misjudges the
size and scope of the project, team may be too small or large for the project
thus spending too much money on project or not finishing project at all because
of shortage of finances.

Technology Risk : Technology risk involves using technology that
already is or is soon to be obsolete in development of the software. Such
software will only be functional for short period of time thus taking away
resources from the customer. Since the technology changes rapidly these days
it is important to pay importance to this risk. If customer request use of software
that soon to be obsolete software development team must argue the call and
have to pursue customer to keep—up with current technology.

12.2.3.4 Risk Table :

The following table describes the risks associated with the project. The
appropriate categories of the risks are also given, as well as probability of
each risk and its impact on the development process.

Probability and Impact for Risk m

The following is the sorted version of the above table by probability
and impact :

Category Risks Probability | Impact
Employee Risks | Lack of training and experience 40% 1
Process Risk Low product quality 35% 1
Product Size Where size estimates could be 30% 2
wrong

Development Insufficient resources 30% 2
Risks

Customer Risk | Customer may fail to participate 20% 3
Technology Risk| Obsolete technology 10% 2
Business Impact | Product may harm the business 10% 3

Table 1 — Risks Table (sorted)

Impact Values Description
1 Catastrophic
2 Critical
3 Marginal
4 Negligible

Above is the table that categorizes the risks involved in software
development. It gives brief description of the risk in Risk's column and also
provides the probability of risk occurring in percentages in Probability column
and also the impact of the risk in the Impact column.

The impacts values assigned to each risk are described in the section
below the risk table. It is very convenient way to look at the risk and derive
the information of the risk.

12.2.4 Project Schedule :

Following is the master schedule and deliverables planned for each stage
of the project development lifecycle, and their respective planned completion
dates.

Case Study - I

Waste Management
Inspection Tracking

System

171

Software Engineering 12.2.4.1 Deliverables and Milestones :

Stage of Stage Deliverable Deliverable
Development | Completion Completion
Date Date
Planning 01/21/00 Quality Assurance Plan 01/15/00
Project Plan 01/20/00
Milestone 01/21/00
Requirements 02/25/00 Draft Requirements Specification 02/09/00
Definition Draft Design Specification 02/09/00
Project Test Plan 02/15/00
Requirements Specification (final) 02/22/00
Milestone 02/22/00
Design 03/01/99 Draft Training Plan 02/23/00
(Functional & Program and Database Specifications 02/26/00
System) Design Specification (final) 02/29/00
Milestone 03/01/00
Programming 04/02/00 Software (frontend and backend) 03/31/00
System Test Plan 03/10/00
User's Guide 03/20/00
Operating Documentation 03/28/00
Milestone 04/02/00
Integration & 04/15/00 Test Reports 04/03/00
Testing Training Plan (final) 04/10/00
Acceptance Checklist 04/14/00
User’s Guide (final) 04/12/00
Milestone 04/15/00
Installation & 04/20/00 Maintenance Plan 04/16/00
Acceptance Acceptance Test Report 04/20/00
Milestone 04/20/00

12.2.4.2 Work Breakdown Structure :

Please refer to the above table for the work breakdown structure
(deliverables are set according to logical work breakdown).

12.2.5 Project Team Organization :

The structure of the team and the roles of team members are defined
in this section.

12.2.5.1 Team Structure :

Due to the small size of the project team, the team will be organized
in an egoless structure, where the entire group will make most of the decisions
together.

Conceptual and Advanced Interface Development :

. Overall process specification

. Database re—engineering

. Advanced Interface Development
. Internal Modules Development

. Draft Documentation

User Interface Design and Development / Trainer :

. Intermediate User Interface Development
. Training Sessions

. Operational Manual

. Draft Documentation

172

Editor / Master Tester / Maintenance :
. Proof Reading
. Overall Testing and Reports
. All Final Documentation
. User Guide
12.2.5.2 Additional Member Responsibilities :
The following are additional notes on team members' responsibilities :

v Each person will work on multiple tasks throughout the development
process in addition to their main role.

v Due to the small size of the team, project design and specification will
be discussed with the whole team.

v All development personnel are required to prepare draft documentation
of their work, as well as individual testing on their part. Tester will do
the overall final testing at the end of the testing stage.

v One programmer will take on the role as coordinator to ensure the project
is on schedule, as well as scheduling In—Stage Assessments.

12.2.6 Tracking and Control Mechanism :

12.2.6.1 Quality Assurance Mechanisms :

v Tight Change Management

v Extensive before implementation Design using Rapid Prototyping

v Close Contact with Clients, meeting every two weeks and regular email
contacts

v Plenty of Research on PalmPilot platform before development
12.2.6.2 Change Management and Control :
v For changes affect the user experiences we will have to notify all clients

v For changes that do not affect the user experiences we will notify a client
representative

v Due the size of the team, internal control panel will be used. One member
of the team suggests a change, it will need to be approved by the other
two members

v' Formal version numbering will be used. All version changes must be
documented in a common document accessible to all team members
before a new version number can be released. Version number will be
structured as follows :

<Major Release>.<Minor Release><Bug fix>

12.3 Let Us Sum Up :

In this unit we have learnt that goals and objective, system scope of
system, project estimation, project resource in which people, minimal hardware
requirement, minimal software requirement are going to define.

We also seen about Risk management in which we learnt scope and intent
of RMMM activities and risk description. As a part of risk description, we
learn about Business impact risk, Customer risk, Development risk, Employee
risk, Process risk, Product size, Technology risk.

Case Study - I

Waste Management
Inspection Tracking

System

173

Software Engineering We also seen about the master schedule, the structure of team and the
roles of team members, and tracking and control mechanism.

12.4 Glossary :

1. Risk — Risk is made up of two parts : the probability of something going
wrong, and the negative consequences if it does.

12.5 Assignment :

1. Explain Team Structure in detail.

12.6 Activities :

1. Define Project Scheduling in detail.
12.7 Case Study :

Explain the future of Quality Assurance.

12.8 Further Reading :

1. Bruegge, B. and A. H. Dutoit (2000). Object—Oriented Software Engineering
: Conquering Complex and Changing Systems. Upper Saddle River, NJ,
Prentice Hall.

2. Cockburn, A. (2001). Agile Software Development. Reading, Massachusetts,
Addison Wesley Longman.

3. Gluch, D. P, "A Construct for Describing Software Development Risks,"
Software Engineering Institute, Pittsburgh, PA CMU/SEI-94-TR-14.

174

CASE STUDY - 11
LIBRARY MANAGEMENT
SYSTEM

13.0 Learning Objectives

13.1 Introduction

13.2 Library Management System
13.2.1 Objective
13.2.2 Project Life Cycle
13.2.3 Ecxisting System
13.2.4 Proposed System
13.2.5 Requirement Determining
13.2.6 Development Phase
13.2.7 Design of System Model

13.2.8 Conceptual Model of our Proposed Library Management
System

13.3 Let Us Sum Up
13.4 Assignment

13.5 Activities

13.6 Case Study

13.7 Further Readings

13.0 Learning Objectives :

After learning this unit, you will be able to understand :

. Idea about of project life cycle

. Project Development

. Strategy for determining requirement information
. Software Requirement

. Hardware Requirement

13.1 Introduction :

We are trying to develop an automation system which will provide lots
of facilities to our college. The total automation system divided into many
modules, here our parts is "Library Management System". This is a small part
of total automation System but The Library Management System will provide
an environment which facilitate teachers & students easy to access the library
information.

The Aim of this project is to help our student, Library administrator and
Teacher to access our library in a computerized way. We found that if our
Library Management system is automated or computerized then it will be very
easy to search any book. It saves our time and our total Library Management
system become very easy.

175

Software Engineering

176

13.2 Library Management System :

13.2.1 Objective :

v It will help student or library administrator to access library easily
To reduce people messy.

Searching process of a book becomes very easy.

Maintenance of these books becomes very easy.

DN NN

To assure the information of the library such as book types, copy number
of books, authors name, availability of particular book etc.

v To make secured data storage of library information.
v' Manage the library as a systematic way.

v' Huge information can be stored.

13.2.2 Project Life Cycle :

The project life cycle includes various development phases that occur
in the life of project starting right from the inception of the project to its final
development at the client's end. The three development phases in a project
life cycle are :

. Project initiation
. Project execution
. Project development
. Project initiation : The project initiation phase is first phase of life cycle.

This phase involves creating a complete plan for the project, specifying
various activities that will be performed and assigning responsibilities
to team members on the basis of their skill set.

. Project execution : After the project plan is made and the responsibilities
assigned, the actual development of the project starts. The phase in which
the actual development of the project takes place is known as the project
execution phase. This is the most crucial phase of any project and is
subdivided into the following phases :

A. System Analysis :
v Initial study
v' Information gathering
v' Feasibility study
B. System Design :
v" Design standard
v' High level design & design tools
v' Database design
v Logical design
v" Construction
C. System Implementation :
v Integration & testing

v" Post implementation

. Project development : After the project execution phase, the final phase
of a project life cycle is the project development phase. In this phase,
the deployed at the client side. This phase also involves providing
customer support to the client for some specified period of time.

When project is built it may possibly remain error les of more, because
several type of modification can take place several times. So, for the very first
time when we run the database web site, we found few problems in tools
potions. We fixed this problem including some minor problems immediately,
and afterwards the application runs properly.

13.2.3 Existing System

The system we have currently is a poor manual library system. There
is a lot of books in library but no serial number of them. Different writers
have different books but no chart of them. Our library supervisor maintains
only a register chart. Where there is no information about the book lender.
So, it is difficult to find out the book lender in next time. And it is risky
too to give a book. Students are not able to lend a book from the library because
library supervisor has no sufficient information about them that she/he can
search out the lender.

Our existing library management system is a manual system. The whole
system is manually defined and it has some problems. The problems of existing
systems are as follows :

v’ It is very slow and takes many times.
v It is very difficult to maintain.

v It is not error free.

13.2.4 Proposed System :

A Library Management System is a system where a user can access a
library automatically. Here automatically stands for computerized way. In a
manual system when we go a library, we see a lot of books are in self by
self. There is no member, no serial of these books. It is difficult to find out
a certain book for a certain writer. To reduce these haphazard, we decide to
make this LMS system automated. In this system a user easily get which books
are in the library. How many copies have of them, the name of the writer
of the book etc.

But now we want to do it automatically. Which will be so easier for
Whole University and it has some advantages as follows :

v" Dynamic System
v' Error free

v' User Friendly

13.2.5 Requirement Determining

v For the requirement analysis we use the key strategies for determination
of requirements of the user.

Getting information from the existing system.
Interview

Questionnaires

DN NN

Hardware & software requirements Getting Information from the Existing

Case Study - II

Library Management

System

177

Software Engineering

178

In this stage we simply ask the personnel of meeting management

information section— what information are currently received and what other
information are required. From this stage we find that the meeting members
of the university are recording manually their personal information in the
member register.

13.2.5.1 Interview :

these
v

v

Why do we conduct interviews during system analysis, the reasons are
?

We need to gather information about the behavior of a current system
or the requirements of a new.

We need to verify our own understanding as system analyst of the
behavior of a current system or the requirements of a new system. This
understanding was probably acquired through previous interviews together
with independently gathered information.

We need to gather information about the current system and/or system
in order to carry out cost-benefit meeting between a system analyst and
an end user.

We took the interview of the teacher, student, and Library Supervisor.

As interview is the most common and most satisfactory way of obtaining
information, particularly to obtain information about objectives constraints,
allocation of details and problems and failures in the existing system.

After the interview all notes are read through and expanded to make

them intangible. As the data are in random order, they were revised into a
more useful order before the next work is commenced.

Hardware & software requirements.

13.2.5.2 Software Requirements :

v
v

Any Operating System.

Internet Explorer

13.2.5.3 Hardware Requirements :

N N N R

Component Minimum Maximum

Process speed 233 MHz Higher (P4)
Ram 64 MB Higher

Graphic Card AGP 32 MB Higher
Monitor Any Color Monitor Higher

CD Rom Any 16X Higher Project phases

13.2.6 Development Phase :

Phasel : Analysis the requirements of the project.

In this phase we basically analysis the requirements and develop our

knowledge on demand. We will sort out all the necessary tools that will be
needed. We will grow up the technological background to make workable the
software in all environments.

v
v

The method of collecting requirements :
Reading books & related reference book.

Internet Browsing.

v Talking with the students, our friends who are interested to help us by
giving information about Library management System.

v Talking with our supervisor & other teacher who are experienced to make
Library and working with the automation.

v Talking with Programmer or experienced people who are working this
type of related sector.

Phase2 : Module Analysis

In this phase we will analyses our module and fragment the overall
module in some small modules. Which help us to complete total system easily.

Phase3 : Develop Modules

We will make the task flow and code flow of each module in this phase.
We will write the row code to build up the modules.

Phase 4 : Integrate Modules

In this phase we will integrate all modules. The backbone of the software
will stand up in this phase and the software will be useable.

Phase 5 : Test, bug finding and bug fixing We will test the overall
features of the software.

By testing the features, we will find out the bugs. After that all the bugs
will be solved.

Phase 6 : Use of the software

This software will be used for Our University Automation System for
Library management.

13.2.7 Design of System Model :

In our Routine Management System there are three types of User models
are shown

These are :
. Normal User
. Administrator

. Registered User

. Normal User : A regular user is any kind of user like students, teachers
or anybody who uses the system and can see the online library and get
information.

. Administrator : An admin user is a selected user who has the permissions

to create a new admin or edit update delete operation. The admin users
also perform the book function like book borrow, book lending book
return etc.

. Registered user : It means that, only our students, teacher, & employee
are permitted to registration. These types of people have to has perform
book borrow, return function.

Case Study - II

Library Management

System

179

Software Engineering

180

We will focus on the following set of requirements while designing the

Library Management System :

1.

10.

Any library member should be able to search books by their title, author,
subject category as well by the publication date.

Each book will have a unique identification number and other details
including a rack number which will help to physically locate the book.

There could be more than one copy of a book, and library members
should be able to check—out and reserve any copy. We will call each
copy of a book, a book item.

The system should be able to retrieve information like who took a
particular book or what are the books checked—out by a specific library
member.

There should be a maximum limit (5) on how many books a member
can check—out.

There should be a maximum limit (10) on how many days a member
can keep a book.

The system should be able to collect fines for books returned after the
due date.

Members should be able to reserve books that are not currently available.

The system should be able to send notifications whenever the reserved
books become available, as well as when the book is not returned within
the due date.

Each book and member card will have a unique barcode. The system
will be able to read barcodes from books and members' library cards.

Use case diagram :
We have three main actors in our system :

Librarian : Mainly responsible for adding and modifying books, book
items, and users. The Librarian can also issue, reserve, and return book
items.

Member : All members can search the catalog, as well as check—out,
reserve, renew, and return a book.

System : Mainly responsible for sending notifications for overdue books,
canceled reservations, etc.

Member

NS s

<<includes> Add book item

Update catalog =dncludes>
Remove baok item

<<lncludes=>

Edit book item
Search by author . Search by subject
name name
Search by boak

title
<<axiends> <<extend>>

<zpplentss> 5 Search by
vs*% publication date
Y
Search catalog

Issuie library card

Cancel
membership

Aegister/Update
account

Login/Logout

<<includes>
Checkout book
<<include>>
Remove
reservation
Henew boak

Resarve book

View account

<<gviends>
Pay fine Return book

Use case diagram

<<include=> Add Book
<<include>>
Remave book
<<includes>
Edit book
<<extend>> Register new
account
Librarian
Issue book
Send overdue
notification

Send reservation
available notification

Systam
Send reservation
canceled notifleation |

Here are the top use cases of the Library Management System :

Add/Remove/Edit book : To add, remove or modify a book or book

item.

Search catalog : To search books by title,
date.

author, subject or publication

Register new account/cancel membership : To add a new member or
cancel the membership of an existing member.

Check—out book : To borrow a book from the library.

Reserve book : To reserve a book which is not currently available.

Renew a book : To reborrow an already checked—out book.

Return a book : To return a book to the library which was issued to

a member.

Case Study - II

Library Management

System

181

Software Engineering

182

10.
11.

12.

Class diagram :
Here are the main classes of our Library Management System :

Library : The central part of the organization for which this software
has been designed. It has attributes like 'Name' to distinguish it from
any other libraries and 'Address' to describe its location.

Book : The basic building block of the system. Every book will have
ISBN, Title, Subject, Publishers, etc.

BookItem : Any book can have multiple copies; each copy will be
considered a book item in our system. Each book item will have a unique
barcode.

Account : We will have two types of accounts in the system, one will
be a general member, and the other will be a librarian.

LibraryCard : Each library user will be issued a library card, which
will be used to identify users while issuing or returning books.

BookReservation : Responsible for managing reservations against book
items.

BookLending : Manage the checking—out of book items.

Catalog : Catalogs contain list of books sorted on certain criteria. Our
system will support searching through four catalogs : Title, Author,
Subject, and Publish—date.

Fine : This class will be responsible for calculating and collecting fines
from library members.

Author : This class will encapsulate a book author.

Rack : Books will be placed on racks. Each rack will be identified by
a rack number and will have a location identifier to describe the physical
location of the rack in the library.

Notification : This class will take care of sending notifications to library
members.

15> | i <<tlataTypes> <<tataTypess
BookFormat BookStatus ReservationStatus AccountStatus Address Person
Hardcover Available Walting Active streatAddress: string name:
Paparback Resarved Pending Closed city: string. address: 55
Atidiobook Loaned Completed Canceled state: string emalil; string
Eboak Lost Canceled Blacklisted zipoode: string phone: string
Newspaper Nane: Nangt ‘country: string
fagasics iy
Journal
} Author | Library | Librarian | Member
‘ name: string |ﬂarne: string | addBookitem(): hool daleOiMembership: date
| description: string address: Address | biockMember(): bool totalBooksCheckedout: int
[i
| getaNiame():siring | getAddress(): Address | unblockMermberd: 660 || getTotalCheckedoutBooks(); int
. 1 \ /
. ?\"é?l Extends Extends
Baak . » M K
1SBN: string Baokitem | Account LibraryCard
|t string barcode: string id: string cardNumber: string
| subject: string IsReterenceOnly: bool o5 password: string barcode: string
| publisher: string 4 | Domawed: date €—barrows. stalus: AccountStalus issuedAl: date
Exten 1
| language: string dueDate: date person; Person active: boal
| numberOIPages: Int o 0.5
i &g price: double reselPassword(): bool 1 IsActive(): bool
| getTitie(): sting format: BookFarmat , — 5
A stalus: BaokStatus
daleQfPurchase: date . makes seans
against <
blicationDate:
i o - |
& |1 * placed at) .
records| number: int I checkout(): boal ‘871 ‘
locationidentifier: string o o, id: string
- GraalionDete: dats registeredAl: date
.._,- 1 status: ResernvationStatus inHvE: tiool
Catal A — :
log) 1 getSlatus(): ReservationSiatus {sActvei): bool
creationDate: date E 1 ionDetails(): vati
<<interface>> ; =
tatalBooks: int Search
searchByTitle(stri BookLend]
bookTitles: Map<string, fist> === searchB| [‘ ng‘L' L
; i searchBySubjecl(sidng) + | creationDats: date
bookAuthors: Map<string, list> searchByPubDate(datelime)
dueDate: date
bookSubjects: Map<string, list> .
— returnDate: date
bookPublicationDates: Map<date, list> 1
Notification stReturnDale): date
updateCatalog(): bool -G U
—L> notificationid: int 1
crealedOn: date
. 0.1
content: string
Fine
sendNatification(): bool L : double | CreducaraTrarisaction.
Exiends T amount: doul - "
getAmount(): double nameOnCard: string
PostalNotification T‘ Extends ChackTransaction
1
address: Address bankName: strin
FineTransaction Extangs | "
" checkMNumber: siring
creationDals: date e
EmailNotification <1
‘emall: string fmitind: dolhis Extends, CashTransaction
h initiateTransaction(): bool _“”hTBﬁﬂ%ﬂ: doutle |

Class diagram

BT Ty

Tlanshsime ||
rERETT_Sasw Tk
_—
il g

S i i

for Library Management System

UML conventions

T Csidom s wlefaces denchd Ik Denwasatart

Class’ [Fvefy 300 227 NAve Srofaitel B8 mwTedl
AEshiml ceised @ QncENad Ty e Tei v

Gwnsrnitaton: & reciemantz 1L

Embharimmie A nhet Banl A8 B

Ui iiftwiien A usey Phactace B

Susncinbss A and B ol e el

- iondl Adssciition & can ol B, Sof Fet vis veriil
Aggregation A Tas-an redeson o £ B can ankt sShnt &

Cmnpmilion & hel-a Filecs of 8§ cannl weml et 4

UML Conventions

Case Study - II

Library Management

System

183

Software Engineering

184

13.2.8 Conceptual Model of our Proposed Library Management System :
13.2.8.1 Analyzing & Specification :

We have found we have three libraries in three different buildings in
an average each library has 5000 books. Different department has different
library in a separate building Library administrator maintains an account (khata)
to keep information about the book no student could lend any book or even
couldn't see what the books in the library are.

To reach our project goals our LMS system must has to provide following
features :

v' Student could see book list
Student could lend book from library
Administrator has to have the option add edit delete remove the booklist.

Administrator & student could see the borrowed the book list

DN NN

The total system should be internet based.

13.3 Let Us Sum Up :

In this unit we have learnt project initiation, execution and development
in project life cycle. We also seen how requirements are going to gather and
for gathering requirement interview method is going to use.

We also seen about different development phase like analysis the
requirements of the project, Module Analysis, Develop Modules, Integrate
Modules, and Test, bug finding and bug fixing.

We also seen about the Normal user, Administrator and Registered user
as a part of design of system model.

13.4 Assignment :

1. Discuss Project Life Cycle.

13.5 Activities :

1. Explain Requirement Determining.

13.6 Case Study :

Explain Development phase and Design of System model.

13.7 Further Reading :

L. Bruegge, B. and A. H. Dutoit (2000). Object—Oriented Software Engineering
: Conquering Complex and Changing Systems. Upper Saddle River, NJ,
Prentice Hall.

2. Cockburn, A. (2001). Agile Software Development. Reading, Massachusetts,
Addison Wesley Longman.

3. Gluch, D. P.,, "A Construct for Describing Software Development Risks,"
Software Engineering Institute, Pittsburgh, PA CMU/SEI-94-TR-14.

CASE STUDY - 111
SOFTWARE PROJECT
MANAGEMENT

14.0 Learning Objectives

14.1 Introduction

14.2 Measuring a Software Project
14.3 Rapid Application Development (RAD) Method
14.4 Prototype Method

14.5 Agile Scrum Method

14.6 Hospital Management System
147 Let Us Sum Up

14.8 Glossary

14.9 Assignment

14.10 Activities

14.11 Case Study

14.12 Further Readings

14.0 Learning Objectives :

After learning this unit, you will be able to understand :

. Basic of RPC arrangement
. Understanding of Shared virtual memory
. Concept of Unix Processing

. Idea about Unix Shell

14.1 Introduction :

Many software projects carry different scenarios in terms o0f completion
and finalization. They fail in developing required functionality which is available
in their schedule with planned budget. It results in lack of quality. Hence from
the past years many companies started taking interest to enhance software
development. These initiatives mostly focus on improving the software processes
and the technology used during software development. One area often
underestimated but crucial for every software development project is project
management. Project management is one of the key factors influencing the
project success or failure.

14.2 Measuring a Software Project :

At first, we conducted a study whose purpose was to assess and better
understand the current practices and problems of software project management
as well as how they impact software development projects. The investigation
was performed by means of structured, on—site interviews with software project
managers. The questionnaire used for these interviews covers more than 70
factors potentially influencing the process and outcomes of software projects.

185

Software Engineering

186

The questions mainly address human factors and organizational aspects. In case
the interviewed project managers had managed more than one software project,
they were asked to answer the questions for each of these software projects.
Thus, the project managers could supply all the information they had acquired.
But it became apparent that the same project manager answered most of the
questions identically for every project he had managed. The data in the
following sections describe the kinds of information we collected.

For this aspect it had to be analyzed in which way the project environment
had affected the course of the project and in particular project management
activities. In our investigation we considered the following environmental
factors : senior management, users, customers, and subcontractors.

Based on the results of the first assessment we performed a second
investigation by measuring an already completed software development project
in considerable detail. Its goal was to verify whether the qualitative and
subjective information collected during the first study could be validated and
melded with the quantitative and qualitative data of a measured software project.
Measuring a software project requires multiple sources of information. Hence,
the empirical investigation was implemented as follows : At the beginning, as
in our first study, we performed structured interviews with the technical and
the project manager of the examined software project. In addition, we executed
written questionings with the project staff. Some information concerning defect
and change management data was provided by a tracking system used in the
software project. Data on the project key deliverables such as specification,
source code, and user documentation were collected by applying several code,
size, and complexity metrics.

For each method and tool used in the software project we recorded
information on the schedule of application, the impact on productivity and on
quality, the costs caused for purchasing the tool and for training as well as
the usefulness of the method or tool. Furthermore, we were interested in the
general tool availability. In case of defect removal methods, some more
information was required. To explore the effectiveness of quality assurance
activities applied in the project we collected information on the number of
defects found and the effort spent for the quality assurance activity. For every
defect we recorded the origin, severity, the amount of effort required to fix
it, and the quality assurance activity that had detected the defect.

Result :

The first investigation shows that the effort project managers invested
in leading a project was in the range of 5 to 100% of their overall working
time. Although even those project managers who spent less time for project
management activities (5—35%) regarded this time as adequate and sufficient,
analysis of the data indicates that less time for project managing and controlling
often led to enormous overruns in cost and schedule. As a consequence, 75%
of the investigated projects were not completed in the planned schedule — the
deviations from schedule were up to 150%. Another interesting aspect in this
context is that most project managers regarded bad education of team members,
moving requirements, or unstable developing environments as the main reasons
for those overruns in schedule. If more time was spent in managing the project
and controlling its progress the deviations from schedule were minor (from
20-70%). Here project managers regarded too optimistic planning as the main
reason for the overruns in schedule.

The second investigation verifies these results. It shows that the project
manager could only spend a maximum of 50% of his overall working time
for leading the project, because at the same time he participated in up to four
different software projects. The project, too, was completed with enormous cost
and schedule overruns.

14.3 Rapid Application Development (RAD) Method :

. Introduction :

Rapid Application Development is an advanced development model which
provides extra significance to rapid prototyping and fast response over an
extensive development and testing cycle. This model agrees developers to create
multiple repetitions and apprises to a software rapidly, without the requirement
to resume a development plan from scratch each time.

It is considered to take benefit of great development software like CASE
tools, prototyping tools and code initiators. The main objectives of RAD are :

v’ High Speed
v' High Quality
v Low Cost.

RAD extremely increases the quality of completed systems while dropping
the time it proceeds to construct them.

Rapid Application Development is a software development method that
uses marginal planning all for rapid prototyping. The functional components
are developed all together as prototypes and are joined to make the whole
product for quicker product delivery.

Aralisia and | Peveiop B 'lr R \"\
v ol Iimonstrute 1 Y Tesling p Implemiaiation -
dmlgn 7\ Refine S /
sN — 1
= | ——
| - — S
Rapid Application Development Model
Study :

Business needs to reduce the consumption of vehicle in the plant area.
Convention of the vehicle is for movement of logistics and to give a serious
maintenance in un—planned power cut. Essential online reservation of vehicles
as on mobile application.

The suggested output will be a mobile application produced and data
put in storage on cloud. Technology used is J2ME (Java 2 Platform, Micro
Edition) and Oracle and Google application used to identify the locality and
shortest path in source and destination. OLA type of application organized for
users together with phone booking skill.

SDLC Model improved RAD Model and other related models like
prototype, agile, iterative enhancement models and spiral.

We have arranged a small application with restricted possibility only with
booking ability for a small number of user division and for single branch. Once

Case Study - III
Software Project
Management

187

Software Engineering

188

fruitfully completed then joined rest of the elements like Booking Cancellation,
Advance Booking, Urgent Booking, Generate Bill and then installed it for all
places and all sectors.

14.4 Prototype Method :

. Introduction :

Prototyping Model is a software development model in which prototype
is built, tested, and reworked till an adequate prototype is completed. It also
generates base to produce the complete software. It works best in situations
where the project's needs are not known in detail.

The lifecycle of the prototype. Some are built quickly, tested, thrown
away, and then replaced with an improved version—this is called rapid prototyping.
Most prototypes will go over five different phases :

v' Defining

v' Focusing on features
v" Production

v’ Testing

v' Presenting

Prototype Model is an initial model, ideal, or publication of a product
constructed to test a model or method. It is a time used in a selection of
frameworks, comprising semantics, design, electronics, and software encoding.
A prototype is aimed to check and attempt a new design to improve accuracy
by system experts and managers.

Proto Typing [~
v |
F \

v
Imitinl Design Customer Customer
Regquirememts | Evaluation Sanslied
[3 |
\ - .
h Ruview & d
- Updation | 'S

| Maintain | Test | Development

Proto Type Maodel

Study :

Business needs to build a GPS tracker that can be designed on the
railways holders to get the most out of the consumption and display the similar.

The suggested output will be cloud based web application shaped and
data put in storage on cloud. Technology used is Java Hibernate and Oracle
application server for checking. Furthermore, a GPS generated distinctly by
research and development sector.

SDLC Model Improved Prototyping Model and other related model is
Rapid Application Development Model.

We have arranged a small website application and let a single GPS tracker
as a path and observe its movement to see the holder point among a specific
range. When it got successfully completed then executed whole project.

14.5 Agile Scrum Model :

. Introduction :

Scrum is an agile development method used in the development of
Software based on an iterative and incremental methods. Scrum is flexible,
fast and effective active framework that is designed to provide value to the
customer during the development of the project.

Agile scrum approach has several profits. It inspires products to be built
faster, as each set of aims must be accomplished within each sprint's time frame.
It also involves repeated scheduling and goal setting, which helps the scrum
group effort on the current run's objectives and increase production.

This model considers that each task desires to be held otherwise and
the current approaches essential to be custom—made to top suit the project
necessities. In Agile, the jobs are separated to phase cases to provide particular
structures for a statement.

(e)

treration 1

g

Neration 2

e
==
[Twsting | Wedq Analyils

Iteration 3

Soiene

Agile Scrum Model

Iterative method is occupied and functioning software construct is provided
after separately reiteration. Respectively construct is incremental in expressions
of sorts; the final form embraces all the structures essential by the consumer.

Study :

Business needs to make panel to show the Overall Equipment Effectiveness
for all manufacturing plants on monthly basis and developments for whole year
and make available an ability to show the drawbacks for concentrated Overall
equipment effectiveness. We have organized reports for a plant in Tableau
desktop tool (data visualization software) which was free of cost. After than
we have applied it in authorized form and installed it in all departments as
per suggested output. SDLC Model improved Agile Scrum Model and the other
appropriate model is RAD. We have developed a Web Application and installed
it in one sector for a month and then installed it for all sectors during completion
of development process.

Case Study - III
Software Project
Management

189

Software Engineering

190

14.6 Hospital Management System :

HC Hospital Management System :

HC Infotech Ltd. has developed a core package — Hospital Management
System that addresses all major functional areas of Hospital. The development
environment ensures that HC HMS has the portability and connectivity to run
on virtually all standard hardware platforms, with stringent data security and
easy recovery in case of a system failure. HC HMS provides the benefits of
streamlined operations, enhanced administration and control, improved response
to patient care, cost control, and increased profitability.

Some of the Subsystem Modules in HC HMS :

Reception : The reception module handles various enquiries about the
patient's admission and discharge details, bed census, and the patient's movements
within the hospital. The system can also handle fixed—cost package deals for
patients as well as Doctor Consultation and Scheduling, Doctor Consultancy
Fees and Time Allocation.

OPD, IPD Registration and Admission : This module helps in registering
information about patients and handling both IPD and OPD patient's query.
A unique ID is generated for each patient after registration. This helps in
implementing customer relationship management and also maintains medical
history of the patient.

Administration : This module handles all the master entry details for
the hospital requirement such as consultation detail such as doctor specialization,
consultancy fee, and service charges.

Security : This module handles multi-level security of HC HMS so that
every admission and transaction can be traced with the help of user ID.

Pharmacy Store : This module deals with all medical items. This module
helps in maintaining Item Master Maintenance, Receipt of Drugs/consumables,
issue handling of material return, generating retail bills, stock maintenance. It
also helps in fulfilling the requirements of both IPD and OPD Pharmacy.

Purchase : This module helps in raising purchase orders, maintaining
purchase details and other purchase related details.

Phlebotomy : This specific module caters in maintaining test requisitions,
sample collection status and various procedures for collection of samples for
the tests prescribed.

Laboratory : This module enables the maintenance of investigation
requests by the patient and generation of test results for the various available
services, such as clinical pathology, X—ray and ultrasound tests. Requests can
be made from various points, including wards, billing, sample collection and
the laboratory receiving point. The laboratory module is integrated with the
in—patient/ outpatient registration, wards and billing modules.

Emergency : The development of this module keeps in mind the criticality
of this department. Every care has been taken to ensure that minimum of time
is taken to register the patient, so as to reduce the tension of the already
stressed—out relatives. Neither any detailed contact information of the patient
is required nor any information about the payment type is solicited.

OT Management : This module deals with operation theatre activities
such as equipment used detail, resource ordering, drug order, gynecology detail

recording, laboratory order and reports transfer requisition, patient monitoring,
blood request, new born baby detail and details of delivery.

Minor Surgery : This module is same in features as in OT management
though the function is different. This module deals with the surgeries minor
in nature, which does not require complete anesthesia.

Blood Bank : The blood bank module provides information on the
collection and storage of blood, results of blood tests, cross—matching
identifications, and transfusion reactions.

Ward Management : The ward management module takes care of
medical equipment, doctor visit, vitals recording, patient case sheet, diet ordering,
blood requisition, transfer intimation and discharge intimation etc. It also deals
with the maintenance of the wards, inter— and intra—ward transfers.

OPD and IPD Billing : The billing module facilitates cashier and billing
operations for different categories of patients and automatic posting of charges
for different services such as lab tests, medicines supplied, consulting fees,
food and beverage charges, etc. It enables credit party billing through integration
with the financial accounting module.

Intensive Care Unit (ICU) : This module caters to scheduling, maintaining
ICU Record, drug orders, consultant details, specific blood requests etc.

Food and Beverages : This module facilitates collection of information
regarding various diet routines of patients and identifies the resources required
to satisfy diet orders. Depending on the diet orders and other requests from
canteen, the kitchen order plan can be prepared to decide the menu for the
day. Analysis of the consumption patterns helps in better and efficient management
of the kitchen.

Discharge Summary : The module helps in generating patient's discharge
summary, which includes patient's health at the time of discharge, medical
history, various diagnosis and drug prescriptions, history of present illness and
course in hospital.

Financial Accounting : This module deals with cash/bank, receipts/
payments, journal vouchers, etc. Various books of accounts, such as cashbook,
bankbook and ledgers, can be generated and maintained using this module. It
can also generate trial balance, balance sheet, and profit and loss statements.

Marketing Module : This module ensures that the hospital gets maximum
exposure to the general public and vice versa. This module keeps track of the
enquiries made at the reception and follows the lead.

Doctor's Module : This module helps the doctors to keep a track of
the entire medical history of a particular patient. Details such as the medicines
prescribed, general medical records, previous consultations are all available to
the doctor.

HR Management : Various MIS Reports are generated on the above
modules for the smooth functioning of the hospital management so that checks
can be made on any irregularity done in the hospital.

14.7 Let Us Sum Up :

In this unit we have learnt that the effort of the project manager in
investigating in leading project appears in the range from 5 to 100% with overall
working time.

Case Study - III
Software Project
Management

191

Software Engineering

192

Further it is seen that the even those project managers who spent less
time for project management activities (5-35%) regarded this time as adequate
and sufficient, analysis of the data indicates that less time for project managing
and controlling often led to enormous overruns in cost and schedule.

In this unit we have learnt that Rapid Application Development Model
reduces the consumption of vehicles in—plant area and provided fast rapid
prototyping, extensive responses and fast testing.

In this we have learnt about Agile Scrum Methodology, scrum can help
groups complete project deliverables quickly and efficiently. Scrum confirms
actual use of time and money. Developments are coded and tested during the
run review. Works well for fast-moving development projects. The team gets
clear reflectivity through scrum meetings. Scrum approves feedback from
customer. The individual work of each group member is observable during daily
scrum meetings.

In this we have learnt about the flexibility of prototyping model in design.
Easiness of model in error detection. In this model new requirements can be
easily accommodated. It is ultimate for online systems.

14.8 Glossary :

1. Risk — It is related to potential future harm which appears from some
action.

2. Marginal Planning — Marginal refers to the focus on the cost or benefit
of the next unit or individual. Companies use marginal planning as a
decision—making tool to support them maximize their possible profits.

3. GPS Tracker — A GPS tracking unit or simply tracker is a direction—
finding device generally on a vehicle, asset, person or animal that uses
the Global Positioning System (GPS) to decide its association and decide
its geographic position to determine its location.

4. Scrum — Scrum is a specific Agile methodology that is used to facilitate
a project.

5. Agile — Agile is a project management philosophy that utilizes a core
set of values or principles.

14.9 Assignment :

1. Explain the features show how to manage project by manager in an
effective manner.

14.10 Activities :

L. Explain the view of project managers in terms of education provided
to team members.

14.11 Case Study :

Compile and explain the necessary steps used in effectively managing
a project.

14.12 Further Reading :

1. https://www2.swc.rwth—aachen.de/docs/98 FESMA .pdf?

BLOCK SUMMARY :

In this block, you have learnt and understand about the goals and
objective, system scope of system, project estimation, project resource in which
people, minimal hardware requirement, minimal software requirements are
going to define. We also seen about Risk management in which we learnt scope
and intent of RMMM activities and risk description. As a part of risk description,
we learn about Business impact risk, Customer risk, Development risk, Employee
risk, Process risk, Product size, Technology risk. We also seen about the master
schedule, the structure of team and the roles of team members, and tracking

and control mechanism.

The block detailed about the basic of project initiation, execution and
development in project life cycle. We also seen how requirements are going
to gather and for gathering requirement interview method is going to use. We
also seen about different development phase like analysis the requirements of
the project, Module Analysis, Develop Modules, Integrate Modules, and Test,
bug finding and bug fixing.

BLOCK ASSIGNMENT :

<> Short Questions :

1. Explain scope and intent of RMMM activities.

2. Explain organizational role of risk management.
3. Write a note on Project Team Organization.

4, Write a note on Tracking and Control System.
5. Explain determining requirement

“» Long Questions :

1. Explain basic Project Plan of Waste Management System.
2. Write a detailed note on Project Estimates.
3. Discuss : Risk Description

4, Write a detailed note on Project Life Cycle.

5. Write a note on Development Phase.

193

< Enrolment No. : | |

1. How many hours did you need for studying the units ?

Unit No. 1 2 3

No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D |:] I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

Feed back to CYP
Question

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

3. Any other Comments

194

@ BAOU
% Education
2 for All

DR.BABASAHEB AMBEDKAR

OPEN UNIVERSITY

‘Jyotirmay' Parisar,
Sarkhej-Gandhinagar Highway, Chharodi, Ahmedabad-382 481.

Website : www.baou.edu.in

	Page 1
	Title
	Block_1-4
	Unit-1
	Block_5-8
	Unit-2
	Block_9-11
	Unit-3
	Block_12-14
	Unit-4
	Page 2

