saou DR.BABASAHEB AMBEDKAR

(32" OPEN UNIVERSITY

BCAR-503
Mobile Application Development

MOBILE APPLICATION DEVELOPMENT
(USING ANDROID)

__ <gmou
6l Education
g N for All

DR. BABASAHEB AMBEDKAR OPEN UNIVERSITY
AHMEDABAD

Editorial Panel

Author : Dr. Mahammad Idrish I. Sandhi
Associate Dean
Faculty of Computer Science
Sankalchand Patel University
Visnagar

Editor : Dr. Dharmeshkumar B. Bhavsar
Director
Chimanbhai Patel Institute of
Computer Applications
Affiliated to Gujarat University

Language Editor : Dr. Bhupesh Gupta
M.A., M.Phil., Ph. D.
Assistant Professor
Lokmanya College of Commerce
Ahmedabad

ISBN 978-93-91071-13-4

Edition : 2022

Copyright © 2020 Knowledge Management and Research
Organisation.

All rights reserved. No part of this book may be reproduced,
transmitted or utilized in any form or by a means, electronic or
mechanical, including photocopying, recording or by any information
storage or retrieval system without written permission from us.

Acknowledgment

Every attempt has been made to trace the copyright holders of
material reproduced in this book. Should an infringement have
occurred, we apologize for the same and will be pleased to make
necessary correction/amendment in future edition of this book.

ROLE OF SELF-INSTRUCTIONAL MATERIAL
IN DISTANCE LEARNING

The need to plan effective instruction is imperative for a
successful distance teaching repertoire. This is due to the fact that
the instructional designer, the tutor, the author (s) and the
student are often separated by distance and may never meet in
person. This is an increasingly common scenario in distance
education instruction. As much as possible, teaching by distance
should stimulate the student's intellectual involvement and contain
all the necessary learning instructional activities that are capable
of guiding the student through the course objectives. Therefore,
the course / self-instructional material is completely equipped

with everything that the syllabus prescribes.

To ensure effective instruction, a number of instructional
design ideas are used and these help students to acquire knowledge,
intellectual skills, motor skills and necessary attitudinal changes.
In this respect, students' assessment and course evaluation are

incorporated in the text.

The nature of instructional activities used in distance
education self-instructional materials depends on the domain of
learning that they reinforce in the text, that is, the cognitive,
psychomotor and affective. These are further interpreted in the
acquisition of knowledge, intellectual skills and motor skills.
Students may be encouraged to gain, apply and communicate
(orally or in writing) the knowledge acquired. Intellectual-skills
objectives may be met by designing instructions that make use of
students' prior knowledge and experiences in the discourse as the

foundation on which newly acquired knowledge is built.

The provision of exercises in the form of assignments,
projects and tutorial feedback is necessary. Instructional activities
that teach motor skills need to be graphically demonstrated and
the correct practices provided during tutorials. Instructional
activities for inculcating change in attitude and behaviour should
create interest and demonstrate need and benefits gained by
adopting the required change. Information on the adoption and

procedures for practice of new attitudes may then be introduced.

Teaching and learning at a distance eliminate interactive
communication cues, such as pauses, intonation and gestures,

associated with the face-to—-face method of teaching. This is

particularly so with the exclusive use of print media. Instructional
activities built into the instructional repertoire provide this missing
interaction between the student and the teacher. Therefore, the
use of instructional activities to affect better distance teaching is

not optional, but mandatory.

Our team of successful writers and authors has tried to

reduce this.

Divide and to bring this Self-Instructional Material as the
best teaching and communication tool. Instructional activities are
varied in order to assess the different facets of the domains of

learning.

Distance education teaching repertoire involves extensive use
of self-instructional materials, be they print or otherwise. These
materials are designed to achieve certain pre-determined learning
outcomes, namely goals and objectives that are contained in an
instructional plan. Since the teaching process is affected over a
distance, there is need to ensure that students actively participate
in their learning by performing specific tasks that help them to
understand the relevant concepts. Therefore, a set of exercises is
built into the teaching repertoire in order to link what students
and tutors do in the framework of the course outline. These could
be in the form of students' assignments, a research project or a
science practical exercise. Examples of instructional activities in
distance education are too numerous to list. Instructional activities,
when used in this context, help to motivate students, guide and

measure students' performance (continuous assessment)

PREFACE

We have put in lots of hard work to make this book as user-
friendly as possible, but we have not sacrificed quality. Experts
were involved in preparing the materials. However, concepts are
explained in easy language for you. We have included many tables

and examples for easy understanding.

We sincerely hope this book will help you in every way you

expect.

All the best for your studies from our team!

MOBILE APPLICATION DEVELOPMENT

(USING ANDROID)

Contents

BLOCK 1 :

INTRODUCTION TO ANDROID

Unit 1

Unit 2

Unit 3

HISTORY OF MOBILE SOFTWARE DEVELOPMENT

Introduction, The Way Back When, "The Brick", Wireless
Application Protocol (WAP), Proprietary Mobile Platforms

THE OPEN HANDSET ALLIANCE

Introduction, Google Goes Wireless, Forming the Open
Handset Alliance, Manufacturers : Designing the Android
Handsets, Mobile Operators : Delivering the Android
Experience, Content Providers : Developing Android
Applications, Taking Advantage of All Android Has to
Offer, Android Platform Differences, Android : A Next—
Generation Platform, Free and Open Source, Familiar
and Inexpensive Development Tools, Freely Available
Software Development Kit, Familiar Language, Familiar
Development Environments, Reasonable Learning Curve
for Developers, Enabling Development of Powerful
Applications, Rich, Secure Application Integration, No
Costly Obstacles to Publication, A "Free Market" for
Applications, A New and Growing Platform, The Android
Platform, Android's Underlying Architecture, Security
and Permissions, Developing Android Applications,
Setting Up Your Android Development Environment,
Configuring Your Development Environment, Configuring
Your Operating System for Device Debugging,
Configuring Your Android Hardware for Debugging,
Upgrading the Android SDK, Getting to Know the
Android Tools, Android SDK and AVD Manager, Android
Emulator, Dalvik Debug Monitor Server (DDMS), Android
Debug Bridge (ADB), Android Hierarchy Viewer

BUILDING A SAMPLE ANDROID APPLICATION

Introduction, Testing Your Development Environment,
Building Your First Android Application, Creating and
Configuring a New Android Project, Core Files and
Directories of the Android Application, Creating an AVD

for Your Project, Running Your Android Application in
the Emulator, Adding Logging Support to Your Android
Application

BLOCK 2 :

ANDROID APPLICATION DESIGN ESSENTIALS

Unit 4

Unit 5

Unit 6

ANATOMY OF AN ANDROID APPLICATIONS &
ANDROID TERMINOLOGIES

Introduction, Anatomy of Android Application &
Terminologies, Mastering Important Android
Terminology, Using the Application Context, Performing
Application Tasks with Activities, Managing Activity
Transitions with Intents, Working with Services,

Receiving and Broadcasting Intents

APPLICATION CONTEXT, ACTIVITIES, SERVICES,
INTENTS & RECEIVING AND BROADCASTING
INTENTS

Introduction, Using the Application Context, Retrieving
the Application Context, Using the Application Context,
Performing Application Tasks with Activities, The Lifecycle
of an Android Activity, Using Activity Callbacks to
Manage Application State and Resources, Managing
Activity Transitions with Intents, Transitioning Between
Activities with Intents, Launching a New Activity by
Class Name, Creating Intents with Action and Data,
Launching an Activity Belonging to Another Application,
Passing Additional Information Using Intents, Organizing
Activities and Intents in Your Application Using Menus,
Working with Services, Receiving and Broadcasting

Intents

ANDROID MANIFEST FILE AND ITS COMMON
SETTINGS & USING PERMISSION

Introduction, Configuring the Android Manifest File,
Editing the Android Manifest File, Editing the Manifest
File Using Eclipse, Editing the Manifest File Manually,
Managing Your Application's Identity, Versioning Your
Application, Setting the Application Name and Icon,
Enforcing Application System Requirements, Targeting

Specific SDK Versions, Specifying the Minimum SDK

Unit 7

Version, Specifying the Target SDK Version, Specifying
the Maximum SDK Version, Enforcing Application System
Requirements Working with Permissions, Specifying
Supported Input Methods, Specifying Required Device
Features, Specifying Supported Screen Sizes, Working
with External Libraries, Working with Permissions,
Registering Permissions Your Application Requires,
Registering Permissions Your Application Grants to

Other Applications

MANAGING APPLICATION RESOURCES IN A
HIERARCHY & WORKING WITH DIFFERENT TYPES
OF RESOURCES

Introduction, What Are Resources ?, Storing Application
Resources, Understanding the Resource Directory
Hierarchy, Using the Android Asset Packaging Tool,
Resource Value Types, Storing Different Resource Value
Types, Storing Simple Resource Types Such as Strings,
Storing Graphics, Animations, Menus, and Files,
Understanding How Resources Are Resolved, Accessing
Resources Programmatically, Working with different
types of resources, Working with String Resources,
Working with String Arrays, Working with Boolean
Resources, Working with Integer Resources, Working
with Colors, Working with Dimensions, Working with
Simple Drawables, Working with Images, Working with
Animation, Working with Menus, Working with XML
Files, Working with Raw Files, Working with Layouts,
Working with Styles

BLOCK 3 :

ANDROID USER INTERFACE DESIGN ESSENTIALS

Unit 8

USER INTERFACE SCREEN ELEMENTS

Introduction, Introducing the Android Control,
Introducing the Android Layout, Displaying Text to
Users with TextView, Configuring Layout and Sizing,
Creating Contextual Links in Text, Retrieving Text Input
Using EditText Controls, Giving Users Input Choices
Using Spinner Controls, Using Buttons, Check Boxes,
and Radio Groups, Using Basic Buttons, Using Check
Boxes and Toggle Buttons, Using Radio Groups and

Unit 9

Unit 10

Radio Buttons, Getting Dates and Times From Users,
Using Indicators to Display Data to Users, Indicating
Progress with Progress Bar, Adjusting Progress with
Seek Bar, Displaying Rating Data with Rating Bar,
Showing Time Passage with the Chronometer, Displaying
the Time, Providing Users with Options and Context
Menus, Enabling the Options Menu, Enabling the
Context Menu, Handling User Events, Listening for
Touch Mode Changes, Listening for Events on the
Entire Screen, Listening for Long Clicks, Listening for
Focus Changes Working with Dialogs, Exploring the
Different Types of Dialogs, Tracing the Lifecycle of a
Dialog, Working with Styles, Working with Themes

DESIGNING USER INTERFACES WITH LAYOUTS

Introduction, Creating User Interfaces in Android,
Creating Layouts Using XML Resources, Creating Layouts
Programmatically, Organizing Your User Interface,
Understanding View Versus ViewGroup, Sub Topic,
Using Built-In Layout Classes, Using FramelLlayout,
Using LinearLayout, Using RelativeLayout, Using

TableLayout
DRAWING AND WORKING WITH ANIMATION

Introduction, Drawing on the Screen, Working with
Canvases and Paints, Working with Text, Working with
Bitmaps, Working with Shapes, Working with Animation,
Working with Frame-by-Frame Animation, Working

with Tweened Animations

BLOCK 4 :

COMMON ANDROID APIS & DEPLOYING ANDROID
APPLICATION

Unit 11

MANAGING DATA USING SQLITE

Introduction, Creating a SQLite Database, Creating a
SQLite Database Instance Using the Application Context,
Finding the Application's Database File on the Device
File System, Configuring the SQLite Database Properties,
Creating Tables and Other SQLite Schema Objects,
Creating, Updating, and Deleting Database Records,
Inserting Records, Updating Records, Deleting Records,

Unit 12

Unit 13

Unit 14

Working with Transactions, Querying SQLite Databases,
Working with Cursors, Executing Simple Queries, Closing
and Deleting a SQLite Database, Deleting Tables and
Other SQLite Objects, Closing a SQLite Database,
Deleting a SQLite Database Instance Using the
Application Context, Designing Persistent Databases,
Keeping Track of Database Field Names, Extending the
SQLiteOpenHelper Class, Binding Data to the Application
User Interface, Working with Database Data Like Any
Other Data, Binding Data to Controls Using Data
Adapters

USING ANDROID NETWORKING APIS

Introduction, Accessing the Internet (HTTP), Reading
Data from the Web, Using HttpURLConnection, Parsing
XML from the Network, Processing Asynchronously,
Working with AsyncTask, Using Threads for Network
Calls, Displaying Images from a Network Resource,

Retrieving Android Network Status
USING ANDROID WEB APIS & TELEPHONY APIS

Introduction, Browsing the Web with WebView, Designing
a Layout with a WebView Control, Loading Content into
a WebView Control, Adding Features to the WebView
Control, Building Web Extensions Using WebKit,
Browsing the WebKit APIs, Extending Web Application
Functionality to Android, Using Android Telephony
APIs, Working with Telephony Utilities, Using SMS,
Making and Receiving Phone Calls

SELLING YOUR ANDROID APPLICATION

Introduction, Choosing the Right Distribution Model,
Packaging Your Application for Publication, Preparing
Your Code to Package, Packing and Signing Your
Application, Distributing Your Applications, Selling Your
Application on the Android Market, Signing Up for a

Developer Account on the Android Market

: Education Open University Ahmedabad
" for All

@B AOU Dr. Babasaheb Ambedkar BCAR-503

MOBILE APPLICATION
DEVELOPMENT (USING ANDROID)

BLOCK 1 : INTRODUCTION TO ANDROID

UNIT 1 HISTORY OF MOBILE SOFTWARE DEVELOPMENT

UNIT 2 THE OPEN HANDSET ALLIANCE

UNIT 3 BUILDING A SAMPLE ANDROID APPLICATION

l INTRODUCTION TO ANDROID l

Block Introduction :

Pioneered by the Open Handset Alliance and Google, Android is a hot,
young, free, open—source mobile platform making waves in the wireless world.
This book provides comprehensive guidance for software development teams on
designing, developing, testing, debugging, and distributing professional Android
applications. If you're a veteran mobile developer, you can find tips and tricks
to streamline the development process and take advantage of Android's unique
features. If you're new to mobile development, this book provides everything you
need to make a smooth transition from traditional software development to mobile

development—specifically, its most promising new platform : Android

Block Objectives :

After learning this block, you will be able to understand :

The history of mobile application development

Various mobile proprietary platforms available in market
Formation of OHA (Open Handset Alliance)

Android Platform architecture

Various versions and Codename of Android

To develop the mobile application using Android

To understand the basic of Android Application Development

Block Structure :

Unit 1 : History of Mobile Software Development
Unit 2 : The Open Handset Alliance
Unit 3 : Building a sample Android application

Unit HISTORY OF MOBILE
O1Y SOFTWARE DEVELOPMENT

1.0 Learning Objectives

1.1 Introduction
1.1.1 The Way Back When
1.1.2 "The Brick"
1.2 Wireless Application Protocol (WAP)
1.3 Proprietary Mobile Platforms
1.4 Let Us Sum Up
1.5 Answers for Check Your Progress
1.6 Glossary
1.7 Assignment
1.8 Activities
1.9 Case Study
1.10 Further Reading

1.0 Learning Objectives :

After learning this unit, you will be able to understand :
. The history of mobile application development

. Various mobile proprietary platforms available in market

1.1 Introduction :

To understand what makes Android so compelling, we must examine how
mobile development has evolved and how Android differs from competing
platforms. The mobile development community is at a tipping point. Mobile
users demand more choice, more opportunities to customize their phones, and
more functionality. Mobile operators want to provide value—added content to
their subscribers in a manageable and lucrative way. Mobile developers want
the freedom to develop the powerful mobile applications users demand with
minimal roadblocks to success. Finally, handset manufacturers want a stable,
secure, and affordable platform to power their devices. Up until now a single
mobile platform has adequately addressed the needs of all the parties. Enter
Android, which is a potential game—changer for the mobile development
community. An innovative and open platform, Android is well positioned to
address the growing needs of the mobile marketplace. This chapter explains
what Android is, how and why it was developed, and where the platform fits
in to the established mobile marketplace.

1.1.1 The Way Back When :

Remember way back when a phone was just a phone ? When we relied
on fixed landlines ? When we ran for the phone instead of pulling it out of
our pocket ? When we lost our friends at a crowded ballgame and waited around

Mobile Application
Development
(Using Android)

for hours hoping to reunite ? When
we forgot the grocery list (see Figure
1.1) and had to find a payphone or
drive back home again ?

Those days are long gone.
Today, commonplace problems such
as these are easily solved with a
one-button speed dial or a simple
text message like "WRU ?" or "20
?" or "Milk and ?"

Our mobile phones keep us !
safe and connected. Now we roam Figure 1.1 : Mobile Phone has
around freely, relying on our phones ~ become a crucial shopping accessory
not only to keep in touch with friends, family, and coworkers, but also to tell
us where to go, what to do, and how to do it. Even the most domestic of
events seem to revolve around my mobile phone.

My point here ? Mobile phones can solve just about anything—and we
rely on them for everything these days. You notice that I used half a dozen
different mobile applications over the course of this story. Each application
was developed by a different company and had a different user interface. Some
were well designed; others not so much. I paid for some of the applications,
and others came on my phone. As a user, | found the experience functional,
but not terribly inspiring. As a mobile developer, I wished for an opportunity
to create a more seamless and powerful application that could handle all I'd
done and more. I wanted to build a better bat trap, if you will. Before Android,
mobile developers faced many roadblocks when it came to writing applications.
Building the better application, the unique application, the competing application,
the hybrid application, and incorporating many common tasks such as messaging
and calling in a familiar way were often unrealistic goals. To understand why,
let's take a brief look at the history of mobile software development.

1.1.2 "The Brick" :

The Motorola DynaTAC 8000X was the first commercially available cell
phone. First marketed in 1983, it was 13 X 1.75 x 3.5 inches in dimension,
weighed about 2.5 pounds, and allowed you to talk for a little more than half
an hour. It retailed for $3,995, plus hefty monthly service fees and per—minute
charges. We called it "The Brick,"
and the nickname stuck for many of
those early mobile phones we
alternatively loved and hated. About
the size of a brick, with a battery
power just long enough for half a
conversation, these early mobile
handsets were mostly seen in the
hands of traveling business execs,
security personnel, and the wealthy.
First—generation mobile phones were
just too expensive. The service
charges alone would bankrupt the

Figure 1.2 : The first commercially

_ available mobile phone :
average person, especially when The Motorola DynaTAC

roaming. Early mobile phones were not particularly full featured. (Although,
even the Motorola DynaTAC, shown in Figure 1.2, had many of the buttons
we've come to know well, such as the SEND, END, and CLR buttons.) These
early phones did little more than make and receive calls and, if you were lucky,
there was a simple contacts application that wasn't impossible to use.

The first—generation mobile phones were designed and developed by the
handset manufacturers. Competition was fierce and trade secrets were closely
guarded. Manufacturers didn't want to expose the internal workings of their
handsets, so they usually developed the phone software in—house. As a developer,
if you weren't part of this inner circle, you had no opportunity to write
applications for the phones. It was during this period that we saw the first
"time—waster" games begin to appear. Nokia was famous for putting the 1970s
video game Snake on some of its earliest monochrome phones. Other
manufacturers followed suit, adding games such as Pong, Tetris, and Tic—Tac—
Toe. These early phones were flawed, but they did something important—they
changed the way people thought about communication. As mobile phone prices
dropped, batteries improved, and reception areas grew, more and more people
began carrying these handy devices. Soon mobile phones were more than just
a novelty. Customers began pushing for more features and more games. But
there was a problem. The handset manufacturers didn't have the motivation
or the resources to build every application users wanted. They needed some
way to provide a portal for entertainment and information services without
allowing direct access to the handset.

1.2 Wireless Application Protocol (WAP) :

As it turned out, allowing direct phone access to the Internet didn't scale
well for mobile. By this time, professional websites were full color and chock
full of text, images, and other sorts of media. These sites relied on JavaScript,
Flash, and other technologies to enhance the user experience, and they were
often designed with a target resolution of 800x600 pixels and higher. When
the first clamshell phone, the Motorola StarTAC, was released in 1996, it merely
had an LCD 10—digit segmented display. (Later models would add a dot—matrix
type display.) Meanwhile, Nokia released one of the first slider phones, the
8110—fondly referred to as "The Matrix Phone" because the phone was heavily
used in films. The 8110 could display four lines of text with 13 characters
per line. Figure 1.3 shows some of the common phone form factors.

Ty
T ' =
| \ _‘—5:._5.', i f ;;HE‘:-\ |
I\ \ - . - ;"--.__.

=
Figure 1.3 : Various mobile phone form factors :
the candy bar, the slider, and the clamshell.

V&) & &

History of Mobile
Software Development

Mobile Application
Development
(Using Android)

With their postage stamp—sized low—resolution screens and limited storage
and processing power, these phones couldn't handle the data—intensive operations
required by traditional web browsers. The bandwidth requirements for data
transmission were also costly to the user. The Wireless Application Protocol
(WAP) standard emerged to address these concerns. Simply put, WAP was a
stripped—down version of HTTP, which is the backbone protocol of the Internet.
Unlike traditional web browsers browsers were designed to run within the
memory and bandwidth constraints of the phone. Third—party WAP sites served
up pages written in a markup language called Wireless Markup Language
(WML). These pages were then displayed on the phone's WAP browser. Users
navigated as they would on the Web, but the pages were much simpler in design.
The WAP solution was great for handset manufacturers. The pressure was off—
they could write one WAP browser to ship with the handset and rely on
developers to come up with the content users wanted. The WAP solution was
great for mobile operators. They could provide a custom WAP portal, directing
their subscribers to the content they wanted to provide, and rake in the data
charges associated with browsing, which were often high. Developers and
content providers didn't deliver. For the first time, developers had a chance
to develop content for phone users, and some did so, with limited success.
Most of the early WAP sites were extensions of popular branded websites, such
as CNN.com and ESPN.com, which were looking for new ways to extend their
readership. Suddenly phone users accessed the news, stock market quotes, and
sports scores on their phones. Commercializing WAP applications was difficult,
and there was no built-in billing mechanism. Some of the most popular
commercial WAP applications that emerged during this time were simple
wallpaper and ringtone catalogues that enabled users to personalize their phones
for the first time. For example, a user browsed a WAP site and requested a
specific item. He filled out a simple order form with his phone number and
his handset model. It was up to the content provider to deliver an image or
audio file compatible with the given phone. Payment and verification were
handled through various premium priced delivery mechanisms such as Short
Message Service (SMS), Enhanced Messaging Service (EMS), Multimedia
Messaging Service (MMS), and WAP Push. WAP browsers, especially in the
early days, were slow and frustrating. Typing long URLs with the numeric
keypad was onerous pages were often difficult to navigate. Most WAP sites
were written one time for all phones and did not account for individual phone
specifications. It didn't matter if the end user's phone had a big color screen
or a postage stamp—sized monochrome screen; the developer couldn't tailor the
user's experience. The result was a mediocre and not very compelling experience
for everyone involved. Content providers often didn't bother with a WAP site
and instead just advertised SMS short codes on TV and in magazines. In this
case, the user sent a premium SMS message with a request for a specific
wallpaper or ringtone, and the content provider sent it back. Mobile operators
generally liked these delivery mechanisms because they received a large portion
of each messaging fee. WAP fell short of commercial expectations. In some
markets, such as Japan, it flourished, whereas in others, such as the United
States, it failed to take off. Handset screens were too small for surfing. Reading
a sentence fragment at a time, and then waiting seconds for the next segment
to download, ruined the user experience, especially because every second of
downloading was often charged to the user. Critics began to call WAP "Wait
and Pay."

Finally, the mobile operators who provided the WAP portal (the default
home page loaded when you started your WAP browser) often restricted which
WAP sites were accessible. The portal enabled the operator to restrict the
number of sites users could browse and to funnel subscribers to the operator's
preferred content providers and exclude competing sites. This kind of walled
garden approach further discouraged third—party developers, who already faced
difficulties in monetizing applications.

1.3 Proprietary Mobile Platforms :

It came as no surprise that users wanted more—they will always want
more. Writing robust applications with WAP, such as graphic—intensive video
games, was nearly impossible. The 18—year—old to 25-year—old sweet—spot
demographic—the kids with the disposable income most likely to personalize
their phones with wallpapers and ringtones—looked at their portable gaming
systems and asked for a device that was both a phone and a gaming device
or a phone and a music player. They argued that if devices such as Nintendo's
Game Boy could provide hours of entertainment with only five buttons, why
not just add phone capabilities ? Others looked to their digital cameras, Palms,
Blackberries, iPods, and even their laptops and asked the same question. The
market seemed to be teetering on the edge of device convergence. Memory
was getting cheaper, batteries were getting better, and PDAs and other embedded
devices were beginning to run compact versions of common operating systems
such as Linux and Windows. The traditional desktop application developer was
suddenly a player in the embedded device market, especially with smartphone
technologies such as Windows Mobile, which they found familiar. Handset
manufacturers realized that if they wanted to continue to sell traditional handsets,
they needed to change their protectionist policies pertaining to handset design
and expose their internal frameworks to some extent. A variety of different
proprietary platforms emerged—and developers are still actively creating
applications for them. Some smartphone devices ran Palm OS (now Garnet
OS) and RIM BlackBerry OS. Sun Microsystems took its popular Java platform
and J2ME emerged (now known as Java Micro Edition [Java ME]). Chipset
maker Qualcomm developed and licensed its Binary Runtime Environment for
Wireless (BREW). Other platforms, such as Symbian OS, were developed by
handset manufacturers such as Nokia, Sony Ericsson, Motorola, and Samsung.
The Apple iPhone OS (OS X iPhone) joined the ranks in 2008. Figure 1.4
shows several different phones, all of which have different development platforms.
Many of these platforms have associated developer programs. These programs
keep the developer communities small, vetted, and under contractual agreements
on what they can and cannot do. These programs are often required and
developers must pay for them. Each platform has benefits and drawbacks. Of
course, developers love to debate about which platform is "the best." (Hint
: It's usually the platform we're currently developing for.) The truth is that
no one platform has emerged victorious. Some platforms are best suited for
commercializing games and making millions—if your company has brand backed.
Other platforms are more open and suitable for the hobbyist or vertical market
applications. No mobile platform is best suited for all possible applications.
As a result, the mobile phone has become increasingly fragmented, with all
platforms sharing part of the pie.

History of Mobile
Software Development

Mobile Application
Development
(Using Android)

Figure 1.4 : Phones from various mobile device platforms.

For manufacturers and mobile operators, handset product lines quickly
became complicated. Platform market penetration varies greatly by region and
user demographic. Instead of choosing just one platform, manufacturers and
operators have been forced to sell phones for all the different platforms to
compete in the market. We've even seen some handsets supporting multiple
platforms. (For instance, Symbian phones often also support J2ME.) The mobile
developer community has become as fragmented as the market. It's nearly
impossible to keep track of all the changes in the market. Developer specialty
niches have formed. The platform development requirements vary greatly.
Mobile software developers work with distinctly different programming
environments, different tools, and different programming languages. Porting
among the platforms is often costly and not straightforward. Keeping track of
handset configurations and testing requirements, signing and certification
programs, carrier relationships, and application marketplaces have become
complex spin—off businesses of their own.

It's a nightmare for the ACME Company that wants a mobile application.
Should it develop a J2ME application ? BREW ? iPhone ? Windows Mobile ?
Everyone has a different kind of phone. ACME is forced to choose one or,
worse, all of the platforms. Some platforms allow for free applications, whereas
others do not. Vertical market application opportunities are limited and expensive.
As a result, many wonderful applications have not reached their desired users,
and many other great ideas have not been developed at all.

a Check Your Progress :

1. What is the name of first commercial cell phone available in market ?
(A) DynaTec (B) Binary Phone
(C) Motorola DynaTAC 8000X (D) Slider

2. WAP stans for
(A) Wire Applied Panel (B) Wireless Application Protocol
(C) Without Approve Package (D) Wireless Applied Protocol

3. J2EE Stands for
(A) Java 2 Enterprise Edition (B) Java 2 Entertainment Edition
(C) Java 2 Edition Enterprise (D) Java 2 Editor Edition

4. Nokia released one of the first slider phones, the 8110—fondly referred

to as
(A) "The Matrix Phone" (B) "The Phone"
(C) "The Phoenix" (D) "Slider Phone"

5. BREW Stands for
(A) Binary Runway Environment for Wireless
(B) Binary Rough Entertainment for Wireless
(C) Binary Runtime Environment for Wireless

(D) Binary Routine Environment for Wireless

14 Let Us Sum Up :

In this unit we learn regarding the history of mobile software development.
We learn about the Wireless Application Protocol (WAP) and various mobile
proprietary platforms.

1.5 Answers for Check Your Progress :

1. (O) 2. (B) 3. (A) 4. (A) 5. (C)

1.6 Glossary :

1. Brick : The Motorola DynaTAC 8000X was the first commercially
available cell phone.

WAP : Wireless Application Protocol
HTTP : Hypertext Transfer Protocol
WML : Wireless Markup Language
MMS : Multimedia Messaging Service
SMS : Short Message Service

BREW : Binary Runtime Environment for Wireless

ol AN U S o

EMS : Enhanced Messaging Service

1.7 Assignment :

1. What is Android ?

2. Explain the history of mobile application development.

3. What are the various mobile proprietary platform available in market ?

1.8 Activities :

Think more about the history of mobile application development and
collect the data for various mobile company introduce their first commercially
available version.

1.9 Case Study :

Analysis the various mobile platform which support the WAP (Wireless
Application Protocol) to run the website in mobile platforms.

1.10 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

History of Mobile
Software Development

Mobile Application
Development
(Using Android)

2.0
2.1

2.2
2.3
24
2.5
2.6
2.7

2.8
2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16

2.17

2.18

THE OPEN HANDSET
ALLIANCE

Learning Objectives

Introduction

2.1.1 Google Goes Wireless

Forming the Open Handset Alliance

Manufacturers : Designing the Android Handsets
Mobile Operators : Delivering the Android Experience
Content Providers : Developing Android Applications
Taking Advantage of All Android Has to Offer
Android Platform Differences

2.7.1 Android : A Next—Generation Platform

Free and Open Source

Familiar and Inexpensive Development Tools

2.9.1 Freely Available Software Development Kit
2.9.2 Familiar Language, Familiar Development Environments
Reasonable Learning Curve for Developers

Enabling Development of Powerful Applications

Rich, Secure Application Integration

No Costly Obstacles to Publication

A "Free Market" for Applications

A New and Growing Platform

The Android Platform

2.16.1 Android's Underlying Architecture

2.16.2 Security and Permissions

2.16.3 Developing Android Applications

Setting Up Your Android Development Environment
2.17.1 Configuring Your Development Environment
2.17.2 Configuring Your Operating System for Device Debugging
2.17.3 Configuring Your Android Hardware for Debugging
2.17.4 Upgrading the Android SDK

Getting to Know the Android Tools

2.18.1 Android SDK and AVD Manager

2.18.2 Android Emulator

2.18.3 Dalvik Debug Monitor Server (DDMS)

2.18.4 Android Debug Bridge (ADB)

2.18.5 Android Hierarchy Viewer

2.19 Let Us Sum Up

2.20 Answers for Check Your Progress
2.21 Glossary

2.22 Assignment

2.23 Activities

2.24 Case Study

2.25 Further Reading

2.0 Learning Objectives :

After learning this unit, you will be able to understand :
. Formation of OHA (Open Handset Alliance)
. Android Platform architecture

. Various versions and Codename of Android

2.1 Introduction :

Enter search advertising giant Google. Now a household name, Google
has shown an interest in spreading its vision, its brand, its search and ad-
revenue—based platform, and its suite of tools to the wireless marketplace. The
company's business model has been amazingly successful on the Internet and,
technically speaking, wireless isn't that different.

2.1.1 Google Goes Wireless :

The company's initial forays into mobile were beset with all the problems
you would expect. The freedoms Internet users enjoyed were not shared by
mobile phone subscribers. Internet users can choose from the wide variety of
computer brands, operating systems, Internet service providers, and web browser
applications. Nearly all Google services are free and ad driven. Many applications
in the Google Labs suite directly compete with the applications available on
mobile phones. The applications range from simple calendars and calculators
to navigation with Google Maps and the latest tailored news from News Alerts—
not to mention corporate acquisitions such as Blogger and YouTube. When this
approach didn't yield the intended results, Google decided to a different approach—
to revamp the entire system upon which wireless application development was
based, hoping to provide a more open environment for users and developers
: the Internet model. The Internet model allows users to choose between
freeware, shareware, and paid software. This enables free market competition
among services.

2.2 Forming the Open Handset Alliance :

With its user—centric, democratic design philosophies, Google has led
a movement to turn the existing closely guarded wireless market into one where
phone users can move between carriers easily and have unfettered access to
applications and services. With its vast resources, Google has taken a broad
approach, examining the wireless infrastructure from the FCC wireless spectrum
policies to the handset manufacturers' requirements, application developer needs,
and mobile operator desires. Next, Google joined with other like—minded
members in the wireless community and posed the following question : What
would it take to build a better mobile phone ? The Open Handset Alliance
(OHA) was formed in November 2007 to answer that very question. The OHA

The Open Handset
Alliance

10

Mobile Application
Development
(Using Android)

is a business alliance comprised of many of the largest and most successful
mobile companies on the planet. Its members include chip makers, handset
manufacturers, software developers, and service providers. The entire mobile
supply chain is well represented. Andy Rubin has been credited as the father
of the Android platform. His company, Android Inc., was acquired by Google
in 2005.Working together, OHA members, including Google, began developing
a nonproprietary open standard platform based upon technology developed at
Android Inc. that would aim to alleviate the aforementioned problems hindering
the mobile community. The result is the Android project. To this day, most
Android platform development is completed by Rubin's team at Google, where
he acts as VP of Engineering and manages the Android platform roadmap.
Google's involvement in the Android project has been so extensive that the
line between who takes responsibility for the Android platform (the OHA or
Google) has blurred. Google hosts the Android open—source project and provides
online Android documentation, tools, forums, and the Software Development
Kit (SDK) for developers. All major Android news originates at Google. The
company has also hosted a number of events at conferences and the Android
Developer Challenge (ADC), a contest to encourage developers to write killer
Android applications—for $10 million dollars in prizes to spur development on
the platform. The winners and their apps are listed on the Android website.

2.3 Manufacturers : Designing the Android Handsets :

More than half the members of the OHA are handset manufacturers, such
as Samsung, Motorola, HTC, and LG, and semiconductor companies, such as
Intel, Texas Instruments, NVIDIA, and QUALCOMM. These companies are
helping design the first generation of Android handsets. The first shipping
Android handset-the T-Mobile Gl-was developed by handset manufacturer
HTC with service provided by T-Mobile. It was released in October 2008.
Many other Android handsets were slated for 2009 and early 2010.The platform
gained momentum relatively quickly. Each new Android device was more
powerful and exciting than the last. Over the following 18 months, 60 different
Android handsets (made by 21 different manufacturers) debuted across 59
carriers in 48 countries around the world. By June 2010, at an announcement
of a new, highly anticipated Android handset, Google announced more than
160,000 Android devices were being activated each day (for a rate of nearly
60 million devices annually). The advantages of widespread manufacturer and
carrier support appear to be really paying off at this point. The Android platform
is now considered a success. It has shaken the mobile marketplace, gaining
ground steadily against competitive platforms such as the Apple iPhone, RIM
BlackBerry, and Windows Mobile. The latest numbers (as of Summer 2010)
show BlackBerry in the lead with a declining 31% of the smartphone market.
Trailing close behind is Apple's iPhone at 28%. Android, however, is trailing
with 19%, though it's gaining ground rapidly and, according to some sources,
is the fastest—selling smartphone platform. Microsoft Windows Mobile has been
declining and now trails Android by several percentage points.

2.4 Mobile Operators : Delivering the Android Experience :

After you have the phones, you have to get them out to the users. Mobile
operators from North, South, and Central America; Europe, Asia, India, Australia,
Africa, and the Middle East have joined the OHA, ensuring a worldwide market
for the Android movement. With almost half a billion subscribers alone,

telephony giant China Mobile is a founding member of the alliance. Much of
Android's success is also due to the fact that many Android handsets don't
come with the traditional "smartphone price tag"—quite a few are offered free
with activation by carriers. Competitors such as the Apple iPhone have no such
offering as of yet. For the first time, the average Jane or Joe can afford a
feature—full phone. I've lost count of the number of times I've had a waitress,
hotel night manager, or grocery store checkout person tell me that they just
got an Android phone and it has changed their life. This phenomenon has only
added to the Android's rising underdog status. In the United States, the Android
platform was given a healthy dose of help from carriers such as Verizon, who
launched a $100 million dollar campaign for the first Droid handset. Many
other Droid—style phones have followed from other carriers. Sprint recently
launched the Evo 4G (America's first 4G phone) to much fanfare and record
oneday sales (http://j.mp/cNhb4b)

2.5 Content Providers : Developing Android Applications :

When users have Android handsets, they need those killer apps, right ?
Google has led the pack, developing Android applications, many of which, such
as the email client and web browser, are core features of the platform. OHA
members are also working on Android application integration. eBay, for example,
is working on integration with its online auctions. The first ADC received 1,788
submissions, with the second ADC being voted upon by 26,000 Android users
to pick a final 200 applications that would be judged professionally—all newly
developed Android games, productivity helpers, and a slew of location based
services (LBS) applications. We also saw humanitarian, social networking, and
mash—up apps. Many of these applications have debuted with users through
the Android Market—Google's software distribution mechanism for Android. For
now, these challenges are over. The results, though, are still impressive. For
those working on the Android platform from the beginning, handsets couldn't
come fast enough. The T-Mobile G1 was the first commercial Android device
on the market, but it had the air of a developer pre—release handset. Subsequent
Android handsets have had much more impressive hardware, allowing developers
to dive in and design awesome new applications As of October 2010, there
are more than 80,000 applications available in the Android Market, which is
growing rapidly. This takes into account only applications published through
this one marketplace—not the many other applications sold individually or on
other markets. This also does not take into account that, as of Android 2.2,
Flash applications can run on Android handsets. This opens up even more
application choices for Android users and more opportunities for Android
developers. There are now more than 180,000 Android developers writing
interesting and exciting applications. By the time you finish reading this book,
you will be adding your expertise to this number.

2.6 Taking Advantage of All Android Has to Offer :

Android's open platform has been embraced by much of the mobile
development community—extending far beyond the members of the OHA. As
Android phones and applications have become more readily available, many
other mobile operators and handset manufacturers have jumped at the chance
to sell Android phones to their subscribers, especially given the cost benefits
compared to proprietary platforms. The open standard of the Android platform
has resulted in reduced operator costs in licensing and royalties, and we are

The Open Handset
Alliance

11

12

Mobile Application
Development
(Using Android)

now seeing a migration to open handsets from proprietary platforms such as
RIM, Windows Mobile, and the Apple iPhone. The market has cracked wide
open; new types of users are able to consider smartphones for the first time.
Android is well suited to fill this demand.

2.7 Android Platform Differences :

Android is hailed as "the first complete, open, and free mobile
platform" : n

. Complete : The designers took a comprehensive approach when they
developed the Android platform. They began with a secure operating
system and built a robust software framework on top that allows for rich
application development opportunities.

. Open : The Android platform is provided through open—source licensing.
Developers have unprecedented access to the handset features when
developing applications.

. Free : Android applications are free to develop. There are no licensing
or royalty fees to develop on the platform. No required membership fees.
No required testing fees. No required signing or certification fees. Android
applications can be distributed and commercialized in a variety of ways

2.7.1 Android : A Next—Generation Platform :

Although Android has many innovative features not available in existing
mobile platforms, its designers also leveraged many tried—and—true approaches
proven to work in the wireless world. It's true that many of these features appear
in existing proprietary platforms, but Android combines them in a free and
open fashion while simultaneously addressing many of the flaws on these
competing platforms. The Android mascot is a little green robot, shown in
Figure 2.1. This little guy (girl ?) is often used to depict Android-related
materials. Android is the first in a new generation of mobile platforms, giving
its platform developers a distinct edge on the competition. Android's designers
examined the benefits and drawbacks of existing platforms and then incorporated
their most successful features. At the same time, Android's designers avoided
the mistakes others suffered in the past. Since the Android 1.0 SDK was
released, Android platform development has continued at a fast and furious
pace. For quite some time, there was a new Android SDK out every couple
of months! In typical tech—sector jargon, each Android SDK has had a project
name. In Android's case, the SDKs are named alphabetically after sweets (see
Figure 2.2). The latest version of Android is codenamed Gingerbread.

CN>D=0ID

Figure 2.1 : The Android mascot and logo

{ Ep—— -
J

Cupecake Donut Eeluir Froyo
Andinkl 15 Amiroid 1.6 Androwd 2.0/ 21 Anideoid 2.2

Figure 2.2 : Some Android SDKs and their codenames

2.8 Free and Open Source :

Android is an open—source platform. Neither developers nor handset
manufacturers pay royalties or license fees to develop for the platform. The
underlying operating system of Android is licensed under GNU General Public
License Version 2 (GPLv2), a strong "copyleft" license where any third—party
improvements must continue to fall under the open—source licensing agreement
terms. The Android framework is distributed under the Apache Software License
(ASL/Apache2), which allows for the distribution of both open— and closed—
source derivations of the source code. Commercial developers (handset
manufacturers especially) can choose to enhance the platform without having
to provide their improvements to the open—source community. Instead, developers
can profit from enhancements such as handset—specific improvements and
redistribute their work under whatever licensing they want. Android application
developers have the ability to distribute their applications under whatever
licensing scheme they prefer. Developers can write open—source freeware or
traditional licensed applications for profit and everything in between.

2.9 Familiar and Inexpensive Development Tools :

Unlike some proprietary platforms that require developer registration fees,
vetting, and expensive compilers, there are no upfront costs to developing
Android applications.

2.9.1 Freely Available Software Development Kit :

The Android SDK and tools are freely available. Developers can download
the Android SDK from the Android website after agreeing to the terms of the
Android Software Development Kit License Agreement.

2.9.2 Familiar Language, Familiar Development Environments :

Developers have several choices when it comes to integrated development
environments (IDEs). Many developers choose the popular and freely available
Eclipse IDE to design and develop Android applications. Eclipse is the most
popular IDE for Android development, and there is an Android plug—in available
for facilitating Android development. Android applications can be developed
on the following operating systems :

. Windows XP (32-bit) or Vista (32-bit or 64-bit)
. Mac OS X 10.5.8 or later (x86 only)
. Linux (tested on Linux Ubuntu 8.04 LTS, Hardy Heron)

2.10 Reasonable Learning Curve for Developers :

Android applications are written in a well-respected programming
language : Java.

The Open Handset
Alliance

13

14

Mobile Application
Development
(Using Android)

The Android application framework includes traditional programming
constructs, such as threads and processes and specially designed data structures
to encapsulate objects commonly used in mobile applications. Developers can
rely on familiar class libraries, such as java.net and java.text. Specialty
libraries for tasks such as graphics and database management are implemented
using well-defined open standards such as OpenGL Embedded Systems (OpenGL
ES) or SQLite.

2.11 Enabling Development of Powerful Applications :

In the past, handset manufacturers often established special relationships
with trusted third—party software developers (OEM/ODM relationships).This
elite group of software developers wrote native applications, such as messaging
and web browsers, which shipped on the handset as part of the phone's core
feature set. To design these applications, the manufacturer would grant the
developer privileged inside access and knowledge of a handset's internal software
framework and firmware.

On the Android platform, there is no distinction between native and third—
party applications, enabling healthy competition among application developers.
All Android applications use the same libraries. Android applications have
unprecedented access to the underlying hardware, allowing developers to write
much more powerful applications. Applications can be extended or replaced
altogether. For example, Android developers are now free to design email clients
tailored to specific email servers, such as Microsoft Exchange or Lotus Notes.

2.12 Rich, Secure Application Integration :

Recall from the bat story I previously shared that I accessed a variety
of phone applications in the course of a few moments : text messaging, phone
dialer, camera, email, picture messaging, and the browser. Each was a separate
application running on the phone— some built-in and some purchased. Each
had its own unique user interface. None were truly integrated.

Not so with Android. One of the Android platform's most compelling
and innovative features is well-designed application integration. Android provides
all the tools necessary to build a better "bat trap," if you will, by allowing
developers to write applications that seamlessly leverage core functionality such
as web browsing, mapping, contact management, and messaging. Applications
can also become content providers and share their data among each other in
a secure fashion. Platforms such as Symbian have suffered from setbacks due
to malware. Android's vigorous application security model helps protect the
user and the system from malicious software.

2.13 No Costly Obstacles to Publication :

Android applications have none of the costly and time—intensive testing
and certification programs required by other platforms such as BREW and
Symbian.

2.14 A "Free Market" for Applications :

Android developers are free to choose any kind of revenue model they
want. They can develop freeware, shareware, or trial-ware applications, ad—
driven, and paid applications. Android was designed to fundamentally change
the rules about what kind of wireless applications could be developed. In the

past, developers faced many restrictions that had little to do with the application
functionality or features :

. Store limitations on the number of competing applications of a given
type

. Store limitations on pricing, revenue models, and royalties

. Operator unwillingness to provide applications for smaller demographics

With Android, developers can write and successfully publish any kind
of application they want. Developers can tailor applications to small demographics,
instead of just large—scale money—making ones often insisted upon by mobile
operators. Vertical market applications can be deployed to specific, targeted
users.

Because developers have a variety of application distribution mechanisms
to choose from, they can pick the methods that work for them instead of being
forced to play by others' rules. Android developers can distribute their applications
to users in a variety of ways :

. Google developed the Android Market (see Figure 2.3), a generic Android
application store with a revenue—sharing model.

-
~

Figure 2.3 : The Android market.

. Handango.com added Android applications to its existing catalogue using
their billing models and revenue—sharing model.

. Developers can come up with their own delivery and payment mechanisms.

Mobile operators are still free to develop their own application stores
and enforce their own rules, but it will no longer be the only opportunity
developers have to distribute their applications.

2.15 A New and Growing Platform :

Android might be the next generation in mobile platforms, but the
technology is still in its early stages. Early Android developers have had to
deal with the typical roadblocks associated with a new platform : frequently
revised SDKs, lack of good documentation, and market uncertainties.

On the other hand, developers diving into Android development now
benefit from the first-to—market competitive advantages we've seen on other
platforms such as BREW and Symbian. Early developers who give feedback
are more likely to have an impact on the long—term design of the Android
platform and what features will come in the next version of the SDK. Finally,
the Android forum community is lively and friendly. Incentive programs, such
as the ADC, have encouraged many new developers to dig into the platform.

Each new version of the Android SDK has provided a number of
substantial improvements to the platform. In recent revisions, the Android
platform has received some much needed UI "polish," both in terms of visual
appeal and performance. Although most of these upgrades and improvements
were welcome and necessary, new SDK versions often cause some upheaval

The Open Handset
Alliance

15

16

Mobile Application
Development
(Using Android)

within the Android developer community. A number of published applications
have required retesting and resubmission to the Android Marketplace to conform
to new SDK requirements, which are quickly rolled out to all Android phones
in the field as a firmware upgrade, rendering older applications obsolete.

Some older Android handsets are not capable of running the latest
versions of the platform. This means that Android developers often need to
target several different SDK versions to reach all users. Luckily, the Android
development tools make this easier than ever.

2.16 The Android Platform :

Android is an operating system and a software platform upon which
applications are developed. A core set of applications for everyday tasks, such
as web browsing and email, are included on Android handsets. As a product
of the OHA's vision for a robust and open—source development environment
for wireless, Android is an emerging mobile development platform. The platform
was designed for the sole purpose of encouraging a free and open market that
all mobile applications phone users might want to have and software developers
might want to develop.

2.16.1 Android's Underlying Architecture :

The Android platform is designed to be more fault—tolerant than many
of its predecessors. The handset runs a Linux operating system upon which
Android applications are executed in a secure fashion. Each Android application
runs in its own virtual machine (see Figure 2.4). Android applications are
managed code; therefore, they are much less likely to cause the phone to crash,
leading to fewer instances of device corruption (also called "bricking" the
phone, or rendering it useless).

. The Linux Operating System : The Linux 2.6 kernel handles core
system services and acts as a hardware abstraction layer (HAL) between
the physical hardware of the handset and the Android software stack.
Some of the core functions the kernel handles include

. Enforcement of application permissions and security
. Low-level memory management

. Process management and threading

. The network stack

. Display, keypad input, camera, Wi—Fi, Flash memory, audio, and
binder (IPC) driver access

. Android Application Runtime Environment : Each Android application
runs in a separate process, with its own instance of the Dalvik virtual
machine (VM). Based on the Java VM, the Dalvik design has been
optimized for mobile devices. The Dalvik VM has a small memory
footprint, and multiple instances of the Dalvik VM can run concurrently
on the handset.

=

The Androkd Platform
——, P — ————————
Meregirnid Rreiroid
Al ation Application Appliesion
& ;] C
T ¢ —y " i
1_l.-.m.¥-ﬂ-|-;l: 1".-m!I||;|-|—---.I-..-' "'-"F"-":..l"
N L — =
— e | it
T A) R D8 e dew o W ek Oy e
i A i T i
ki] il

[1]

Figure 2.4 : Diagram of the Android platform architecture

2.6.2 Security and Permissions :

The integrity of the Android platform is maintained through a variety

of security measures. These measures help ensure that the user's data is secure
and that the device is not subjected to malware.

Applications as Operating System Users : When an application is
installed, the operating system creates a new user profile associated with
the application. Each application runs as a different user, with its own
private files on the file system, a user ID, and a secure operating
environment. The application executes in its own process with its own
instance of the Dalvik VM and under its own user ID on the operating
system.

Explicitly Defined Application Permissions : To access shared resources
on the system, Android applications register for the specific privileges
they require. Some of these privileges enable the application to use phone
functionality to make calls, access the network, and control the camera
and other hardware sensors. Applications also require permission to
access shared data containing private and personal information, such as
user preferences, user's location, and contact information.

Applications might also enforce their own permissions by declaring them
for other applications to use. The application can declare any number

The Open Handset
Alliance

17

18

Mobile Application
Development
(Using Android)

of different permission types, such as read—only or read—write permissions,
for finer control over the application.

Limited Ad—Hoc Permissions : Applications that act as content providers
might want to provide some on—the—fly permissions to other applications
for specific information, they want to share openly. This is done using
ad-hoc granting and revoking of access to specific resources using
Uniform Resource Identifiers (URIs).

URIs index specific data assets on the system, such as images and text.
Here is an example of a URI that provides the phone numbers of all
contacts :

content://contacts/phones

To understand how this permission process works, let's look at an
example.

Let's say we have an application that keeps track of the user's public
and private birthday wish lists. If this application wanted to share its
data with other applications, it could grant URI permissions for the public
wish list, allowing another application permission to access this list
without explicitly having to ask for it.

Application Signing for Trust Relationships : All Android applications
packages are signed with a certificate, so users know that the application
is authentic. The private key for the certificate is held by the developer.
This helps establish a trust relationship between the developer and the
user. It also enables the developer to control which applications can grant
access to one another on the system. No certificate authority is necessary;
self-signed certificates are acceptable.

Marketplace Developer Registration : To publish applications on the
popular Android Market, developers must create a developer account. The
Android Market is managed closely and no malware is tolerated.

2.16.3 Developing Android Applications :

The Android SDK provides an extensive set of application programming

interfaces (APIs) that is both modern and robust. Android handset core system
services are exposed and accessible to all applications. When granted the
appropriate permissions, Android applications can share data among one another
and access shared resources on the system securely.

Android Programming Language Choices :
Android applications are written in Java (see
Figure 2.5). For now, the Java language is the
developer's only choice on the Android platform.

There has been some speculation that other
programming languages, such as C++, might
be added in future versions of Android. If your
application must rely on native code in another
language such as C or C++, you might want
to consider integrating it using the Android
Native Development Kit (NDK).

Figure 2.5 : Duke,
the Java mascot

No Distinctions Made Between Native and Third—Party Applications :
Unlike other mobile development platforms, there is no distinction between
native applications and developer—created applications on the Android
platform. Provided the application is granted the appropriate permissions,
all applications have the same access to core libraries and the underlying
hardware interfaces.

Android handsets ship with a set of native applications such as a web
browser and contact manager. Third—party applications might integrate
with these core applications, extend them to provide a rich user experience,
or replace them entirely with alternative applications.

Commonly Used Packages : With Android, mobile developers no longer
have to reinvent the wheel. Instead, developers use familiar class libraries
exposed through Android's Java packages to perform common tasks such
as graphics, database access, network access, secure communications, and
utilities (such as XML parsing).

The Android packages include support for

. Common user interface widgets (Buttons, Spin Controls, Text Input)
. User interface layout

. Secure networking and web browsing features (SSL, WebKit)

. Structured storage and relational databases (SQLite)

. Powerful 2D and 3D graphics (including SGL and OpenGL ES)
. Audio and visual media formats (MPEG4, MP3, Still Images)

. Access to optional hardware such as location—based services (LBS),
Wi-Fi, Bluetooth, and hardware sensors

Android Application Framework : The Android application framework
provides everything necessary to implement your average application. The
Android application lifecycle involves the following key components :

. Activities are functions the application performs.

. Groups of views define the application's layout.

. Intents inform the system about an application's plans.

. Services allow for background processing without user interaction.
. Notifications alert the user when something interesting happens.

Android applications can interact with the operating system and
underlying hardware using a collection of managers. Each manager
is responsible for keeping the state of some underlying system
service. For example, there is a LocationManager that facilitates
interaction with the location—based services available on the handset.
The ViewManager and WindowManager manage user interface
fundamentals.

Applications can interact with one another by using or acting as
a ContentProvider. Built-in applications such as the Contact
manager are content providers, allowing third—party applications
to access contact data and use it in an infinite number of ways.
The sky is the limit.

The Open Handset
Alliance

19

20

Mobile Application
Development
(Using Android)

2.17 Setting Up Your Android Development Environment :

Android developers write and test applications on their computers and
then deploy those applications onto the actual device hardware for further
testing. In this chapter, you become familiar with all the tools you need master
in order to develop Android applications. You also explore the Android Software
Development Kit (SDK) installation and all it has to offer.

2.17.1 Configuring Your Development Environment :

To write Android applications, you must configure your programming
environment for Java development. The software is available online for download
at no cost. Android applications can be developed on Windows, Macintosh,
or Linux systems.

To develop Android applications, you need to have the following software
installed on your computer :

. The Java Development Kit (JDK) Version 5 or 6, available for download
at http://java.sun.com/javase/downloads/index.jsp.

. A compatible Java IDE such as Eclipse along with its JDT plug—in,
available for download at http://www.eclipse.org/downloads/.

. The Android SDK, tools and documentation, available for download at
http://developer.android.com/sdk/index.html.

. The Android Development Tools (ADT) plug—in for Eclipse, available for
download through the Eclipse software update mechanism. For instructions
on how to install this plug—in, see http://developer.android.com/sdk/eclipse—
adt.html.Although this tool is optional for development, we highly
recommend it and will use its features frequently throughout this book.

A complete list of Android development system requirements is available
at http://developer.android.com/sdk/requirements.html. Installation
instructions are at http://developer.android.com/sdk/installing.html.

2.17.2 Configuring Your Operating System for Device Debugging :

To install and debug Android applications on Android devices, you need
to configure your operating system to access the phone via the USB cable (see
Figure 2.6). On some operating systems, such as Mac OS, this may just work.
However, for Windows installations, you need to install the appropriate USB
driver.You can download the Windows USB driver from the following website
: http://developer.android.com/sdk/win—usb.html.

-
ECLIPSE IDE
DEBUGGING
YOUR APP
CODE
running on
Emulator

and/or Handset

Figure 2.6 : Android application debugging
using the emulator and an Android handset.

2.17.3 Configuring Your Android Hardware for Debugging :

Android devices have debugging disabled by default. Your Android device
must be enabled for debugging via a USB connection in order to develop
applications and run them on the device.

First, you need to enable your device to install Android applications other
than those from the Android Market. This setting is reached by selecting Home,
Menu, Settings, Applications. Here you should check (enable) the option called
Unknown Sources.

More important development settings are available on the Android device
by selecting Home, Menu, Settings, Applications, Development (see Figure 2.7).
Here you should enable the following options :

. USB Debugging : This setting enables you to debug your applications
via the USB connection.

. Stay Awake : This convenient setting keeps the phone from sleeping
in the middle of your development work, as long as the device is plugged
in.

. Allow Mock Locations : This setting enables you to send mock location

information to the phone for development purposes and is very convenient
for applications using location—based services (LBS).

Bl @ vasam ||

USB debugging

Debug mode when USH is connected

Stay awake

Sereen will never seep while charping

Allow mock locations

Adlgry HOCK IOCATICTE

Figure 2.7 : Android debug settings
2.17.4 Upgrading the Android SDK :

The Android SDK is upgraded from time to time. You can easily upgrade
the Android SDK and tools from within Eclipse using the Android SDK and
AVD Manager, which is installed as part of the ADT plug—in for Eclipse.

Changes to the Android SDK might include addition, update, and removal
of features; package name changes; and updated tools. With each new version
of the SDK, Google provides the following useful documents :

The Open Handset
Alliance

21

22

Mobile Application
Development
(Using Android)

. An Overview of Changes : A brief description of major changes to the
SDK.

. An API Diff Report : A complete list of specific changes to the SDK.
. Release Notes : A list of known issues with the SDK.

You can find out more about adding and updating SDK components at
http://developer.android.com/sdk/adding—components.html.

2.18 Getting to Know the Android Tools :

The Android SDK provides many tools to design, develop, debug, and
deploy your Android applications.The Eclipse Plug—In incorporates many of
these tools seamlessly into your development environment and provides various
wizards for creating and debugging Android projects.

Settings for the ADT plug-in are found in Eclipse under Window,
Preferences, Android. Here you can set the disk location where you installed
the Android SDK and tools, as well as numerous other build and debugging
settings.

The ADT plug—in adds a number of useful functions to the default Eclipse

IDE.
Several new buttons are available on the toolbar, including buttons to
Launch the Android SDK and AVD Manager

. Create a new project using the Android Project Wizard

. Create a new test project using the Android Project Wizard

. Create a new Android XML resource file

These features are accessible through the Eclipse toolbar buttons shown
in Figure 2.8.

4 = Ju 4

Figure 2.8 : Android features added to the Eclipse toolbar

There is also a special Eclipse perspective for debugging Android
applications called DDMS (Dalvik Debug Monitor Server). You can switch to
this perspective within Eclipse by choosing Window, Open Perspective, DDMS
or by changing to the DDMS perspective in the top—right corner of the screen.
We talk more about DDMS later in this chapter. After you have designed an
Android application, you can also use the ADT plug—in for Eclipse to launch
a wizard to package and sign your Android application for publication.

2.18.1 Android SDK and AVD Manager :

The Android SDK and AVD Manager, shown in Figure 2.9, is a tool
integrated into Eclipse. This tool performs two major functions : management
of multiple versions of the Android SDK on the development machine and
management of the developer's Android Virtual Device (AVD) configurations.

| €3 Androd ST and AVD Manager I =)

Virus Deiices Lot gl eosting Andicid Virtual Oevees locater ot CAUniLasenatidiodan

lnstalled Paciages

Aot Patkayes AVD Name Targe: Name Platioem APL Level Narw_
w Thiobile Gl Style Bongle APz (Google Inc) L& 4 Delete
~ Dl _Sryle Andeoia 2 1supdatel 2l-uprat. 7
~ Nt 2 1 Shie Google APk {Gaodgle Inc) 2 leupetat_ 7
~ VamillaAVD Google APl [Googie Inc) Zlwpdet. T :
v VamlladViand Google AP (Google Inc) 21-updol. 7 Dtz
o NewsOne I Stule Gobgle AP (Google Inc) 22 & Szt

A vl Androwd Virtual Dence. A repaueble Andieond Virjusl Deyice
- An Android Virtoai Dawice shit falled to losd. Click Detalls’ o see the emor,

Figure 2.9 : The Android SDK and AVD Manager

Much like desktop computers, different Android devices run different
versions of the Android operating system. Developers need to be able to target
different Android SDK versions with their applications. Some applications target
a specific Android SDK, whereas others try to provide simultaneous support
for as many versions as possible.

The Android SDK and AVD Manager facilitate Android development
across multiple platform versions simultaneously. When a new Android SDK
is released, you can use this tool to download and update your tools while

still maintaining backward compatibility and use older versions of the Android
SDK.

The tool also manages the AVD configurations. To manage applications
in the Android emulator, you must configure an AVD. This AVD profile
describes what type of device you want the emulator to simulate, including
which Android platform to support. You can specify different screen sizes and
orientations, and you can specify whether the emulator has an SD card and,
if so, what capacity.

2.18.2 Android Emulator :

The Android emulator, shown in Figure 2.10, is one of the most important
tools provided with the Android SDK. You will use this tool frequently when
designing and developing Android applications. The emulator runs on your
computer and behaves much as a mobile device would. You can load Android
applications into the emulator, test, and debug them.

& =P @

ec0a

Figure 2.10 : The Android emulator

The Open Handset
Alliance

23

24

Mobile Application
Development
(Using Android)

The emulator is a generic device and is not tied to any one specific
phone configuration. You describe the hardware and software configuration
details that the emulator is to simulate by providing an AVD configuration.

2.18.3 Dalvik Debug Monitor Server (DDMS) :

The Dalvik Debug Monitor Server (DDMS) is a command-line tool that
has also been integrated into Eclipse as a perspective (see Figure 2.11). This
tool provides you with direct access to the device—whether it's the emulator
virtual device or the physical device. You use DDMS to view and manage
processes and threads running on the device, view heap data, attach to processes
to debug, and a variety of other tasks.

A -

LI l pe— Pap—

Figure 2.11 : Using DDMS integrated into an Eclipse perspective
2.18.4 Android Debug Bridge (ADB) :

The Android Debug Bridge (ADB) is a client—server tool used to enable
developers to debug Android code on the emulator and the device using a
standard Java IDE such as Eclipse. The DDMS and the Android Development
Plug-In for Eclipse both use the ADB to facilitate interaction between the
development environment and the device (or emulator).

Developers can also use ADB to interact with the device file system,
install Android applications manually, and issue shell commands. For example,
the sqlite3 shell commands enable you to access device database. The Application
Exerciser Monkey commands generate random input and system events to stress
test your application. One of the most important aspects of the ADB for the
developer is its logging system (Logcat).

2.18.5 Android Hierarchy Viewer :

The Android Hierarchy Viewer (see Figure 2.12), a visual tool that
illustrates layout component relationships, helps developers design and debug
user interfaces. Developers can use this tool to inspect the View properties
and develop pixel-perfect layouts. For more information about user interface
design and the Hierarchy Viewer.

1
i

The Open Handset
Alliance

_— =
:

Figure 2.12 : Screenshot of the Android Hierarchy Viewer in action

a Check Your Progress :
I. OHA stands for
(A) Open Handle Allaire (B) Open Handset Alliance
(C) Opening Handling Allow (D) Open Hash Allowed
2. Android is
(A) An Operating System (B) Phone
(C) Device (D) Framework
3. Which virtual machine is used by the Android operating system ?
(A) (B)
(®) (D) Dalvik Virtual Machine
4. Android is based on which of the language ?
(A) C++ (B) Java (C) Python (D) C

5. Which kernel is used in Android ?
(A) Windows (B) MAC (C) Linux

2.19 Let Us Sum Up :

(D) Symbian

In this unit we learn regarding the Open Handset Alliance. We learn about
the Android Platform Architecture and various Codename or versions of the
Android.

2.20 Answers for Check Your Progress :
1. (B) 2. (A) 3. (D)

4. (B) 5. (C)

2.21 Glossary :

1.
2.

ADC : Android Developer Challenge.
LBS : Location Based Service

26

Mobile Application
Development
(Using Android)

3 OHA : Open Handset Alliance

4 HAL : Hardware Abstraction Layer

5 SDK : Software Development Kit

6. AVD : Android Virtual Device

7 DDMS : Dalvik Debug Monitor Server
8 ADB : Android Debug Bridge

2.22 Assignment :

L. What is OHA ?
2. Explain Android Platform Architecture in details .

3. What are the various versions of Android ? Explain it with proper
codenames.

2.23 Activities :

1. Think more about the history of OHA and understand the mobile application
development platform with its various versions.

2.24 Case Study :

Analysis the various mobile platform which support the various versions
to run the website in mobile platforms.

2.25 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

BUILDING A SAMPLE
ANDROID APPLICATION

3.0 Learning Objectives

3.1 Introduction

3.2 Testing Your Development Environment

3.3 Building Your First Android Application
3.3.1 Creating and Configuring a New Android Project
3.3.2 Core Files and Directories of the Android Application
3.3.3 Creating an AVD for Your Project

3.4 Running Your Android Application in the Emulator
3.4.1 Adding Logging Support to Your Android Application

3.5 Let Us Sum Up

3.6 Answers for Check Your Progress

3.7 Glossary

3.8 Assignment

3.9 Activities

3.10 Case Study

3.11 Further Reading

3.0 Learning Objectives :

. To develop the mobile application using Android

. To understand the basic of Android Application Development

3.1 Introduction :

You should now have a workable Android development environment set
up on your computer. Hopefully, you also have an Android device as well.
Now it's time for you to start writing some Android code. In this chapter, you
learn how to add and create Android projects in Eclipse and verify that your
Android development environment is set up correctly. You also write and debug
your first Android application in the software emulator and on an Android
handset.

3.2 Testing Your Development Environment :

The best way to make sure you configured your development environment
correctly is to take an existing Android application and run it. You can do
this easily by using one of the sample applications provided as part of the
Android SDK in the /samples subdirectory. Within the Android SDK sample
applications, you can find a classic game called Snake. To build and run the
Snake application, you must create a new Android project in your Eclipse
workspace, create an appropriate Android Virtual Device (AVD) profile, and
configure a launch configuration for that project. After you have everything

27

28

Mobile Application
Development
(Using Android)

set up correctly, you can build the application and run it on the Android emulator
or an Android device

Adding the Application to a Project in Your Eclipse Workspace

The first thing you need to do is add the Snake project to your Eclipse
workspace.To do this, follow these steps :

1. Choose File, New, Project.
2. Choose Android,Android Project Wizard (see Figure 3.1).

T - = e "-!
—
.':il- Tema et

| Welech m wiineel

Sy Fepe

iy . Tzl Fisar
- J ALK Mi§
= Poalms

i [t U

1=

wrw |

i frfe Tarale

i1 iH

Figure 3.1 : Creating a new Android project.
Change the Contents to Create Project from Existing Source.
4. Browse to your Android samples directory.

5. Choose the Snake directory. All the project fields should be filled in
for you from the Manifest file (see Figure 3.2). You might want to set
the Build Target to whatever version of Android your test device is
running.

6. Choose Finish. You now see the Snake project files in your workspace
(see Figure 3.3).

Creating an Android Virtual Device (AVD) for Your Project

The next step is to create an AVD that describes what type of device
you want to emulate when running the Snake application. This AVD profile
describes what type of device you want the emulator to simulate, including
which Android platform to support. You can specify different screen sizes and
orientations, and you can specify whether the emulator has an SD card and,
if it does, what capacity the card is.

= - === -

Figure 3.2 : The project details.

Figure 3.3 : The project files.
For the purposes of this example, an AVD for the default installation

of Android 2.2 suffices. Here are the steps to create a basic AVD :

L.

Launch the Android Virtual Device Manager from within Eclipse by
clicking the little Android icon with the downward arrow |+ on the
toolbar. If you cannot find the icon, you can also launch the manager
through the Window menu of Eclipse.

On the Virtual Devices menu, click the New button.

Choose a name for your AVD. Because we are going to take all the
defaults, give this AVD a name of Android Vanilla2.2.

Choose a build target. We want a basic Android 2.2 device, so choose
Android 2.2 from the drop—down menu.

Building a Sample

Android Application

29

30

Mobile Application
Development
(Using Android)

Choose an SD card capacity. This can be in kilobytes or megabytes and
takes up space on your hard drive. Choose something reasonable, such
as 1 gigabyte (1024M). If you're low on drive space or you know you
won't need to test external storage to the SD card, you can use a much
smaller value, such as 64 megabytes.

Choose a skin.This option controls the different resolutions of the emulator.
In this case, use the WVGAS8O00 screen.This skin most directly correlates
to the popular Android handsets, such as the HTC Nexus One and the
Evo 4G, both of which are currently sitting on my desk. Your project
settings will look like Figure 3.4.

Click the Create AVD button, and wait for the operation to complete.

Click Finish. Because the AVD manager formats the memory allocated
for SD card images, creating AVDs with SD cards could take a few
moments.

Creating a Launch Configuration for Your Project

Next, you must create a launch configuration in Eclipse to configure under

what circumstances the Snake application builds and launches. The launch
configuration is where you configure the emulator options to use and the entry

point for your application.

—————— — TR

|..-, T T IR P — A

| i 3
Figure 3.4 : Creating a new AVD in Eclipse.

You can create Run Configurations and Debug Configurations separately,

each with different options. These configurations are created under the Run
menu in Eclipse (Run, Run Configurations and Run, Debug Configurations).

Follow these steps to create a basic Run Configuration for the Snake

application :

I. Choose Run, Run Configurations (or right—click the Project and choose
Run As).

2. Double—click Android Application.

3. Name your Run Configuration SnakeRunConfiguration (see Figure 3.5).

4. Choose the project by clicking the Browse button and choosing the Snake
project.

5. Switch to the Target tab and, from the preferred AVD list, choose the
Android Vanilla2.2 AVD created earlier, as shown in Figure 3.5.

You can set other options on the Target and Common tabs, but for now
we are leaving the defaults as they are.

Running the Snake Application in the Android Emulator

Now you can run the Snake application using the following steps :

1. Choose the Run As icon drop—down menu on the toolbar (the green circle
with the triangle).
2. Pull the drop—down menu and choose the SnakeRunConfiguration you
created.
3. The Android emulator starts up; this might take a moment.
pE—)
|| 4 e iew b
L
r 'ﬂ_‘-.'

Figure 3.5 : The Snake project launch configuration,
Target tab with the AVD selected.
4, If necessary, swipe the screen from left to right to unlock the emulator,
as shown in Figure 3.6.

5. The Snake application now starts, as shown in Figure 3.7.

You can interact with the Snake application through the emulator and
play the game. You can also launch the Snake application from the Application
drawer at any time by clicking on its application icon.

3.3 Building Your First Android Application :

Now it's time to write your first Android application. You start with a
simple Hello World project and build upon it to explore some of the features
of Android.

Building a Sample
Android Application

31

32

Mobile Application
Development
(Using Android)

[afi®eain]

fndroid

B:2lw

Whednesiciay, Jonm §
€3 Clargg G044

1
J

ERELITLLE-E

I_TEEH’!‘EI

&
-
-
o
&
-
=

Figure 3.7 : The Snake game.
3.3.1 Creating and Configuring a New Android Project :

You can create a new Android project in much the same way as when
you added the Snake application to your Eclipse workspace.

The first thing you need to do is create a new project in your Eclipse
workspace. The Android Project Wizard creates all the required files for an
Android application. Follow these steps within Eclipse to create a new project :

1. Choose File,New,Android Project, or choose the Android Project creator
icon, which looks like a folder (with the letter a and a plus sign), on
the Eclipse toolbar.

2. Choose a Project Name. In this case, name the project MyFirstAndroidApp.

3. Choose a Location for the project files. Because this is a new project,
select the Create New Project in Workspace radio button. Check the Use
Default Location checkbox or change the directory to wherever you want
to store the source files.

4. Select a build target for your application. Choose a target that is compatible
with the Android handsets you have in your possession. For this example,
you might use the Android 2.2 target.

5. Choose an application name.The application name is the "friendly" name
of the application and the name shown with the icon on the application
launcher. In this case, the Application Name is My First Android App.

6. Choose a package name. Here you should follow standard package
namespace conventions for Java. Because all our code examples in this
book fall under the com.androidbook.* namespace, we will use the
package name com.androidbook.myfirstandroidapp, but you are free to
choose your own package name.

7. Check the Create Activity checkbox. This instructs the wizard to create
a default launch activity for the application. Call this Activity class
MyFirstAndroidAppActivity.

Your project settings should look like Figure 3.8.
8. Finally, click the Finish button.

3.3.2 Core Files and Directories of the Android Application :

Every Android application has a set of core files that are created and
are used to define the functionality of the application (see Table 3.1).The
following files are created by default with a new Android application.

e EE——

e e B g

Figure 3.8 : Configuring My First Android App
using the Android Project Wizard.

There are a number of other files saved on disk as part of the Eclipse
project in the workspace. However, the files included in Table 3.1 are the
important project files you will use on a regular basis.

Building a Sample
Android Application

33

Mobile Application
Development
(Using Android)

3.3.3 Creating an AVD for Your Project :

The next step is to create an AVD that describes what type of device
you want to emulate when running the application. For this example, we can
use the AVD we created for the Snake application. An AVD describes a device,
not an application. Therefore, you can use the same AVD for multiple applications.
You can also create similar AVDs with the same configuration, but different
data (such as different applications installed and different SD card contents).

Table 3.1 Important Android Project Files and Directories

Android File

General Description

AndroidManifest.xml

Global application description file. It defines
your application's capabilities and permissions
and how it runs.

default.properties

Automatically created project file. It defines
your application's build target and other build
system options, as required.

src Folder

Required folder where all source code for the
application resides.

src/com.androidbook.my
firstandroidapp/
MyFirstAndroidApp-
Activity.Jjava

Core source file that defines the entry point
of your Android application.

gen Folder

Required folder where auto-generated resource
files for the application reside.

gen/com.androidbook.my
firstandroidapp/R.java

Application resource management source file
generated for you; it should not be edited.

res Folder

Required folder where all application
resources are managed. Application resources
include animations, drawable image assets,
layout files, XML files, data resources such
as strings, and raw files.

res/drawable-*/icon.png

Resource folders that store different
resolutions of the application icon.

res/layout/main.xml

Single screen layout file.

res/values/strings.xml

Application string resources.

assets Folder

Folder where all application assets are stored.
Application assets are pieces of application
data (files, directories) that you do not want
managed as application resources.

3.4 Running Your Android Application in the Emulator :

Now you can run the MyFirstAndroidApp application using the following

steps :

1. Choose the Run As icon drop—down menu on the toolbar (the little green
circle with the play button and a drop—down arrow) |o -.

2. Pull the drop—down menu and choose the Run Configuration you created.
(If you do not see it listed, choose the Run Configurations... item and

© =N »nok

select the appropriate configuration. The Run Configuration shows up
on this drop—down list the next time you run the configuration.)

Because you chose the Manual Target Selection mode, you are now
prompted for your emulator instance. Change the selection to start a new
emulator instance, and check the box next to the AVD you created, as

shown in Figure 3.9.

ket o device oo kig widh 4 Lrdeicd 33

The Android emulator starts up, which might take a moment.
Press the Menu button to unlock the emulator.
The application starts, as shown in Figure 3.10.

Click the Home button in the Emulator to end the application.

Pull up the Application Drawer to see installed applications. Your screen

looks something like Figure 3.11.

Click on the My First Android Application icon to launch the application

again.

2 i 4 7:54 e

E

Figure 3.10 : My First Android App running in the emulator.

Figure 3.9 : Manually choosing a target selection mode.

Building a Sample
Android Application

35

36

Mobile Application
Development
(Using Android)

- ™

Marm Oocd frowser

L I

Lotfacti e Tk

Gillgry Wessaging

E ®© B

I.Ifl'-r'.l Sefimgs Lnake nn 4
At A e

Shnes Parts

Spetih
RifrCoreled

(23

Figure 3.11 : My First Android App application icon in the Drawer.

3.4.1 Adding Logging Support to Your Android Application :

Before you start diving into the various features of the Android SDK,
you should familiarize yourself with logging, a valuable resource for debugging
and learning Android. Android logging features are in the Log class of the
android.util package.

Some helpful methods in the android.util.Log class are shown in
Table 3.2.

Method Purpose

Log. el) Log errors

Log.w() Log warnings

Iog.if) Log informational
Messages

Log.di) Log Debug messages

Log.v() Log Verbose mesages

To add logging support to MyFirstAndroidApp, edit the file
MyFirstAndroidApp.java.

First, you must add the appropriate import statement for the Log class :
import android.util.Log;

Next, within the MyFirstAndroidApp class, declare a constant string
that you use to tag all logging messages from this class.You can use the LogCat
utility within Eclipse to filter your logging messages to this debug tag :

private static final String DEBUG TAG=

MyFirstAppLogging";

Now, within the onCreate() method, you can log something informational :

Log.i (DEBUG _TAG, "Info about MyFirstAndroidApp");

a Check Your Progress :
1. APK stands for
(A) Android Pyramid Kit (B) Android Package Kit
(C) Application Programming Kit (D) Android Prompted Kit
2. Where can we run the Android Program ?
(A) Emulator or AVD (B) Command Prompt
(C) Editor (D) Browser
3. Which file is contained in the src folder ?
(A) XML file (B) Layout File
(C) Java Source Code (D) None of the above
4. What is contained in manifest.xml ?
(A) Android Code
(B) Java Code
(C) XML Tags
(D) Permission that the application requires
5. Which of the method in android is used to log debug messages ?
(A) Log.e() (B) Log.d() (C) Log.v() (D) Log.i()
3.5 Let Us Sum Up :

In this unit we leant how to develop sample and simple Android Application

with its proper steps and its structure.

3.6

Answers for Check Your Progress :

1. (B) 2. (A) 3. (C) 4. (D) 5. (B)

3.7

Glossary :

1.
2.
3.
4.

SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

3.8

Assignment :

1.

What is Android Application ?

2. Explain various steps to create Android Application.
3. Discuss how to compile and run android application in Emulator.
3.9 Activities :

Create Sample Android Application in Eclipse and Compile and Run in

Android Emulator.

Building a Sample
Android Application

37

38

Mobile Application
Development
(Using Android)

3.10 Case Study :

Think about the mobile application development in your surrounding area

and try to analysis the content to be develop and use in the mobile application.

3.11 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application

Development", Pearson Education, 2nd ed. (2011).

BLOCK SUMMARY :

In this block we discussed regarding the various point covered in Units
like Unit 1 History of Mobile Software Development, Unit 2 The Open Handset
Alliance & Unit 3 Building a sample Android application. We have seen so
far regarding the history of the Mobile Application Development and OHA

as well as how to develop and run the simple mobile application in the android.

39

40

Mobile Application
Development
(Using Android)

BLOCK ASSIGNMENT :

1. Explain the history of mobile application development.

2. What are the various mobile proprietary platform available in market ?
3. What is OHA ?

4. What is Android ?

5. Explain Android Platform Architecture in details.

6. What are the various versions of Android ? Explain it with proper
codenames.

7. What is Android Application ?
8. Explain various steps to create Android Application.

9. Discuss how to compile and run android application in Emulator.

Short Questions :
What is Android ?
What is OHA ?

What is Android Application ?

Long Questions :

Explain the history of mobile application development.

What are the various mobile proprietary platform available in market ?
Explain Android Platform Architecture in details.

What are the various versions of Android ? Explain it with proper
codenames.

Explain various steps to create Android Application.

Discuss how to compile and run android application in Emulator.

41

Mobile Application EX Enrolment No. : | |

Development
(Using Android) 1. How many hours did you need for studying the units ?
Unit No. 1 2 3
No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D D I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

Feed back to CYP
Question

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

3. Any other Comments

BAOU Dr. Babasaheb Ambedkar BCAR-503

Education Open University Ahmedabad
for All

MOBILE APPLICATION
DEVELOPMENT (USING ANDROID)

BLOCK 2 : ANDROID APPLICATION DESIGN ESSENTIALS

UNIT 4 ANATOMY OF AN ANDROID APPLICATIONS & ANDROID
TERMINOLOGIES

UNIT 5 APPLICATION CONTEXT, ACTIVITIES, SERVICES, INTENTS
& RECEIVING AND BROADCASTING INTENTS

UNIT 6 ANDROID MANIFEST FILE AND ITS COMMON SETTINGS
& USING PERMISSION

UNIT 7 MANAGING APPLICATION RESOURCES IN A HIERARCHY
& WORKING WITH DIFFERENT TYPES OF RESOURCES

ANDROID APPLICATION
DESIGN ESSENTIALS

Block Introduction :

Classical computer science classes often define a program in terms of
functionality and data, and Android applications are no different. They perform
tasks, display information to the screen, and act upon data from a variety of

sources.

Developing Android applications for mobile devices with limited resources
requires a thorough understanding of the application lifecycle. Android also uses
its own terminology for these application building blocks-terms such as Context,
Activity, and Intent. This chapter familiarizes you with the most important

components of Android applications.

Block Objectives :

To
To
To
To
To
To
To

understand the anatomy of Android application

understand the Android Terminologies

understand the Application Context, Activities, Services & Intents
understand how to receive and broadcast the intents

use Android Manifest file and understand its common settings
use and set the various android permissions

understand how to Manage Application resources in a hierarchy &

Working with different types of resources

Block Structure :

Unit 4

Unit 5

Unit 6

Unit 7

Anatomy of an Android Applications & Android
Terminologies

Application Context, Activities, Services, Intents &
Receiving and Broadcasting Intents

Android Manifest File and its Common Settings & Using
Permission

Managing Application Resources in a Hierarchy &
Working with Different Types of Resources

ANATOMY OF AN ANDROID

041 APPLICATIONS & ANDROID

TERMINOLOGIES

4.0 Learning Objectives

4.1 Introduction

4.2 Anatomy of Android Application & Terminologies
4.2.1 Mastering Important Android Terminology
4.2.2 Using the Application Context
4.2.3 Performing Application Tasks with Activities
4.2.4 Managing Activity Transitions with Intents
4.2.5 Working with Services

4.3 Receiving and Broadcasting Intents

44 Let Us Sum Up

4.5 Answers for Check Your Progress

4.6 Glossary

4.7 Assignment

4.8 Activities

4.9 Case Study

4.10 Further Readings

4.0 Learning Objectives :

. To learn how to implement the Context

. To learn how to create and use Activities

. To learn how to create and use Intents

. To learn how to create and use various Services

4.1 Introduction :

Classical computer science classes often define a program in terms of
functionality and data, and Android applications are no different. They perform
tasks, display information to the screen, and act upon data from a variety of

sources.

Developing Android applications for mobile devices with limited resources
requires a thorough understanding of the application lifecycle. Android also
uses its own terminology for these application building blocks—terms such as
Context, Activity, and Intent. This chapter familiarizes you with the most

important components of Android applications.

43

44

Mobile Application
Development
(Using Android)

4.2 Anatomy of Android Application & Terminologies :

4.2.1 Mastering Important Android Terminology :

This chapter introduces you to the terminology used in Android application
development and provides you with a more thorough understanding of how
Android applications function and interact with one another. Some of the
important terms covered in this chapter are :

. Context : The context is the central command center for an Android
application. All application—specific functionality can be accessed through
the context.

. Activity : An Android application is a collection of tasks, each of which
is called an Activity. Each Activity within an application has a unique
task or purpose.

. Intent : The Android operating system uses an asynchronous messaging
mechanism to match task requests with the appropriate Activity. Each
request is packaged as an Intent. You can think of each such request
as a message stating an intent to do something.

. Service : Tasks that do not require user interaction can be encapsulated
in a service. A service is most useful when the operations are lengthy
(offloading time—consuming processing) or need to be done regularly
(such as checking a server for new mail).

4.2.2 Using the Application Context :

The application Context is the central location for all top—level application
functionality. The Context class can be used to manage application—specific
configuration details as well as application—wide operations and data. Use the
application Context to access settings and resources shared across multiple
Activity instances.

Retrieving the Application Context

You can retrieve the Context for the current process using the
getApplicationContext() method, like this:

Context context = getApplicationContext ()
Using the Application Context

After you have retrieved a valid application Context, it can be used to
access applicationwide features and services.

Retrieving Application Resources

You can retrieve application resources using the getResources() method
of the application Context. The most straightforward way to retrieve a resource
is by using its resource identifier, a unique number automatically generated
within the R.java class. The following example retrieves a String instance from
the application resources by its resource ID :

String greeting = getResources().getString
(R.string.hello);

We talk more about application resources in Chapter 6, "Managing
Application Resources."

Accessing Application Preferences

You can retrieve shared application preferences using the
getSharedPreferences() method of the application Context. The SharedPreferences
class can be used to save simple application data, such as configuration settings.

We talk more about application preferences in Chapter 10,"Using Android
Data and Storage APIs."

Accessing Other Application Functionality Using Context

The application Context provides access to a number of other top—level
application features.

Here are a few more things you can do with the application Context :

. Launch Activity instances

. Retrieve assets packaged with the application

. Request a system service (for example, location service)

. Manage private application files, directories, and databases
. Inspect and enforce application permissions

The first item on this list-launching Activity instances—is perhaps the
most common reason you use the application Context.

4.2.3 Performing Application Tasks with Activities :

The Android Activity class (android.app.Activity) is core to any
Android application. Much of the time, you define and implement an Activity
class for each screen in your application.

Activities are the most common of the four Android building blocks.
An activity is usually a single screen in your application. Each activity is
implemented as a single class that extends the Activity base class. Your class
will display a user interface composed of Views and respond to events. Most
applications consist of multiple screens. For example, a text messaging application
might have one screen that shows a list of contacts to send messages to, a
second screen to write the message to the chosen contact, and other screens
to review old messages or change settings. Each of these screens would be
implemented as an activity. Moving to another screen is accomplished by a
starting a new activity. In some cases an Activity may return a value to the
previous activity — for example an activity that lets the user pick a photo would
return the chosen photo to the caller. When a new screen opens, the previous
screen is paused and put onto a history stack. The user can navigate backward
through previously opened screens in the history. Screens can also choose to
be removed from the history stack when it would be inappropriate for them
to remain. Android retains history stacks for each application launched from
the home screen.

Activities are the most common of the four Android building blocks.
An activity is usually a single screen in your application. Each activity is
implemented as a single class that extends the Activity base class. Your class
will display a user interface composed of Views and respond to events. Most
applications consist of multiple screens. For example, a text messaging application
might have one screen that shows a list of contacts to send messages to, a
second screen to write the message to the chosen contact, and other screens
to review old messages or change settings. Each of these screens would be

Anatomy of an Android
Applications &
Android Terminologies

45

46

Mobile Application
Development
(Using Android)

implemented as an activity. Moving to another screen is accomplished by a
starting a new activity. In some cases, an Activity may return a value to the
previous activity — for example an activity that lets the user pick a photo would
return the chosen photo to the caller. When a new screen opens, the previous
screen is paused and put onto a history stack. The user can navigate backward
through previously opened screens in the history. Screens can also choose to
be removed from the history stack when it would be inappropriate for them
to remain. Android retains history stacks for each application launched from
the home screen.

4.2.4 Managing Activity Transitions with Intents :

In the course of the lifetime of an Android application, the user might
transition between a number of different Activity instances. At times, there
might be multiple Activity instances on the activity stack. Developers need to
pay attention to the lifecycle of each Activity during these transitions.

Some Activity instances—such as the application splash/startup screen—
are shown and then permanently discarded when the Main menu screen Activity
takes over. The user cannot return to the splash screen Activity without
re—launching the application.

Other Activity transitions are temporary, such as a child Activity
displaying a dialog box, and then returning to the original Activity (which was
paused on the activity stack and now resumes). In this case, the parent Activity
launches the child Activity and expects a result.

Android uses a special class called Intent to move from screen to
screen. Intent describe what an application wants done. The two most important
parts of the intent data structure are the action and the data to act upon. Typical
values for action are MAIN (the front door of the application), VIEW, PICK,
EDIT, etc. The data is expressed as a Uniform Resource Indicator (URI). For
example, to view a website in the browser, you would create an Intent with
the VIEW action and the data set to a Website—URL

new Intent (android.content.Intent.VIEW ACTION,

ContentURI.create ("http://anddev.org")) ;

There is a related class called an IntentFilter. While an intent is
effectively a request to do something, an intent filter is a description of what
intents an activity (or intent receiver, see below) is capable of handling. An
activity that is able to display contact information for a person would publish
an IntentFilter that said that it knows how to handle the action VIEW when
applied to data representing a person. Activities publish their IntentFilters in
the AndroidManifest.xml file.

Navigating from screen to screen is accomplished by resolving intents.
To navigate forward, an activity calls startActivity (myIntent). The
system then looks at the intent filters for all installed applications and picks
the activity whose intent filters best matches myIntent. The new activity
is informed of the intent, which causes it to be launched. The process of
resolving intents happens at run time when startActivity is called, which offers
two key benefits:

. Activities can reuse functionality from other components simply by
making a request in the form of an Intent

. Activities can be replaced at any time by a new Activity with an
equivalent IntentFilter

You can use an IntentReceiver when you want code in your application
to execute in reaction to an external event, for example, when the phone rings,
or when the data network is available, or when it's midnight. Intent receivers
do not display a Ul, although they may display Notifications to alert the user
if something interesting has happened. Intent receivers are also registered in
AndroidManifest.xml, but you can also register them from code using
Context.registerReceiver(). Your application does not have to be running for
its intent receivers to be called; the system will start your application, if
necessary, when an intent receiver is triggered. Applications can also send their
own intent broadcasts to others with Context.broadcastIntent().

4.2.5 Working with Services :

Trying to wrap your head around Activities, Intents, Intent Filters, and
the lot when you start with Android development can be daunting. We have
tried to distill everything you need to know to start writing Android applications
with multiple Activity classes, but we'd be remiss if we didn't mention that
there's a lot more here, much of which is discussed throughout the book using
practical examples. However, we need to give you a "heads up" about some
of these topics now because we talk about these concepts very soon when we
cover configuring the Android Manifest file for your application in the next
chapter.

One application component is the service. An Android Service is basically
an Activity without a user interface. It can run as a background process or
act much like a web service does, processing requests from third parties.

A Service is code that is long—lived and runs without a UL. A good
example of this is a media player playing songs from a play list. In a media
player application, there would probably be one or more activities that allow
the user to choose songs and start playing them. However, the music playback
itself should not be handled by an activity because the user will expect the
music to keep playing even after navigating to a new screen. In this case, the
media player activity could start a service using Context.startService ()
to run in the background to keep the music going. The system will then keep
the music playback service running until it has finished. (You can learn more
about the priority given to services in the system by reading Life Cycle of
an Android Application.) Note that you can connect to a service (and start
it if it's not already running) with the Context.bindService () method.
When connected to a service, you can communicate with it through an interface
exposed by the service. For the music service, this might allow you to pause,
rewind, etc.

A Service is code that is long-lived and runs without a UL. A good
example of this is a media player playing songs from a play list. In a media
player application, there would probably be one or more activities that allow
the user to choose songs and start playing them. However, the music playback
itself should not be handled by an activity because the user will expect the
music to keep playing even after navigating to a new screen. In this case, the
media player activity could start a service using Context.startService ()
to run in the background to keep the music going. The system will then keep
the music playback service running until it has finished. (You can learn more

Anatomy of an Android
Applications &
Android Terminologies

47

48

Mobile Application
Development
(Using Android)

about the priority given to services in the system by reading Life Cycle of
an Android Application.) Note that you can connect to a service (and start
it if it's not already running) with the Context.bindService () method.
When connected to a service, you can communicate with it through an interface
exposed by the service. For the music service, this might allow you to pause,
rewind, etc.

4.3 Receiving and Broadcasting Intents :

Intents serve yet another purpose.You can broadcast an Intent object (via
a call to broadcastIntent()) to the Android system, and any application interested
can receive that broadcast (called a BroadcastReceiver).Your application might
do both sending of and listening for Intent objects.These types of Intent objects
are generally used to inform the greater system that something interesting has
happened and use special Intent Action types.

For example, the Intent action ACTION BATTERY LOW broadcasts a
warning when the battery is low. If your application is a battery—hogging Service
of some kind, you might want to listen for this Broadcast and shut down your
Service until the battery power is sufficient. You can register to listen for battery/
charge level changes by listening for the broadcast Intent object with the Intent
action ACTION_BATTERY_ CHANGED.There are also broadcast Intent objects
for other interesting system events, such as SD card state changes, applications
being installed or removed, and the wallpaper being changed.

Your application can also share information using the broadcast mechanism.
For example, an email application might broadcast an Intent whenever a new
email arrives so that other applications (such as spam or anti—virus apps) that
might be interested in this type of event can react to it.

O Check Your Progress :
1. What is an Activity in Android ?
(A) Activity Performs Data Analysis
(B) Activity Performs Debugging
(C) Activity Performs Compilation
(D) Activity Performs Actions on the Screen

2. Which of the android component displays the part of an activity on

screen ?
(A) Segment (B) XML (C) Fragment (D) HTML
3. Which file specifies our screen's layout ?
(A) XML (B) Rjava (C) Source (D) Layout
4, In which state the activity is, if it is not in focus, but still visible on
the screen ?
(A) Pause State (B) Init State
(C) Waiting State (D) Running State
5. Is it true that "There can be only one running activity at a given time" ?
(A) True (B) False

4.4 Let Us Sum Up :

In this unit we learn regarding the anatomy of Android application,
Android Terminologies, Application Context, Activities, Services & Intents,
understand how to receive and broadcast the intents, use Android Manifest file
and understand its common settings, use and set the various android permissions
& understand how to Manage Application resources in a hierarchy & Working
with different types of resources. We tried to strike a balance between providing
a thorough reference without overwhelming you with details you won't need
to know when developing the average Android application. Instead, we focused
on the details you need to know to move forward developing Android applications
and to understand every example provided within this book. Activity and View
classes are the core building blocks of any Android application. Each Activity
performs a specific task within the application, often with a single user interface
screen consisting of View widgets. Each Activity is responsible for managing
its own resources and data through a series of lifecycle callbacks. The transition
from one Activity to the next is achieved through the Intent mechanism. An
Intent object acts as an asynchronous message that the Android operating system
processes and responds to by launching the appropriate Activity or Service.
You can also use Intent objects to broadcast system—wide events to any
interested BroadcastReceiver applications listening.

4.5 Answers for Check Your Progress :

1. (D) 2. (C) 3. (B) 4. (A) 5. (A)

4.6 Glossary :

SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

Lol o A

4.7 Assignment :

What is Activity ?
Define: Context

How to create Intent in Android ?

B b=

Define: Service

4.8 Activities :

1. Think about the various components available in the android system and
link it with proper real-life problem and apply it.

4.9 Case Study :

1. Design and analysis of problem of application which can have various
activities, intent & services.

Anatomy of an Android
Applications &
Android Terminologies

49

50

Mobile Application
Development
(Using Android)

4.10 Further Readings :

Android SDK Reference regarding the application Context class :
http://developer.android.com/reference/android/content/Context.html
Android SDK Reference regarding the Activity class :
http://developer.android.com/reference/android/app/Activity.html
Android Dev Guide:"Intents and Intent Filters" :
http://developer.android.com/guide/topics/intents/intents—filters.html

Android Programming with Tutorials from the anddev.org—Community
written by Nicolas Gramlich

http://andbook.anddev.org

05 INTENTS & RECEIVING AND

APPLICATION CONTEXT,
ACTIVITIES, SERVICES,

BROADCASTING INTENTS

5.0 Learning Objectives
5.1 Introduction
5.2 Using the Application Context
5.2.1 Retrieving the Application Context
5.2.2 Using the Application Context
5.2.3 Performing Application Tasks with Activities
5.2.4 The Lifecycle of an Android Activity
5.2.5 Using Activity Callbacks to Manage Application State and
Resources
5.3 Managing Activity Transitions with Intents
5.3.1 Transitioning Between Activities with Intents
5.3.2 Launching a New Activity by Class Name
5.3.3 Creating Intents with Action and Data
5.3.4 Launching an Activity Belonging to Another Application
5.3.5 Passing Additional Information Using Intents
5.3.6 Organizing Activities and Intents in Your Application Using
Menus
5.4 Working with Services
5.5 Receiving and Broadcasting Intents
5.6 Let Us Sum Up
5.7 Answers for Check Your Progress
5.8 Glossary
5.9 Assignment
5.10 Activities
5.11 Case Study
5.12 Further Reading
5.0 Learning Objectives :

To learn how to implement the Context
To learn how to create and use Activities
To learn how to create and use Intents

To learn how to create and use various Services

51

52

Mobile Application
Development
(Using Android)

5.1 Introduction :

Android is an 'Open—source' operating system used to develop an application
for mobile devices. It is a Linux based operating system. Initially, it was tenured
by 'Open handset alliance' and in 2007 it was occupied by google. The source
code published by Google is under the Apache License version 2.0. Android
smartphones are used by millions of people worldwide. Under researches,
researchers say that around 3 million people are using an android smartphone.
The android application completely transforms the way to communicate and
interact with each other even in the miles of distance.

5.2 Using the Application Context :

The application Context is the central location for all top—level application
functionality. The Context class can be used to manage application—specific
configuration details as well as application—wide operations and data. Use the
application Context to access settings and resources shared across multiple
Activity instances.

5.2.1 Retrieving the Application Context :
You can retrieve the Context for the current process using the
getApplicationContext () method, like this:
Context context = getApplicationContext ():;
5.2.2 Using the Application Context :

After you have retrieved a valid application Context, it can be used to
access applicationwide features and services.

. Retrieving Application Resources :

You can retrieve application resources using the getResources ()
method of the application Context. The most straightforward way to retrieve
a resource is by using its resource identifier, a unique number automatically
generated within the R. java class. The following example retrieves a String
instance from the application resources by its resource ID :

String greeting =

getResources () .getString (R.string.hello) ;

We talk more about application resources in next unit.
. Accessing Application Preferences :

You can retrieve shared application preferences using the
getSharedPreferences () method of the application Context. The
SharedPreferences class can be used to save simple application data, such
as configuration settings.

. Accessing Other Application Functionality Using Context :

The application Context provides access to a number of other top—level
application features.

Here are a few more things you can do with the application Context :

0 Launch Activity instances
0 Retrieve assets packaged with the application
0 Request a system service (for example, location service)

0 Manage private application files, directories, and databases
0 Inspect and enforce application permissions

The first item on this list-launching Activity instances is perhaps the
most common reason you use the application Context.

5.2.3 Performing Application Tasks with Activities :

The Android Activity class (android.app.Activity) is core to any
Android application. Much of the time, you define and implement an Activity
class for each screen in your application.

For example, a simple game application might have the following five
Activities, as shown in Figure 5.1 :

. A Startup or Splash screen : This activity serves as the primary entry
point to the application. It displays the application name and version
information and transitions to the Main menu after a short interval.

. A Main Menu screen : This activity acts as a switch to drive the user
to the core Activities of the application. Here the users must choose what
they want to do within the application.

. A Game Play screen : This activity is where the core game play occurs.
. A High Scores screen : This activity might display game scores or
settings.

. A Help/About screen : This activity might display the information the
user might need to play the game.

Startup/Splash
Activity

'

. n

High Scores Game Play Help/About
Activity Activity Activ ity

Figure 5.1 : A simple game with five activities

5.2.4 The Lifecycle of an Android Activity :

Android applications can be multi—process, and the Android operating
system allows multiple applications to run concurrently, provided memory and
processing power is available. Applications can have background processes, and
applications can be interrupted and paused when events such as phone calls
occur. There can be only one active application visible to the user at a time
specifically, a single application Activity is in the foreground at any given time.

The Android operating system keeps track of all Activity objects running
by placing them on an Activity stack (see Figure 5.2). When a new Activity
starts, the Activity on the top of the stack (the current foreground Activity)
pauses, and the new Activity pushes onto the top of the stack. When that Activity

Application Context,
Activities, Services,
Intents & Receiving and
Broadcasting Intents

53

54

Mobile Application finishes, that Activity is removed from the activity stack, and the previous
Development Activity in the stack resumes.

(Using Android)

| am the top Activity.
Usar can see and nteract with me!

| am tha sacond Activity in the stack.

I the user hits Back or the top Activity is destroyed,
the user can see and inleract wilth me again!

<45

I am an Activity in the middle of the stack.

above me is destroyed

< b

I'am an Activity at the botlom of the stack.
If those Activities above ma use loo many resources,
I will be dastroyed!

< &

+ Users cannot see and intaract with me until everyone

Figure 5.2 : The Activity Stack

Android applications are responsible for managing their state and their
memory, resources, and data. They must pause and resume seamlessly.
Understanding the different states within the Activity lifecycle is the first step
to designing and developing robust Android applications.

5.2.5 Using Activity Callbacks to Manage Application State and Resources :

Different important state changes within the Activity lifecycle are
punctuated by a series of important method callbacks. These callbacks are

shown in Figure 5.3.

Here are the method stubs for the most important callbacks of the

Activity class :

public class MyActivity extends Activity {

protected

savedInstanceState) ;

protected
protected
protected
protected
protected
protected
}

void
void
void
void
void

void

void

onStart () ;
onRestart () ;
onResume () ;
onPause () ;
onStop () ;

onDestroy () ;

onCreate (Bundle

" FAaguerst

|: Aciwity :"—’- onCrestn)
Siar 4
¥
prStarg) e onRestan()
1
 J
Aciagity
Fﬁ':-m;m r;:1 oriFeaTel| Aoty
n %
e tie gelly Seni jo
l Hackgrmuna
i -L.I
ACAny " A-.'rrrr!;,-
(Rumning in j E:;'!';?r'n Brought 1o
B it . Foi st i Fix u
Py \oeeant S romground o o
HIL = re—"
for Memory -’-JZ'!I'.rI!Tp St
o Badkpround
P e |
¥
enSiogy
L)
ety ()

Figure 5.3 : The Life Cycle of an Android Activity

Now let's look at each of these callback methods, when they are called,
and what they

are used for.

. Initializing Static Activity Data in onCreate ()
. Initializing and Retrieving Activity Data in onResume ()
. Stopping, Saving, and Releasing Activity Data in onPause ()

. Saving Activity State into a Bundle with
onSavelnstanceState ()

. Destroy Static Activity Data in onDestroy ()
Check Your Progress

5.3 Managing Activity Transitions with Intents :

In the course of the lifetime of an Android application, the user might
transition between a number of different Activity instances. At times, there
might be multiple Activity instances on the activity stack. Developers need to
pay attention to the lifecycle of each Activity during these transitions.

Some Activity instances such as the application splash/startup screen are
shown and then permanently discarded when the Main menu screen Activity
takes over. The user cannot return to the splash screen Activity without re—
launching the application.

Other Activity transitions are temporary, such as a child Activity displaying
a dialog box, and then returning to the original Activity (which was paused

Application Context,
Activities, Services,
Intents & Receiving and
Broadcasting Intents

55

56

Mobile Application
Development
(Using Android)

on the activity stack and now resumes). In this case, the parent Activity launches
the child Activity and expects a result.

5.3.1 Transitioning Between Activities with Intents :

As previously mentioned, Android applications can have multiple entry
points. There is no main () function, such as you find in iPhone development.
Instead, a specific Activity can be designated as the main Activity to launch
by default within the AndroidManifest.xml file; we talk more about this file
in next chapter.

Other Activities might be designated to launch under specific circumstances.
For example, a music application might designate a generic Activity to launch
by default from the Application menu, but also define specific alternative entry
point Activities for accessing specific music playlists by playlist ID or artists
by name.

5.3.2 Launching a New Activity by Class Name :

You can start activities in several ways. The simplest method is to use
the Application Context object to call the startActivity() method, which takes
a single parameter, an Intent. An Intent (android.content.Intent) is an asynchronous
message mechanism used by the Android operating system to match task
requests with the appropriate Activity or Service (launching it, if necessary)
and to dispatch broadcast Intents events to the system at large.

For now, though, we focus on Intents and how they are used with
Activities. The following line of code calls the startActivity () method
with an explicit Intent. This Intent requests the launch of the target Activity
named MyDrawActivity by its class. This class is implemented elsewhere
within the package.

startActivity(new Intent (getApplicationContext (),
MyDrawActivity.class));

This line of code might be sufficient for some applications, which simply
transition from one Activity to the next. However, you can use the Intent
mechanism in a much more robust manner. For example, you can use the Intent
structure to pass data between Activities.

5.3.3 Creating Intents with Action and Data :

You've seen the simplest case to use an Intent to launch a class by name.
Intents need not specify the component or class they want to launch explicitly.
Instead, you can create an Intent Filter and register it within the Android
Manifest file. The Android operating system attempts to resolve the Intent
requirements and launch the appropriate Activity based on the filter criteria.

The guts of the Intent object are composed of two main parts: the action
to be performed and the data to be acted upon.You can also specify action/
data pairs using Intent Action types and Uri objects.As you saw in Chapter
3,"Writing Your First Android Application," a Uri object represents a string
that gives the location and name of an object.

Therefore, an Intent is basically saying "do this" (the action) to "that"
(the Uri describing what resource to do the action to).

The most common action types are defined in the Intent class, including
ACTION_MAIN (describes the main entry point of an Activity) and

ACTION_EDIT (used in conjunction with a Uri to the data edited).You also
find Action types that generate integration points with Activities in other
applications, such as the Browser or Phone Dialer.

5.3.4 Launching an Activity Belonging to Another Application :

Initially, your application might be starting only Activities defined within
its own package. However, with the appropriate permissions, applications might
also launch external Activities within other applications. For example, a Customer
Relationship Management (CRM) application might launch the Contacts
application to browse the Contact database, choose a specific contact, and return
that Contact's unique identifier to the CRM application for use.

Here is an example of how to create a simple Intent with a predefined
Action (ACTION DIAL) to launch the Phone Dialer with a specific phone
number to dial in the form of a simple Uri object:

Uri number = Uri.parse(tel:5555551212);
Intent dial = new Intent (Intent .ACTION DIAL, number) ;
startActivity(dial);

You can find a list of commonly used Google application Intents athttp:/
/developer.android.com/guide/appendix/g—app—intents.html.Also available is the
developer managed Registry of Intents protocols at Openlntents, found at http:/
/www.openintents.org/en/intentstable, which has a growing list of Intents available
from third—party applications and those within the Android SDK.

5.3.5 Passing Additional Information Using Intents :

You can also include additional data in an Intent. The Extras property
of an Intent is stored in a Bundle object. The Intent class also has a number
of helper methods for getting and setting name/value pairs for many common
datatypes.

For example, the following Intent includes two extra pieces of information—
a string value and a boolean :

Intent intent = new Intent(this, MyActivity.class);
intent.putExtra ("SomeStringData", "Foo") ;

intent.putExtra ("SomeBooleanData", false);

5.3.6 Organizing Activities and Intents in Your Application Using Menus :

As previously mentioned, your application likely has a number of screens,
each with its own Activity. There is a close relationship between menus,
Activities, and Intents. You often see a menu used in two different ways with
Activities and Intents:

. Main Menu : Acts as a switch in which each menu item launches a
different Activity in your application. For instance, menu items for
launching the Play Game Activity, the High Scores Activity, and the Help
Activity.

. Drill-Down : Acts as a directory in which each menu item launches
the same Activity, but each item passes in different data as part of the
Intent (for example, a menu of all database records). Choosing a specific
item might launch the Edit Record Activity, passing in that particular
item's unique identifier.

Application Context,
Activities, Services,
Intents & Receiving and
Broadcasting Intents

57

58

Mobile Application
Development
(Using Android)

5.4 Working with Services :

Trying to wrap your head around Activities, Intents, Intent Filters, and
the lot when you start with Android development can be daunting. We have
tried to distill everything you need to know to start writing Android applications
with multiple Activity classes, but we'd be remiss if we didn't mention that
there's a lot more here, much of which is discussed throughout the book using
practical examples. However, we need to give you a "heads up" about some
of these topics now because we talk about these concepts very soon when we
cover configuring the Android Manifest file for your application in the next
chapter.

One application component is the service. An Android Service is basically
an Activity without a user interface. It can run as a background process or
act much like a web service does, processing requests from third parties. You
can use Intents and Activities to launch services using the startService() and
bindService() methods. Any Services exposed by an Android application must
be registered in the Android Manifest file.

You can use services for different purposes. Generally, you use a service
when no input is required from the user. Here are some circumstances in which
you might want to implement or use an Android service:

A weather, email, or social network app might implement a service to
routinely check for updates. (Note : There are other implementations for polling,
but this is a common use of services.)

. A photo or media app that keeps its data in sync online might implement
a service to package and upload new content in the background when
the device is idle.

. A video—editing app might offload heavy processing to a queue on its
service in order to avoid affecting overall system performance for non—
essential tasks.

. A news application might implement a service to "pre—load" content by
downloading news stories in advance of when the user launches the
application, to improve performance.

A good rule of thumb is that if the task requires the use of a worker
thread and might affect application responsiveness and performance, consider
implementing a service to handle the task outside the main application lifecycle.

5.5 Receiving and Broadcasting Intents :

Intents serve yet another purpose. You can broadcast an Intent object
(via a call to broadcastintent()) to the Android system, and any application
interested can receive that broadcast (called a BroadcastReceiver).Your application
might do both sending of and listening for Intent objects. These types of Intent
objects are generally used to inform the greater system that something interesting
has happened and use special Intent Action types.

For example, the Intent action ACTION BATTERY LOW broadcasts a
warning when the battery is low. If your application is a battery—hogging Service
of some kind, you might want to listen for this Broadcast and shut down your
Service until the battery power is sufficient. You can register to listen for
battery/charge level changes by listening for the broadcast Intent object with
the Intent action ACTION BATTERY CHANGED. There are also broadcast

Intent objects for other interesting system events, such as SD card state changes,
applications being installed or removed, and the wallpaper being changed.

Your application can also share information using the broadcast mechanism.
For example, an email application might broadcast an Intent whenever a new
email arrives so that other applications (such as spam or anti—virus apps) that
might be interested in this type of event can react to it.

a Check Your Progress :

1. What does API stand for ?
(A) Application Programming Interface
(B) Application Program Intermediate
(C) Applied Performance Indication
(D) Application Paradigm Information

2. Which is the parent class of service ?
(A) contextWriter (B) contextWrapper
(C) contextRead (D) None of the Above
3. Which is used by services to clean up any services ?
(A) onPause() method (B) onStart() method
(C) onDestroy() method (D) onStop() method
4. R.java file is automatically generated file. (True/False)
(A) True (B) False
5. What runs in Background and doesn't have any Ul Components ?
(A) Intent (B) Context (C) Components (D) Service

5.6 Let Us Sum Up :

In this unit we learn regarding how to implement the Context, how to
create and use Activities, how to create and use Intents & how to create and
use various Services.

5.7 Answers for Check Your Progress :

1. (A) 2. (B) 3. (C) 4. (A) 5. (D)

5.8 Glossary :

SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

B » -

5.9 Assignment :

1. What is Android? Explain various components of Android in details
2. Define Activity? Explain life cycle methods of android activity.

3. How to create intent in android ? Explain with suitable example.

5.10 Activities :

1. Search the real-life problem and analysis with help of android which
can apply the mechanism of activity, intent & service.

Application Context,
Activities, Services,
Intents & Receiving and
Broadcasting Intents

59

60

Mobile Application
Development
(Using Android)

5.11 Case Study :

Identify the real-life problem and solve the problems with help of android

which can apply the mechanism of activity, intent & service.

5.12 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application

Development", Pearson Education, 2nd ed. (2011).

6.0
6.1
6.2

6.3

6.4

6.5

6.6

6.7
6.8
6.9
6.10
6.11
6.12
6.13

o6l AND 1TS cOMMON SETTINGS

ANDROID MANIFEST FILE

& USING PERMISSION

Learning Objectives

Introduction

Configuring the Android Manifest File

6.2.1 Editing the Android Manifest File

6.2.2 Editing the Manifest File Using Eclipse
6.2.3 Editing the Manifest File Manually
Managing Your Application's Identity

6.3.1 Versioning Your Application

6.3.2 Setting the Application Name and Icon
Enforcing Application System Requirements
6.4.1 Targeting Specific SDK Versions

6.4.2 Specifying the Minimum SDK Version
6.4.3 Specifying the Target SDK Version
6.4.4 Specifying the Maximum SDK Version
Enforcing Application System Requirements Working with Permissions
6.5.1 Specifying Supported Input Methods
6.5.2 Specifying Required Device Features
6.5.3 Specifying Supported Screen Sizes

6.5.4 Working with External Libraries
Working with Permissions

6.6.1 Registering Permissions Your Application Requires

6.6.2 Registering Permissions Your Application Grants to Other
Applications

Let Us Sum Up

Answers for Check Your Progress
Glossary

Assignment

Activities

Case Study

Further Reading

61

62

Mobile Application
Development
(Using Android)

6.0 Learning Objectives :

. To learn the basic use of Android Manifest File in Android Application
. To learn how to set the Android Manifest File in Android Application
. To learn how to implement common setting in Android Manifest File

. To learn and use various permissions available in Android Application

6.1 Introduction :

Android projects use a special configuration file called the Android
manifest file to determine application settings—settings such as the application
name and version, as well as what permissions the application requires to run
and what application components it is comprised of. In this chapter, you explore
the Android manifest file in detail and learn how different applications use
it to define and describe application behavior.

6.2 Configuring the Android Manifest File :

The Android application manifest file is a specially formatted XML file
that must accompany each Android application. This file contains important
information about the application's identity. Here you define the application's
name and version information and what application components the application
relies upon, what permissions the application requires to run, and other application
configuration information.

The Android manifest file is named AndroidManifest.xml and must be
included at the top level of any Android project. The information in this file
is used by the Android system to

Install and upgrade the application package.

. Display the application details such as the application name, description,
and icon to users.

. Specify application system requirements, including which Android SDKs
are supported, what hardware configurations are required (for example,
d—pad navigation), and which platform features the application relies upon
(for example, uses multitouch capabilities).

. Launch application activities.
. Manage application permissions.
. Configure other advanced application configuration details, including

acting as a service, broadcast receiver, or content provider.

. Enable application settings such as debugging and configuring
instrumentation for application testing.

6.2.1 Editing the Android Manifest File :

The manifest resides at the top level of your Android project. You can
edit the Android manifest file using the Eclipse Manifest File resource editor
(a feature of the Android ADT plug—in for Eclipse) or by manually editing
the XML.

6.2.2 Editing the Manifest File Using Eclipse :

You can use the Eclipse Manifest File resource editor to edit the project
manifest file. The Eclipse Manifest File resource editor organizes the manifest
information into categories :

The Manifest tab

The Application tab

The Permissions tab

The Instrumentation tab

The AndroidManifest.xml tab

Let's take a closer look at a sample Android manifest file. The figures

and samples come from the Android application called Multimedia, which you
build in upcoming chapter We chose this project because it illustrates a number
of different characteristics of the Android manifest file, as opposed to the very
simple default manifest file you configured for the MyFirstAndroidApp project.

o

Configuring Package—Wide Settings Using the Manifest Tab : The
Manifest tab (see Figure 6.1) contains package—wide settings, including
the package name, version information, and supported Android SDK
information. You can also set any hardware or feature requirements here.

[V Wy p—

- .

Figure 6.1 The Manifest tab of
the Eclipse Manifest File resource editor.

Managing Application and Activity Settings Using the Application
Tab : The Application tab (see Figure 6.2) contains application—wide
settings, including the application label and icon, as well as information
about the application components such as activities, intent filters, and
other application components, including configuration for services, intent
filters, and content providers.

Enforcing Application Permissions Using the Permissions Tab : The
Permissions tab (see Figure 6.3) contains any permission rules required
by your application. This tab can also be used to enforce custom permissions
created for the application.

Managing Test Instrumentation Using the Instrumentation Tab : The
Instrumentation tab allows the developer to declare any instrumentation
classes for monitoring the application. We talk more about instrumentation
and testing in upcoming Chapter.

Android Manifest File

and its Common
Settings & Using
Permission

63

64

Mobile Application
Development
(Using Android)

H =

(o T TR R B
Do i gy |

o T g e T —— i ——— . p— — . o g] gy m—

T T Ay S r—p—
R
L Y . L
S s b T ol
——— L e & -
jami e . e iy e
- PR R TR S ———— [——
—— i e e IR -
[, [— -
|
[S— B e g B
ey P S — -
B A we— w e -
— ke L e]
- = g i —
g e Mk - ﬂ-g-n: J":!I-l."ll P i R e e R
m [B T = o W g e —
“"'- iefeliiy ety i ks e e T = T
B | | ST Y ST N e —
W g | A S B E S [T d ?
T e — g e — Sl iy By
[P —— - 5
T _— e
¥ =
:rl:l..-_n--\...J.-.-\. T ST Lisdaby [e T | [PSS
1L i iy i
[T [

e S e — P S—— 830 i

Figure 6.2 : The Application tab of the
Eclipse Manifest File resource editor.

A

B A astrnt Ped i s

| — ol B T g i e g ST 18 . Wi
I I

Y | TR e —— B I) e) p— e —

- P e L L L e e e
A g p— A Sy [—
e e e R .
AT F by o b
™
=
|
et gt wrmm 9 e s -

Figure 6.3 : The Permissions tab of the
Eclipse Manifest File resource editor.

6.2.3 Editing the Manifest File Manually :

The Android manifest file is a specially formatted XML file. You can
edit the XML manually by clicking on the AndroidManifest.xml tab. Android
manifest files generally include a single <manifest> tag with a single <application>
tag. The following is a sample AndroidManifest.xml file for an application
called Multimedia :
<hml versicn="1,0" encadiag="utf-8"7>
<manifest mnlinaiandroids"hetp://dchesas. android. com/aphk/res /android”®

package="com. endroidbook oo lt inedia®
amdroid: versionCody="1"
androld:verplecolane="1 .0 >
applicatinon androidiicen=® #drawahle/icon”®
androdd:label="fetcing/ app name”
androididebuggable="true">
cactivity android:assie=" MultisediaMonulat ivity”
androidiiabel="fstringlapp nams*>
cintant=-f1lrars
<sctdon
androidinmmes"android, inteat .action MAIN" /b

<cateqory
androldinases " ancrolid. L nteant .o ategory .. LAUNCHER"™ />
</iotent-filter>

</actuvikyr

fActivity androldiname= Audichctivity *</activity>

chotivity andepldinsmes"Se)] | fmseeletivity »</activitys

activity androldrname="VideoPlayAetivity > fantlivity>

<activity android:nasie="VideoRecordActivity™></activity>
</application>
<uBgE=poimimEion

androldinames” androic.permiseion MRITE SEXITINGS™ />
Clmg - PeE I S8 LDN

android:names" androld . permisgion . BECORD AUDID" />
LR B el ERL B8 100

android:names" androld . permission .SET WALLPAFER" 4>
<pseg-permipsion

androdd inemes" androdd .. pormis aion CAMERA" < fukes -paraissiond
<ilngg-sdk

android:pinsdeVarsion=" 3"

andrordrterget SdhVersioa="8"»
< fud es—-gdicr
<uppg-featore

androldiname "androld. handvara. camera” />

<fmanifest>

Here's a summary of what this file tells us about the Multimedia

application :

The application uses the package name com.androidbook.multimedia.
The application version name is 1.0.
The application version code is 1.

The application name and label are stored in the resource string called
@string/app_name within the /res/values/strings.xml resource file.

The application is debuggable on an Android device.

The application icon is the graphic file called icon (could be a PNG,
JPG, or GIF) stored within the /res/drawable directory (there are actually
multiple versions for different pixel densities).

The application has five activities (MultimediaMenuActivity, AudioActivity,
StilllmageActivity, VideoPlayActivity, and VideoRecordActivity).

MultimediaMenuActivity is the primary entry point for the application.This
is the activity that starts when the application icon is pressed in the
application drawer.

The application requires the following permissions to run: the ability to
record audio, the ability to set the wallpaper on the device, the ability
to access the built-in camera, and the ability to write settings.

The application works from any API level from 3 to 8; in other
words,Android SDK 1.5 is the lowest supported, and the application was
written to target Android 2.2.

Finally, the application requires a camera to work properly

Now let's talk about some of these important configurations in detail.

Android Manifest File

and its Common
Settings & Using
Permission

65

66

Mobile Application
Development
(Using Android)

6.3 Managing Your Application's Identity :

Your application's Android manifest file defines the application properties.

The package name must be defined within the Android manifest file within
the <manifest> tag using the package attribute :
<manifest

xmlns:android="http: //schemas.android.com/apk/res/android”

package="com.androidbook.miltimedia"

android:versionCode="1"

android:versionName="1.0">

6.3.1 Versioning Your Application :

Versioning your application appropriately is vital to maintaining your
application in the field. Intelligent versioning can help reduce confusion and
make product support and upgrades simpler. There are two different version
attributes defined within the <manifest> tag: the version name and the version
code.

The version name (android:versionName) is a user—friendly, developer—
defined version attribute. This information is displayed to users when they
manage applications on their devices and when they download the application
from marketplaces. Developers use this version information to keep track of
their application versions in the field. We discuss appropriate application
versioning for mobile applications in detail in Chapter

6.3.2 Setting the Application Name and Icon :

Overall application settings are configured with the <application> tag of
the Android manifest file. Here you set information such as the application
icon (android:icon) and friendly name (android:label). These settings are attributes
of the <application> tag.

For example, here we set the application icon to a drawable resource
provided with the application package and the application label to a string
resource:

<application android:icon="@drawable/icon"
android:label="@string/app _name">

You can also set optional application settings as attributes in the
<application> tag, such as the application description (android:description) and
the setting to enable the application for debugging on the device
(android:debuggable="true").

6.4 Enforcing Application System Requirements :

In addition to configuring your application's identity, the Android manifest
file is also used to specify any system requirements necessary for the application
to run properly. For example, an augmented reality application might require
that the handset have GPS, a compass, and a camera. Similarly, an application
that relies upon the Bluetooth APIs available within the Android SDK requires
a handset with an SDK version of API Level 5 or higher (Android 2.0). These
types of system requirements can be defined and enforced in the Android
manifest file. Then, when an application is listed on the Android Market,
applications can be filtered by these types of information; the Android platform
also checks these requirements when installing the application package on the
system and errors out if necessary.

Some of the application system requirements that developers can configure =~ Android Manifest File
through the Android manifest file include and its Common
Settings & Using

. The Android SDK versions supported by the application Permission

The Android platform features used by the application

The Android hardware configurations required by the application
. The screen sizes and pixel densities supported by the application

. Any external libraries that the application links to
6.4.1 Targeting Specific SDK Versions :

Android devices run different versions of the Android platform. Often,
you see old, less powerful, or even less expensive devices running older versions
of the Android platform, whereas newer, more powerful devices that show up
on the market often run the latest Android software.

There are now dozens of different Android devices in users' hands.
Developers must decide who their target audience is for a given application.
Are they trying to support the largest population of users and therefore want
to support as many different versions of the platform as possible ? Or are they
developing a bleeding—edge game that requires the latest device hardware?

Developers can specify which versions of the Android platform an
application supports within its Android manifest file using the <uses—sdk>
tag.This tag has three important attributes:

. The minSdkVersion attribute : This attribute specifies the lowest API
level that the application supports.

. The targetSdkVersion attribute : This attribute specifies the optimum
API level that the application supports.

. The maxSdkVersion attribute : This attribute specifies the highest API
level that the application supports.

Each attribute of the <uses—sdk> tag is an integer that represents the
API level associated with a given Android SDK. This value does not directly
correspond to the SDK version. Instead, it is the revision of the API level
associated with that SDK. The API level is set by the developers of the Android
SDK. You need to check the SDK documentation to determine the API level
value for each version.

Table 6.4 shows the Android SDK versions available for shipping

applications.
Androld SDK Verslon APl Level (Value as Integer)
Android 1.0 SDK 1
Android 1.1 SDK 2
Android 1.5 SDK (Cupcake) 3
Android 1.6 SDK (Donut) 4
Android 2.0 SDK (Eclain 5

Andrald 2.0.1 SDK (Eclair)

&

Android 2.1 SDK (Ectair) 7
Android 2.2 SDK {FroYo) 8
Android SOK (Gingerbread) 9

67

68

Mobile Application
Development
(Using Android)

6.4.2 Specifying the Minimum SDK Version :

You should always specity the minSdkVersion attribute for your application.
This value represents the lowest Android SDK version your application supports.

For example, if your application requires APIs introduced in Android
SDK 1.6, you would check that SDK's documentation and find that this release
is defined as API Level 4. Therefore, add the following to your Android
Manifest file within the <manifest> tag block :

<uses—sdk android:minSdkVersion="4" />

It's that simple. You should use the lowest API level possible if you want
your application to be compatible with the largest number of Android handsets.
However, you must ensure that your application is tested sufficiently on any
non—target platforms (any API level supported below your target SDK, as
described in the next section).

6.4.3 Specifying the Target SDK Version :

You should always specify the targetSdkVersion attribute for your
application. This value represents the Android SDK version your application
was built for and tested against. For example, if your application was built
using the APIs that are backward—compatible to Android 1.6 (API Level 4),
but targeted and tested using Android 2.2 SDK (API Level 8), then you would
want to specify the targetSdkVersion attribute as 8. Therefore, add the following
to your Android manifest file within the <manifest> tag block:

<uses—sdk android:minSdkVersion="4" android:targetSdkVersion="8" />

Why should you specify the target SDK version you used ? Well, the
Android platform has built—in functionality for backward—compatibility (to a
point). Think of it like this: A specific method of a given API might have
been around since API Level 1. However, the internals of that method-its
behavior—might have changed slightly from SDK to SDK.

By specifying the target SDK version for your application, the Android
operating system attempts to match your application with the exact version
of the SDK (and the behavior as you tested it within the application), even
when running a different (newer) version of the platform. This means that the
application should continue to behave in "the old way" despite any new changes
or "improvements" to the SDK that might cause unintended consequences in
your application.

6.4.4 Specifying the Maximum SDK Version :

You will rarely want to specify the maxSdkVersion attribute for your
application. This value represents the highest Android SDK version your
application supports, in terms of API level. It restricts forward—compatibility
of your application.

One reason you might want to set this attribute is if you want to limit
who can install the application to exclude devices with the newest SDKs. For
example, you might develop a free beta version of your application with plans
for a paid version for the newest SDK. By setting the maxSdkVersion
attribute of the manifest file for your free application, you disallow anyone
with the newest SDK to install the free version of the application. The downside
of this idea ? If your users have phones that receive over—the—air SDK updates,
your application would cease to work (and appear) on phones where it had

functioned perfectly, which might "upset" your users and result in bad ratings
on your market of choice.

The short answer : Use maxSdkVersion only when absolutely necessary
and when you understand the risks associated with its use.

6.5 Enforcing Application System Requirements Working with
Permissions :

Android devices have different hardware and software configurations.
Some devices have built—in keyboards and others rely upon the software
keyboard. Similarly, certain Android devices support the latest 3—D graphics
libraries and others provide little or no graphics support. The Android manifest
file has several informational tags for flagging the system features and hardware
configurations supported or required by an Android application.

6.5.1 Specifying Supported Input Methods :

The <uses—configuration> tag can be used to specify which input methods
the application supports. There are different configuration attributes for five—
way navigation, the hardware keyboard and keyboard types; navigation devices
such as the directional pad, trackball, and wheel; and touch screen settings.

There is no "OR" support within a given attribute. If an application
supports multiple input configurations, there must be multiple <uses—
configuration> tags—one for each complete configuration supported.

For example, if your application requires a physical keyboard and touch
screen input using a finger or a stylus, you need to define two separate <uses—
configuration> tags in your manifest file, as follows:

<uses—configuration android:reqHardKeyboard="true" android:reqTouch
Screen="finger" />

<uses—configuration android:reqHardKeyboard="true"
android:reqTouchScreen="stylus" />

For more information about the <uses—configuration> tag of the Android
manifest file, see the Android SDK reference at http://developer.android.com/
guide/topics/manifest/uses—configuration—element.html.

6.5.2 Specifying Required Device Features :

Not all Android devices support every Android feature. Put another way :
There are a number of APIs (and related hardware) that Android devices may
optionally include. For example, not all Android devices have multi—touch
ability or a camera flash.

The <uses—feature> tag can be used to specify which Android features
the application requires to run properly. These settings are for informational
purposes only—the Android operating system does not enforce these settings,
but publication channels such as the Android Market use this information to
filter the applications available to a given user.

If your application requires multiple features, you must create a <uses—
feature> tag for each. For example, an application that requires both a light
and proximity sensor requires two tags :

<uses—feature android:name="android.hardware.sensor.light" />

<uses—feature android:name="android.hardware.sensor.proximity" />

Android Manifest File

and its Common
Settings & Using
Permission

69

70

Mobile Application
Development
(Using Android)

One common reason to use the <uses—feature> tag is for specifying the
OpenGL ES versions supported by your application. By default, all applications
function with OpenGL ES 1.0 (which is a required feature of all Android
devices). However, if your application requires features available only in later
versions of OpenGL ES, such as 2.0, then you must specify this feature in
the Android manifest file. This is done using the android:glEsVersion attribute
of the <uses—feature> tag. Specify the lowest version of OpenGL ES that the
application requires. If the application works with 1.0 and 2.0, specify the lowest
version (so that the Android Market allows more users to install your application).

For more information about the <uses—feature> tag of the Android
manifest file, see the Android SDK reference.

6.5.3 Specifying Supported Screen Sizes :

Android devices come in many shapes and sizes. Screen sizes and pixel
densities vary widely across the range of Android devices available on the
market today. The Android platform categorizes screen types in terms of sizes
(small, normal, and large) and pixel density (low, medium, and high).These
characteristics effectively cover the variety of screen types available within the
Android platform.

An application can provide custom resources for specific screen sizes
and pixel densities. The <supportsscreen> tag can be used to specify which
Android types of screens the application supports.

For example, if the application supports QVGA screens (small) and
HVGA screens (normal) regardless of pixel density, the <supports—screen> tag
is configured as follows:

<supports—screens android.smallScreens="true"
android:normalScreens="true"
android:largeScreens"false"”

android:anyDensity="true"/>

6.5.4 Working with External Libraries :

You can register any shared libraries your application links to within
the Android manifest file. By default, every application is linked to the standard
Android packages (such as android.app) and is aware of its own package.
However, if your application links to additional packages, they must be registered
within the <application> tag of the Android manifest file using the <uses—
library> tag. For example

<uses—library android:name="com.sharedlibrary.sharedStuff" />

This feature is often used for linking to optional Google APIs. For more
information about the <uses—library> tag of the Android manifest file, see the
Android SDK reference.

6.6 Working with Permissions :

The Android operating system has been locked down so that applications
have limited capability to adversely affect operations outside their process space.
Instead, Android applications run within the bubble of their own virtual machine,
with their own Linux user account (and related permissions).

6.6.1 Registering Permissions Your Application Requires :

Android applications have no permissions by default. Instead, any
permissions for shared resources or privileged access—whether it's shared data,
such as the Contacts database, or access to underlying hardware, such as the
built—-in camera—must be explicitly registered within the Android manifest file.
These permissions are granted when the application is installed.

The following XML excerpt for the preceding Android manifest file
defines a permission using the <uses—permission> tag to gain access to the
built-in camera:

<uses—permission android:name="android.permission.CAMERA" />

A complete list of the permissions can be found in the android.
Manifest.permission class. Your application manifest should include only the
permissions required to run. The user is informed what permissions each
Android application requires at install time.

6.6.2 Registering Permissions Your Application Grants to Other Applications :

Applications can also define their own permissions by using the
<permission> tag. Permissions must be described and then applied to specific
application components, such as Activities, using the android:permission attribute.

Permissions can be enforced at several points :

. When starting an Activity or Service

. When accessing data provided by a content provider
. At the function call level

. When sending or receiving broadcasts by an Intent

Permissions can have three primary protection levels: normal, dangerous,
and signature. The normal protection level is a good default for fine—grained
permission enforcement within the application. The dangerous protection level
is used for higher risk Activities, which might adversely affect the device.
Finally, the signature protection level permits any application signed with the
same certificate to use that component for controlled application interoperability.
You learn more about application signing in upcoming chapter.

Permissions can be broken down into categories, called permission groups,
which describe or warn why specific Activities require permission. For example,
permissions might be applied for Activities that expose sensitive user data such
as location and personal information (android.permission—group.LOCATION
and android.permissiongroup. PERSONAL INFO), access underlying hardware
(android.permissiongroup. HARDWARE CONTROLS), or perform operations that
might incur fees to the user (android.permission—group.COST MONEY). A
complete list of permission groups is available within the Manifest.permission_
group class.

a Check Your Progress :
1. Which of the following android component displays the part of an activity

on screen ?

(A) Layout (B) Component (C) Manifest (D) XML
2. Version attributes defined within the _________ tag.

(A) <application> (B) <manifest>

(C) <permission> (D) <android>

Android Manifest File

and its Common
Settings & Using
Permission

71

72

Mobile Application
Development
(Using Android)

3. The manifest what the application consist of glues everything together.
(True/False)
(A) True (B) False

4. To use the camera in Android Application which permission is required
to set.

(A) android.permission.CAMERA (B) android.permission.INTERNET
(C) android.permission.CONTACT (D) android.permission.READ

5. Applications can also define their own permissions by using the
tag.

(A) <android> (B) <permission> (C) <service> (D) <uses>

6.7 Let Us Sum Up :

In this unit we learn regarding use of Android Manifest File in Android
Application, how to set the Android Manifest File in Android Application, how
to implement common setting in Android Manifest File and use various
permissions available in Android Application

6.8 Answers for Check Your Progress :

1. (O) 2. (B) 3. (A) 4. (A) 5. (B)

6.9 Glossary :

SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

Lol ol

6.10 Assignment :

1. What is AndroidManifest.xml file ? Explain it with different tags.
2. How to register the servlet in manifest file ?

3. Define AndroidManifest.xml file

6.11 Activities :

1. Use AndroidManifest.xml with proper tag and implementation of android
program with android code.

6.12 Case Study :

Find the problem with AndroidManifest.xml file and try to solve it with
proper justification of android code.

6.13 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

MANAGING APPLICATION
RESOURCES IN A HIERARCHY
07 & WORKING WITH DIFFERENT
TYPES OF RESOURCES

7.0 Learning Objectives

7.1 Introduction
7.2 What Are Resources ?
7.2.1 Storing Application Resources
7.2.2 Understanding the Resource Directory Hierarchy
7.2.3 Using the Android Asset Packaging Tool
7.2.4 Resource Value Types
7.3 Storing Different Resource Value Types
7.3.1 Storing Simple Resource Types Such as Strings
7.3.2 Storing Graphics, Animations, Menus, and Files
7.3.3 Understanding How Resources Are Resolved
7.3.4 Accessing Resources Programmatically
7.4 Working with different types of resources
7.4.1 Working with String Resources
7.4.2 Working with String Arrays
7.4.3 Working with Boolean Resources
7.4.4 Working with Integer Resources
7.4.5 Working with Colors
7.4.6 Working with Dimensions
7.4.7 Working with Simple Drawables
7.4.8 Working with Images
7.4.9 Working with Animation
7.4.10 Working with Menus
7.4.11 Working with XML Files
7.4.12 Working with Raw Files
7.4.13 Working with Layouts
7.4.14 Working with Styles
7.5 Let Us Sum Up
7.6 Answers for Check Your Progress
7.7 Glossary
7.8 Assignment
7.9 Activities
4.10 Case Study
4.11 Further Reading

73

74

Mobile Application
Development
(Using Android)

7.0 Learning Objectives :

. To learn about the resources available in Android
. To manage various types of resources in Android Application
. To learn how to create and use resources in Android Application

7.1 Introduction :

The well-written application accesses its resources programmatically
instead of hard coding them into the source code. This is done for a variety
of reasons. Storing application resources in a single place is a more organized
approach to development and makes the code more readable and maintainable.
Externalizing resources such as strings makes it easier to localize applications
for different languages and geographic regions. In this chapter, you learn how
Android applications store and access important resources such as strings,
graphics, and other data. You also learn how to organize Android resources
within the project files for localization and different device configurations.

7.2 What Are Resources ?

All Android applications are composed of two things: functionality (code
instructions) and data (resources). The functionality is the code that determines
how your application behaves.

This includes any algorithms that make the application run. Resources
include text strings, images and icons, audio files, videos, and other data used
by the application.

7.2.1 Storing Application Resources :

Android resource files are stored separately from the java class files in
the Android project. Most common resource types are stored in XML. You
can also store raw data files and graphics as resources.

7.2.2 Understanding the Resource Directory Hierarchy :

Resources are organized in a strict directory hierarchy within the Android
project. All resources must be stored under the /res project directory in specially
named subdirectories that must be lowercase.

Different resource types are stored in different directories. The resource
sub—directories generated when you create an Android project using the Eclipse
plug—in are shown in Figure 7.1.

Resolrce Purpose

Subdirectory

fren/dravabtile-+/ Graphics Resources

fras/flayout/ User Interface Hesources

fren/values/ Simple Data such as Strirgs and Calor Values, and so on

Figure 7.1 : Default Android Resource Directories

Each resource type corresponds to a specific resource subdirectory name.
For example, all graphics are stored under the /res/drawable directory structure.
Resources can be further organized in a variety of ways using even more
specially named directory qualifiers. For example, the /res/drawable—hdpi
directory stores graphics for high—density screens, the /res/drawable—Ildpi directory

stores graphics for low—density screens, and the /res/drawable—mdpi directory Managing Application
stores graphics for medium—density screens. If you had a graphic resource that Resources in a
was shared by all screens, you would simply store that resource in the /res/ ~ Hierarchy & Working

drawable directory. We talk more about resource directory qualifiers later in with Different
this chapter. Types of Resources

7.2.3 Using the Android Asset Packaging Tool :

If you use the Eclipse with the Android Development Tools Plug—In, you
will find that adding resources to your project is simple. The plug—in detects
new resources when you add them to the appropriate project resource directory
under /res automatically. These resources are compiled, resulting in the generation
of the R.java file, which enables you to access your resources programmatically.
If you use a different development environment, you need to use the aapt tool
command-line interface to compile your resources and package your application
binaries to deploy to the phone or emulator. You can find the aapt tool in
the /tools subdirectory of each specific Android SDK version.

7.2.4 Resource Value Types :

Android applications rely on many different types of resources—such as
text strings, graphics, and color schemes—for user interface design. These
resources are stored in the /res directory of your Android project in a strict
(but reasonably flexible) set of directories and files. All resources filenames
must be lowercase and simple (letters, numbers, and underscores only). The
resource types supported by the Android SDK and how they are stored within
the project are shown in Figure 7.2.

Rasaurca Required Filanamae XML Tag

Type Dirsstory

Strings freafvaluas/ prrings e |supgected) <arrlnge

String s fval e pislngs .=l | SUppested) <pluralp>=, <ltes>

Piurslzation

Arrave of el val ues ol nge . esl | SOpEeca) <gtil fng-arraye,
Strings <] Eam

Botdeans fronfval ues / boola.aml (Suggesisd) <hools

Colors foond valdon Colora .=l (Sugigssiad) ccolore

Calor Stats feenleelor/ Examples includs <snslector>, <item>
Ligts buttonntates.oal

indicatord .xal

Dirnensions el valyes Dimens , =m] | SUSSRSIE) <2 § oy g0

Iiegears /res/valuss/ intogoers.xal <intoger>
[ugpestesd)

Artays of fraa f val ves intogers.xml <integer-arsay>,

Irlegeds |sgnestad) AT

75

76

Mobile Application
Development
(Using Android)

Mtlaad-Typ femsfvalyes! Arrays . smt {supRaing| CATEAY>, <itemd
AfTays
Simpta fean /v aluwal deawatiles . aal it awable>
Drawiibiss (Suggestad)
(Faint abke)
Gragiusa fearnf Eximpias incluose Supported graphics fleg
dravablad Lean.pig logo .- jpg or drmesbie osfmitlon
XL Nkes such as
shape o
Tweizsmisd fronfanis/ Exampisd Inclings “pgt>, <alphae,
ArlmEtinns ¥ mebin @0 o) Bier . EEL <pealer, <tranplotor,
spinaoguance. sl <Irotakes
Ffﬂl'ﬂ‘.-b‘p— JEEar Exampies inciude <Aanlmatian-l A8t s
Frame deasab Lo/ pwjuencel . xnl < § g
AnlmiEtions pogquetsal. ol
Fternis Froo/mon ExarmipEas (nCiuce oy L
aainmenu. xml
helpseny, xul
ENL Fung Jeaas/eml/ Examiples Inciude Dufiresg by the deiediped
data .xnl
date 2 .- xnl
Hiw Flleg frenfcaw! Exampies inclads Brefirad By 1he clermaipeed
jingle. =]
ot W L oo . mpd
helptext.cxt
Layouls {eaosLayouts Examplas i Variss, Must be 2 layout
Bain .ol [ale g idfu
halp.xml
Stytas and frun/valusaf styles.xml <mtyle=
Thénmes t hie=ea . xm] {SUggeghed)

7.3 Storing Different Resource Value Types :

The aapt traverses all properly formatted files in the /res directory
hierarchy and generates the class file R.java in your source code directory
/src to access all variables.

Later in this chapter, we cover how to store and use each different
resource type in detail, but for now, you need to understand that different types
of resources are stored in different ways.

7.3.1 Storing Simple Resource Types Such as Strings :

Simple resource value types, such as strings, colors, dimensions, and other
primitives, are stored under the /res/values project directory in XML files. Each
resource file under the /res/values directory should begin with the following
XML header :

<?xml version="1.0" encoding="utf-8"?>

Next comes the root node <resources> followed by the specific resource
element types such as <string> or <color>. Each resource is defined using
a different element name. Although the XML file names are arbitrary, the best
practice is to store your resources in separate files to reflect their types, such
as strings.xml, colors.xml, and so on. However, there's nothing stopping the

developers from creating multiple resource files for a given type, such as two
separate xml files called bright colors.xml and muted colors.xml, if they so
choose.

7.3.2 Storing Graphics, Animations, Menus, and Files :

In addition to simple resource types stored in the /res/values directory,
you can also store numerous other types of resources, such as animation
sequences, graphics, arbitrary XML files, and raw files. These types of resources
are not stored in the /res/values directory, but instead stored in specially named
directories according to their type. For example, you can include animation
sequence definitions in the /res/anim directory. Make sure you name resource
files appropriately because the resource name is derived from the filename of
the specific resource. For example, a file called flag.png in the /res/drawable
directory is given the name R.drawable.flag.

7.3.3 Understanding How Resources Are Resolved :

Few applications work perfectly, no matter the environment they run in.
Most require some tweaking, some special case handling. That's where alternative
resources come in. You can organize Android project resources based upon
more than a dozen different types of criteria, including language and region,
screen characteristics, device modes (night mode, docked, and so on), input
methods, and many other device differentiators. It can be useful to think of
the resources stored at the top of the resource hierarchy a default resources
and the specialized versions of those resources as alternative resources. Two
common reasons that developers use alternative resources are for
internationalization and localization purposes and to design an application that
runs smoothly on different device screens and orientations.

The Android platform has a very robust mechanism for loading the
appropriate resources at runtime. An example might be helpful here. Let's
presume that we have a simple application with its requisite string, graphic,
and layout resources. In this application, the resources are stored in the top—
level resource directories (for example, /res/values/strings.xml, /res/drawable/
myLogo.png, and /res/layout/main.xml). No matter what Android device (huge
hi—def screen, postage—stamp—sized screen, English or Chinese language or
region, portrait or landscape orientation, and so on), you run this application
on, the same resource data is loaded and used. Back in our simple application
example, we could create alternative string resources in Chinese simply by
adding a second strings.xml file in a resource subdirectory called /res/values—
zh/strings.xml (note the —zh qualifier).We could provide different logos for
different screen densities by providing three versions of myLogo.png:

. /res/drawable—Idpi/myLogo.png (low—density screens)
. /res/drawable—-mdpi/myLogo.png (medium—density screens)

. /res/drawable—hdpi/myLogo.png (high—density screens) Finally, let's say
that the application would look much better if the layout was different
in portrait versus landscape modes.We could change the layout around,
moving controls around, in order to achieve a more pleasant user experience,
and provide two layouts:

. /res/layout—port/main.xml (layout loaded in portrait mode)

. /res/layout—land/main.xml (layout loaded in landscape mode) With these
alternative resources in place, the Android platform behaves as follows:

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

77

78

Mobile Application
Development
(Using Android)

. If the device language setting is Chinese, the strings in /res/values—zh/
strings.xml are used. In all other cases, the strings in /res/values/strings.xml
are used.

. If the device screen is a low—density screen, the graphic stored in the

/res/ drawable—ldpi/myLogo.png resource directory is used. If it's a medium—
density screen, the mdpi drawable is used, and so on.

. If the device is in landscape mode, the layout in the /res/layout—land/
main.xml is loaded. If it's in portrait mode, the /res/layout—port/main.xml
layout is loaded.

There are four important rules to remember when creating alternative
resources :

1. The Android platform always loads the most specific, most appropriate
resource available. If an alternative resource does not exist, the default
resource is used. Therefore, know your target devices, design for the
defaults, and add alternative resources judiciously.

2. Alternative resources must always be named exactly the same as the
default resources. If a string is called strHelpText in the /res/values/
strings.xml file, then it must be named the same in the /res/values—ft/
strings.xml (French) and /res/values—zh/strings.xml (Chi nese) string
files.The same goes for all other types of resources, such as graphics
or layout files.

3. Good application design dictates that alternative resources should always
have a default counterpart so that regardless of the device, some version
of the resource always loads.The only time you can get away without
a default resource is when you provide every kind of alternative resource
(for example, providing ldpi, mdpi, and hdpi graphics resources cover
every eventuality, in theory).

4. Don't go overboard creating alternative resources, as they add to the size
of your application package and can have performance implications.
Instead, try to design your default resources to be flexible and scalable.
For example, a good layout design can often support both landscape and
portrait modes seamlessly—if you use the right controls.

7.3.4 Accessing Resources Programmatically :

Developers access specific application resources using the R.java class
file and its subclasses, which are automatically generated when you add
resources to your project (if you use Eclipse). You can refer to any resource
identifier in your project by name. For example, the following string resource
named strHello defined within the resource file called /res/values/strings.xml
is accessed in the code as R.string.strHello

This variable is not the actual data associated with the string named hello.
Instead, you use this resource identifier to retrieve the resource of that type
(which happens to be string). For example, a simple way to retrieve the string
text is to call

String myString = getResources().getString(R.string.strHello);

First, you retrieve the Resources instance for your application Context
(android.content.Context), which is, in this case, this because the Activity class
extends Context. Then you use the Resources instance to get the appropriate

kind of resource you want. You find that the Resources class (android.content.
res.Resources) has helper methods for handling every kind of resource.

Before we go any further, we find it can be helpful to dig in and create
some resources, so let's create a simple example. Don't worry if you don't
understand every aspect of the exercise. You can find out more about each
different resource type later in this chapter.

7.4 Working with Different Types of Resources :

In this section, we look at the specific types of resources available for
Android applications, how they are defined in the project files, and how you
can access this resource data programmatically.

For each type of resource type, you learn what types of values can be
stored and in what format. Some resource types (such as Strings and Colors)
are well supported with the Android Plug—in Resource Editor, whereas others
(such as Animation sequences) are more easily managed by editing the XML
files directly.

7.4.1 Working with String Resources :

String resources are among the simplest resource types available to the
developer. String resources might show text labels on form views and for help
text.The application name is also stored as a string resource, by default. String
resources are defined in XML under the /res/values project directory and
compiled into the application package at build time. All strings with apostrophes
or single straight quotes need to be escaped or wrapped in double straight
quotes. Some examples of well-formatted string values are shown in
Figure 7.2

String Resource Value Displays As

Hello, World Hella, World

"User's Full Name:” User's Full Name:

User''s Full Name: User's Full Name:

She said, \"Hi.\" She said, “HI”

She\'s busy but she did say, She’s busy but she did say,
\HLA" "Hi”

Figure 7.2 : String Resource Formatting Examples

You can edit the strings.xml file using the Resources tab, or you can
edit the XML directly by clicking the file and choosing the strings.xm! tab.
After you save the file, the resources are automatically added to your R.java
class file. String values are appropriately tagged with the <string> tag and
represent a name value pair. The name attribute is how you refer to the specific
string programmatically, so name these resources wisely.

Here's an example of the string resource file /res/values/strings.xml :
<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app name">Resource Viewer</string>
<string name="test string">Testing 1,2,3</string>
<string name="test string2">Testing 4,5, 6</string>

</resources>

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

79

80

Mobile Application
Development
(Using Android)

7.4.2 Working with String Arrays :

You can specify lists of strings in resource files. This can be a good
way to store menu options and drop—down list values. String arrays are defined
in XML under the /res/values project directory and compiled into the application
package at build time.

String arrays are appropriately tagged with the <string—array> tag and
a number of <item> child tags, one for each string in the array. Here's an
example of a simple array resource file /res/values/arrays.xml :

<?xml version="1.0" encoding="utf-8"?>
<resources>
<string-array name="flavors">
<item>Vanilla Bean</item>
<item>Chocolate Fudge Brownie</item>
<item>Strawberry Cheesecake</item>
<item>Coffee, Coffee, Buzz Buzz Buzz</item>
<item>Americone Dream</item>
</string-array>
<string-array name="soups">
<item>Vegetable minestrone</item>
<item>New England clam chowder</item>
<item>Organic chicken noodle</item>
</string-array>
</resources>

As shown earlier in this chapter, accessing string arrays resources is easy.
The following code retrieves a string array named flavors :

String[] aFlavors =

getResources () .getStringArray (R.array.flavors);

7.4.3 Working with Boolean Resources :

Other primitive types are supported by the Android resource hierarchy
as well. Boolean resources can be used to store information about application
game preferences and default values. Boolean resources are defined in XML
under the /res/values project directory and compiled into the application package
at build time.

Defining Boolean Resources in XML

Boolean values are appropriately tagged with the <bool> tag and represent
a name—value pair. The name attribute is how you refer to the specific Boolean
value programmatically, so name these resources wisely.

Here's an example of the Boolean resource file /res/values/bools.xml :
<?xml version="1.0" encoding="utf-8"7>

<resources>

<bool name="bOnePlusOneEqualsTwo">true</bool>

<bool name="bAdvancedFeaturesEnabled">false</bool>

</resources>

Using Boolean Resources Programmatically

To use a Boolean resource, you must load it using the Resource class.
The following code accesses your application's Boolean resource named
bAdvancedFeaturesEnabled.

boolean bAdvancedMode =
getResources () .getBoolean (R.bool .bAdvancedFeatureskEnabled) ;
7.4.4 Working with Integer Resources :

In addition to strings and Boolean values, you can also store integers
as resources. Integer resources are defined in XML under the /res/values project
directory and compiled into the application package at build time.

Defining Integer Resources in XML

Integer values are appropriately tagged with the <integer> tag and represent
a name value pair. The name attribute is how you refer to the specific integer
programmatically, so name these resources wisely.

Here's an example of the integer resource file /res/values/nums.xml :
<?xml version="1.0" encoding="utf-8"?>

<resources>

<integer name="numTimesToRepeat">25</integer>
<integer name="startingAgeOfCharacter">3</integer>
</resources>

Using Integer Resources Programmatically

To use the integer resource, you must load it using the Resource class.
The following code accesses your application's integer resource named
numTimesToRepeat :

int repTimes =
getResources () .getInteger (R.integer.numTimesToRepeat) ;
7.4.5 Working with Colors :

Android applications can store RGB color values, which can then be
applied to other screen elements. You can use these values to set the color
of text or other elements, such as the screen background. Color resources are
defined in XML under the /res/values project directory and compiled into the
application package at build time.

RGB color values always start with the hash symbol (#).The alpha value
can be given for transparency control. The following color formats are supported:

. #RGB (example, #F00 is 12-bit color, red)
. #ARGB (example, #8F00 is 12-bit color, red with alpha 50%)
. #RRGGBB (example, #FFOOFF is 24-bit color, magenta)

. #AARRGGBB (example, #80FFOOFF is 24-bit color, magenta with alpha
50%)

Color values are appropriately tagged with the <color> tag and represent
a name—value pair.

Here's an example of a simple color resource file /res/values/colors.xml:

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

81

Mobile Application <?xml version="1.0" encoding="utf-8"?>
Development

< >
(Using Android) resources

<color name="background color">#006400</color>
<color name="text_color">#FFE4C4</color>
</resources>

The example at the beginning of the chapter accessed a color resource.
Color resources are simply integers. The following code retrieves a color
resource called prettyTextColor :

int myResourceColor =

getResources () .getColor (R.color.prettyTextColor);

7.4.6 Working with Dimensions :

Many user interface layout controls such as text controls and buttons
are drawn to specific dimensions. These dimensions can be stored as resources.
Dimension values always end with a unit of measurement tag.

Dimension values are appropriately tagged with the <dimen> tag and
represent a name value pair. Dimension resources are defined in XML under
the /res/values project directory and compiled into the application package at
build time.

The dimension units supported are shown in Figure 7.3

Unit of Description Resource Example
Measurement Tag

Required
Pixels Actual screen phiels px 20px
Inches Physical measurament in lin
Millimeters Physical measurement mm Lmm
Paints Common font measurement unit pt ldpt
Screen density Pixels relative to 160dpi screen dp ldp
Independent (preferable dimension for screen
pixels compatibility)
Scale independant Best for 2calable font display sp l4zp
pixels

Figure 7.3 : Dimension Unit Measurements Supported

Here's an example of a simple dimension resource file /res/values/
dimens.xml :

<?xml version="1.0" encoding="utf-8"?>
<resources>

<dimen name="FourteenPt">1l4pt</dimen>
<dimen name="OnelInch">1in</dimen>

<dimen name="TenMillimeters">10mm</dimen>
<dimen name="TenPixels">10px</dimen>
</resources>

Dimension resources are simply floating point values. The following code
retrieves a dimension resource called textPointSize :

float myDimension =

getResources () .getDimension (R.dimen.textPointSize);

7.4.7 Working with Simple Drawables :

You can specify simple colored rectangles by using the drawable resource
type, which can then be applied to other screen elements. These drawable types
are defined in specific paint colors, much like the Color resources are defined.

Simple paintable drawable resources are defined in XML under the
/res/values project directory and compiled into the application package at build
time. Paintable drawable resources use the <drawable> tag and represent a
name—value pair.

Here's an example of a simple drawable resource file /res/values/
drawables.xml :

<?xml version="1.0" encoding="utf-8"?>
<resources>

<drawable name="red rect">#F00</drawable>
</resources>

Although it might seem a tad confusing, you can also create XML files
that describe other Drawable subclasses, such as ShapeDrawable. Drawable
XML definition files are stored in the /res/drawable directory within your
project along with image files. This is not the same as storing <drawable>
resources, which are paintable drawables. PaintableDrawable resources are
stored in the /res/values directory, as explained in the previous section.

Here's a simple ShapeDrawable described in the file res/drawable/
red oval.xml :

<?xml version="1.0" encoding="utf-8"?>
<shape

xmlns:android=
"http://schemas.android.com/apk/res/android"
android:shape="oval">

<solid android:color="#£f00"/>

</shape>

Drawable resources defined with <drawable> are simply rectangles of
a given color, which is represented by the Drawable subclass ColorDrawable.The
following code retrieves a ColorDrawable resource called redDrawable :

import android.graphics.drawable.ColorDrawable;

ColorDrawable myDraw =

(ColorDrawable)getResources () .

getDrawable (R.drawable.redDrawable) ;
7.4.8 Working with Images :

Applications often include visual elements such as icons and graphics.
Android supports several image formats that can be directly included as
resources for your application. These image formats are shown in Figure 7.4.

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

83

84

Mobile Application
Development
(Using Android)

Supported Image Format Description Regquiraed
Extension

Fortable Network Graphics (PNG) Preferred Format Jong
[Lossless)

Mine-Patoh Stretchable Images Prafemad Format 9.0N1g
(Lossless)

Juint Photographic Experts Group Avceptabile Format g, JPeg

LIPEG) {Lossy)

Graphice Interchange Format (GIF) Discouraged Format Bif

Figure 7.4 : Image Formats Supported in Android
7.4.9 Working with Animation :

Android supports frame-by—frame animation and tweening. Frame—by—
frame animation involves the display of a sequence of images in rapid
succession.Tweened animation involves applying standard graphical
transformations such as rotations and fades upon a single image.

The Android SDK provides some helper utilities for loading and using
animation resources. These utilities are found in the android.view.animation.
AnimationUtils class.

Defining and Using Frame-by—Frame Animation Resources

Frame—by—frame animation is often used when the content changes from
frame to frame.

This type of animation can be used for complex frame transitions—much
like a kid's flip—book.

To define frame—by—frame resources, take the following steps :

1. Save each frame graphic as an individual drawable resource. It may help
to name your graphics sequentially, in the order in which they are
displayed—for example, framel.png, frame2.png, and so on.

2. Define the animation set resource in an XML file within /res/drawable/
resource directory.

3. Load, start, and stop the animation programmatically
Here's an example of a simple frame—-by—frame animation resource file

/res/drawable/juggle. xml that defines a simple three—frame animation that
takes 1.5 seconds :

<?xml version="1.0" encoding="utf-8" ?>
<animation-list

xmlns:android=
"http://schemas.android.com/apk/res/android"
android:oneshot="false">

<item

android:drawable="@drawable/splashl"”
android:duration="50" />

<item

android:drawable="@drawable/splash2"

android:duration="50" />

<item
android:drawable="@drawable/splash3"
android:duration="50" />
</animation-list>

Frame-by—frame animation set resources defined with <animation—list>
are represented by the Drawable subclass AnimationDrawable. The following
code retrieves an Animation—Drawable resource called juggle:

import android.graphics.drawable.AnimationDrawable;

AnimationDrawable jugglerAnimation =
(AnimationDrawable) getResources () .
getDrawable (R.drawable.juggle) ;

After you have a valid AnimationDrawable, you can assign it to a View
on the screen and use the Animation methods to start and stop animation.

Defining and Using Tweened Animation Resources

Tweened animation features include scaling, fading, rotation, and
translation. These actions can be applied simultaneously or sequentially and
might use different interpolators.

Frame-by—frame animation is often used when the content changes from
frame to frame.

This type of animation can be used for complex frame transitions—much
like a kid's flip—book.

To define frame—by—frame resources, take the following steps :

1. Save each frame graphic as an individual drawable resource. It may help
to name your graphics sequentially, in the order in which they are
displayed—for example, framel.png, frame2.png, and so on.

2. Define the animation set resource in an XML file within /res/drawable/
resource directory.

3. Load, start, and stop the animation programmatically.

Here's an example of a simple frame—by—frame animation resource file
/res/drawable/juggle.xml that defines a simple three—frame animation that takes
1.5 seconds :

<?xml version="1.0" encoding="utf-8" 2>
<animation-1list

xmlns:android=
"http://schemas.android.com/apk/res/android"
android:oneshot="false">

<item

android:drawable="@drawable/splashl"
android:duration="50" />

<item

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

85

86

Mobile Application
Development
(Using Android)

android:drawable="@drawable/splash2"
android:duration="50" />

<item
android:drawable="Q@drawable/splash3"
android:duration="50" />
</animation-1list>

Frame-by—frame animation set resources defined with <animation—list>
are represented by the Drawable subclass AnimationDrawable.The following
code retrieves an Animation—Drawable resource called juggle :

import android.graphics.drawable.AnimationDrawable;

AnimationDrawable jugglerAnimation =
(AnimationDrawable) getResources() .

getDrawable (R.drawable.juggle) ;

After you have a valid AnimationDrawable, you can assign it to a View
on the screen and use the Animation methods to start and stop animation.

Defining and Using Tweened Animation Resources

Tweened animation features include scaling, fading, rotation, and
translation. These actions can be applied simultaneously or sequentially and
might use different interpolators.

Tweened animation sequences are not tied to a specific graphic file, so
you can write one sequence and then use it for a variety of different graphics.
For example, you can make moon, star, and diamond graphics all pulse using
a single scaling sequence, or you can make them spin using a rotate sequence.

Graphic animation sequences can be stored as specially formatted XML
files in the /res/anim directory and are compiled into the application binary
at build time.

Here's an example of a simple animation resource file /res/anim/spin.xml
that defines a simple rotate operation—rotating the target graphic counterclockwise
four times in place, taking 10 seconds to complete :

<?xml version="1.0" encoding="utf-8" ?>
<set xmlns:android
="http://schemas.android.com/apk/res/android"
android:shareInterpolator="false">
<set>

<rotate

android: fromDegrees="0"
android:toDegrees="-1440"
android:pivotX="50%"
android:pivotY="50%"
android:duration="10000" />

</set>

</set>

If we go back to the example of a BitmapDrawable earlier, we can now
add some animation simply by adding the following code to load the animation
resource file spin.xml and set the animation in motion:

import android.view.animation.Animation;
import android.view.animation.AnimationUtils;

import android.widget.ImageView;

ImageView flagImageView =
(ImageView) findViewById (R.id.ImageView(01l) ;

flagImageView.setImageResource (R.drawable.flag);

Animation an =
AnimationUtils.loadAnimation(this, R.anim.spin);
flagImageView.startAnimation (an) ;

Now you have your graphic spinning. Notice that we loaded the animation
using the base class object Animation. You can also extract specific animation
types using the subclasses that match: RotateAnimation, ScaleAnimation,
TranslateAnimation, and AlphaAnimation.

There are a number of different interpolators you can use with your
tweened animation sequences.

7.4.10 Working with Menus :

Tweened animation sequences are not tied to a specific graphic file, so
you can write one sequence and then use it for a variety of different graphics.
For example, you can make moon, star, and diamond graphics all pulse using
a single scaling sequence, or you can make them spin using a rotate sequence.

Graphic animation sequences can be stored as specially formatted XML
files in the /res/anim directory and are compiled into the application binary
at build time.

Here's an example of a simple animation resource file /res/anim/spin.xml
that defines a simple rotate operation—rotating the target graphic counterclockwise
four times in place, taking 10 seconds to complete :

<?xml version="1.0" encoding="utf-8" 2>

<set xmlns:android
="http://schemas.android.com/apk/res/android"
android:shareInterpolator="false">

<set>

<rotate

android: fromDegrees="0"
android:toDegrees="-1440"
android:pivotX="50%"

android:pivotY="50%"

android:duration="10000" />

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

87

Mobile Application </set>
Development

(Using Android) </set>

If we go back to the example of a BitmapDrawable earlier,we can now
add some animation simply by adding the following code to load the animation
resource file spin.xml and set the animation in motion:

import android.view.animation.Animation;
import android.view.animation.AnimationUtils;

import android.widget.ImageView;

ImageView flagImageView =
(ImageView) findViewById(R.id.ImageView01l) ;

flagIimageView.setImageResource (R.drawable.flaqg);

Animation an =
AnimationUtils.loadAnimation (this, R.anim.spin);
flagIimageView.startAnimation (an) ;

Now you have your graphic spinning. Notice that we loaded the animation
using the base class object Animation.You can also extract specific animation
types using the subclasses that match : RotateAnimation, ScaleAnimation,
TranslateAnimation, and AlphaAnimation.

There are a number of different interpolators you can use with your
tweened animation sequences.

To access the preceding menu resource called /res/menu/speed.xml, simply
override the method onCreateOptionsMenu() in your application :

public boolean onCreateOptionsMenu (Menu menu) {
getMenuInflater () .inflate (R.menu.speed, menu);
return true;
}

7.4.11 Working with XML Files :

You can include arbitrary XML resource files to your project.You should
store these XML files in the /res/xm! directory, and they are compiled into
the application package at build time.

The Android SDK has a variety of packages and classes available for
XML manipulation.

For now, we create an XML resource file and access it through code.

First, put a simple XML file in /res/xml directory. In this case, the file
my_pets.xml with the following contents can be created :

<?xml version="1.0" encoding="utf-8"?>
<pets>

<pet name="Bit" type="Bunny" />

<pet name="Nibble" type="Bunny" />

<pet name="Stack" type="Bunny" />

<pet name="Queue" type="Bunny" />
<pet name="Heap" type="Bunny" />

<pet name="Null" type="Bunny" />

<pet name="Nigiri" type="Fish" />
<pet name="Sashimi II" type="Fish" />
<pet name="Kiwi" type="Lovebird" />
</pets>

Now you can access this XML file as a resource programmatically in

the following manner :

XmlResourceParser myPets =
getResources () .getXml (R.xml.my pets);
Finally, to prove this is XML, here's one way you might churn through

the XML and extract the information :

import org.xmlpull.vl.XmlPullParserException;

import android.content.res.XmlResourceParser;

int eventType = -1;

while (eventType != XmlResourceParser.END DOCUMENT) {
if (eventType == XmlResourceParser.START DOCUMENT) {
Log.d (DEBUG_TAG, "Document Start");

} else if (eventType == XmlResourceParser.START TAG) f{
String strName = myPets.getName () ;

if (strName.equals ("pet")) {

Log.d (DEBUG_TAG, "Found a PET");

Log.d (DEBUG TAG,

"Name: "+myPets.

getAttributeValue (null, "name"));

Log.d (DEBUG TAG,

"Species: "+myPets.

getAttributeValue (null, "type")):;

}

}

eventType = myPets.next();

}
Log.d (DEBUG TAG, "Document End");

7.4.12 Working with Raw Files :

Your application can also include raw files as part of its resources. For

example, your application might use raw files such as audio files, video files,
and other file formats not supported by the Android Resource packaging tool

aapt.

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

89

90

Mobile Application
Development
(Using Android)

All raw resource files are included in the /res/raw directory and are added
to your package without further processing.

The resource filename must be unique to the directory and should be
descriptive because the filename (without the extension) becomes the name by
which the resource is accessed.

You can access raw file resources and any resource from the /res/
drawable directory (bitmap graphics files, anything not using the <resource>
XML definition method).

Here's one way to open a file called the help.txt :

import java.io.InputStream;

InputStream iFile =

getResources () .openRawResource (R.raw.the help);
7.4.13 Working with Layouts :

Much as web designers use HTML, user interface designers can use XML
to define Android application screen elements and layout.A layout XML resource
is where many different resources come together to form the definition of an
Android application screen.

Layout resource files are included in the /res/layout/ directory and are
compiled into the application package at build time. Layout files might include
many user interface controls and define the layout for an entire screen or
describe custom controls used in other layouts.

Here's a simple example of a layout file (/res/layout/main.xml) that sets
the screen's background color and displays some text in the middle of the screen
(see Figure 7.3).

The main.xml layout file that displays this screen references a number
of other resources, including colors, strings, and dimension values, all of which
were defined in the strings.xml, colors.xml, and dimens.xml resource files.The
color resource for the screen background color and resources for a TextView
control's color, string, and text size follows :

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout height="fill parent"
android:background="@color/background color">
<TextView
android:1d="@+id/TextView01"
android:layout width="fill parent"
android:layout height="fill parent"
android:text="@string/test string"

android:textColor="€color/text color"

android:gravity="center"
android:textSize="@dimen/text size"></TextView>

</LinearLayout>

H_ﬂfﬁn:um

[EATTTE e e e W

Android says
Hello!

Figure 7.5 : How the main.xml layout file displays in the emulator

The preceding layout describes all the visual elements on a screen. In
this example, a LinearLayout control is used as a container for other user
interface controls—here, a single TextView that displays a line of text.

7.4.14 Working with Styles :

Android user interface designers can group layout element attributes
together in styles. Layout controls are all derived from the View base class,
which has many useful attributes. Individual controls, such as Checkbox, Button,
and TextView, have specialized attributes associated with their behavior.

Styles are tagged with the <style> tag and should be stored in the /
res/values/ directory.

Style resources are defined in XML and compiled into the application
binary at build time.

Here's an example of a simple style resource file /res/values/styles.xml
containing two styles : one for mandatory form fields, and one for optional
form fields on TextView and EditText objects :

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="mandatory text field style">
<item name="android:textColor">#000000</item>
<item name="android:textSize">14pt</item>
<item name="android:textStyle">bold</item>
</style>

<style name="optional text field style">
<item name="android:textColor">#0FOF0F</item>
<item name="android:textSize">12pt</item>

<item name="android:textStyle">italic</item>

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

91

Mobile Application </style>
Development

< >
(Using Android) /resources

Many useful style attributes are colors and dimensions. It would be more
appropriate to use references to resources. Here's the styles.xml file again; this
time, the color and text size fields are available in the other resource files
colors.xml and dimens.xml :

<?xml version="1.0" encoding="utf-8"?>
<resources>

<style name="mandatory text field style">
<item name="android:textColor"
>@color/mand text color</item>

<item name="android:textSize"
>@dimen/important text</item>

<item name="android:textStyle">bold</item>
</style>

<style name="optional text field style">
<item name="android:textColor"
>@color/opt text color</item>

<item name="android:textSize"
>@dimen/unimportant text</item>

<item name="android:textStyle">italic</item>
</style>

</resources>

Now, if you can create a new layout with a couple of TextView and
EditText text controls, you can set each control's style attribute by referencing
it as such :

style="(@style/name_of style"

Here we have a form layout called /res/layout/form.xml that does that:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout

xmlns:android=
"http://schemas.android.com/apk/res/android"
android:orientation="vertical"

android:layout width="fill parent"
android:layout height="fill parent"
android:background="€color/background color">
<TextView

android:1d="@+id/TextView01l"
style="@style/mandatory text field style"
android:layout height="wrap content"

android:text="@string/mand label"

android:layout width="wrap content" />
<EditText

android:id="@+id/EditText01"
style="@style/mandatory text field style"
android:layout height="wrap content”
android:text="@string/mand default"
android:layout width="fill parent"
android:singleLine="true" />

<TextView

android:1id="Q@+id/TextView02"
style="@style/optional text field style"
android:layout width="wrap content"
android:layout height="wrap content”
android:text="@string/opt label" />
<EditText

android:id="@+id/EditText02"
style="@style/optional text field style"
android:layout height="wrap content”
android:text="@string/opt default”
android:singleLine="true"
android:layout width="fill parent" />
<TextView

android:id="@+1id/TextView03"
style="@style/optional text field style"
android:layout width="wrap content"
android:layout height="wrap content”
android:text="@string/opt label" />
<EditText android:id="Q@+id/EditText03"
style="@style/optional text field style"
android:layout height="wrap content"
android:text="@string/opt default"
android:singleLine="true"
android:layout width="fill parent" />
</LinearLayout>

The resulting layout has three fields, each made up of one TextView
for the label and one EditText where the user can input text. The mandatory
style is applied to the mandatory label and text entry. The other two fields
use the optional style. The resulting layout would look something like Figure
7.6.

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

93

Mobile Application o) 1055
Development T L '

(Using Android) Mandatory Field:
Must Type Here

Optional Fleld:
Can Type Here

Optional Field:

Can Type Here

Figure 7.6 : A layout using two styles,
one for mandatory fields and another for optional fields.

O Check Your Progress :
I. AAPT stands for
(A) Android Asset Packaging Tool
(B) Asset Android Packaging Tool
(C) Application Asset Packaging Tool
(D) Android Application Packaging Tool
2. What is the nine—patch images tool in android ?
(A) Image
(B) It is used to change the bitmap images into nine sections
(C) Tools
(D) None of the Above
3. Which media format is not supported by Android ?

(A) jpeg (B) bmp (C) AVI (D) jrg
4. In which directory XML Layout files are stored ?
(A) asset (B) src (C) drawing (D) res/layout
5. Android user interface designers can group layout element attributes
together in
(A) Styles (B) Android (C) Manifest (D) XML

7.5 Let Us Sum Up :

In this unit we learn regarding various android resources available, use
of various resources and application of various resources.

7.6 Answers for Check Your Progress :

1. (A) 2. (B) 3. (C) 4. (D) 5. (A)

94

7.7 Glossary :

1. SDK : Software Development Kit

2. AVD : Android Virtual Device

3. DDMS : Dalvik Debug Monitor Server
4 ADB: Android Debug Bridge

7.8

Assignment :

What are the Resources ? Explain Working with different resources with
required directory filename and xml tag

2. What is Animation ? Explain Frame-by—Frame and Tweened Animation
in details

3. Explain the following color formats. #RGB, #ARGB, #RRGGBB &
#AARRGGBB

7.9 Activities :

Understand the use of various resources available in the android with
proper application identification and to implement the same with use of
the resources.

7.10 Case Study :

Identify the ¢ real-life application and implement the resources in it with

the proper justification and use.

7.11 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application

Development", Pearson Education, 2nd ed. (2011).

Managing Application
Resources in a
Hierarchy & Working
with Different
Types of Resources

95

96

Mobile Application
Development
(Using Android)

BLOCK SUMMARY :

In this block we have discussed regarding to understand the anatomy
of Android application, to understand the Android Terminologies, to understand
the Application Context, Activities, Services & Intents, to understand how to
receive and broadcast the intents, to use Android Manifest file and understand
its common settings, to use and set the various android permissions, and to
understand how to Manage Application resources in a hierarchy & Working

with different types of resources.

BLOCK ASSIGNMENT :

—

o o =N n kWD

—_ =
No= o

13.

14.

What is the role of ADT in android platform ?

What is android emulato r?

Explain the building blocks of Android Application.

Discuss the life cycle of Android Activity in details

What is Activity ?

Define: Context

How to create Intent in Android ?

Define: Service

What is Android ? Explain various components of Android in details
Define Activity ? Explain life cycle methods of android activity.
How to create intent in android? Explain with suitable example.

What are the Resources ? Explain Working with different resources with
required directory filename and xml tag

What is Animation ? Explain Frame-by—Frame and Tweened Animation
in details

Explain the following color formats. #RGB, #ARGB, #RRGGBB &
#AARRGGBB

Short Questions :

What is android emulator ?

What is Activity ?

Define: Context

How to create Intent in Android ?
Define: Service

What is the role of ADT in android platform ?

Long Questions :

What is Android ? Explain various components of Android in details
Define Activity ? Explain life cycle methods of android activity.
How to create intent in android ? Explain with suitable example.

What are the Resources ? Explain Working with different resources with
required directory filename and xml tag

What is Animation ? Explain Frame-by—Frame and Tweened Animation
in details

Explain the following color formats. #RGB, #ARGB, #RRGGBB &
#AARRGGBB

97

Mobile Application EX Enrolment No. : | |

Development
(Using Android) 1. How many hours did you need for studying the units ?
Unit No. 4 5 6 7
No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D D I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

Feed back to CYP
Question

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

3. Any other Comments

: Education Open University Ahmedabad
" for All

@B AOU Dr. Babasaheb Ambedkar BCAR-503

MOBILE APPLICATION
DEVELOPMENT (USING ANDROID)

BLOCK 3 : ANDROID USER INTERFACE DESIGN ESSENTIALS

UNIT 8 USER INTERFACE SCREEN ELEMENTS

UNIT 9 DESIGNING USER INTERFACES WITH LAYOUTS

UNIT 10 DRAWING AND WORKING WITH ANIMATION

ANDROID USER INTERFACE
DESIGN ESSENTIALS

Block Introduction :

Most Android applications inevitably need some form of user interface. In
this chapter, we discuss the user interface elements available within the Android
Software Development Kit (SDK). Some of these elements display information
to the user, whereas others gather information from the user. You learn how to
use a variety of different components and controls to build a screen and how your
application can listen for various actions performed by the user. Finally, you learn

how to style controls and apply themes to entire screens.

Block Objectives :

. To understand the user interface screen elements
. To design the user interface and layouts
. To understand working with Drawing and Amination

Block Structure :

Unit 8 : User Interface Screen Elements
Unit 9 : Designing User Interfaces with Layouts

Unit 10 : Drawing and Working with Animation

8.0
8.1
8.2
83
84

8.5
8.6
8.7

8.8
8.9

8.10

8.11

8.12

8.13
8.14

USER INTERFACE SCREEN
ELEMENTS

Learning Objectives

Introduction

Introducing the Android Control

Introducing the Android Layout

Displaying Text to Users with TextView

8.4.1 Configuring Layout and Sizing

8.4.2 Creating Contextual Links in Text
Retrieving Text Input Using EditText Controls
Giving Users Input Choices Using Spinner Controls
Using Buttons, Check Boxes, and Radio Groups
8.7.1 Using Basic Buttons

8.7.2 Using Check Boxes and Toggle Buttons
8.7.3 Using Radio Groups and Radio Buttons
Getting Dates and Times From Users

Using Indicators to Display Data to Users

8.9.1 Indicating Progress with Progress Bar
8.9.2 Adjusting Progress with Seek Bar

8.9.3 Displaying Rating Data with Rating Bar
8.9.4 Showing Time Passage with the Chronometer
8.9.5 Displaying the Time

Providing Users with Options and Context Menus
8.10.1 Enabling the Options Menu

8.10.2 Enabling the Context Menu

Handling User Events

8.11.1 Listening for Touch Mode Changes

8.11.2 Listening for Events on the Entire Screen
8.11.3 Listening for Long Clicks

8.11.4 Listening for Focus Changes

Working with Dialogs

8.12.1 Exploring the Different Types of Dialogs
8.12.2 Tracing the Lifecycle of a Dialog
Working with Styles

Working with Themes

929

Mobile Application

100

Development
(Using Android)

8.15 Let Us Sum Up

8.16 Answers for Check Your Progress
8.17 Glossary

8.18 Assignment

8.19 Activities

8.20 Case Study

8.21 Further Reading

8.0 Learning Objectives :

. To learn how to use interface & Android control
. To learn how to create screen elements with control
. To understand the views and layouts

8.1 Introduction :

Before we go any further, we need to define a few terms. This gives
you a better understanding of certain capabilities provided by the Android SDK
before they are fully introduced. First, let's talk about the View and what it
is to the Android SDK.

The Android SDK has a Java packaged named android.view. This package
contains a number of interfaces and classes related to drawing on the screen.
However, when we refer to the View object, we actually refer to only one
of the classes within this package: the android.view.View class. The View class
is the basic user interface building block within Android. It represents a
rectangular portion of the screen. The View class serves as the base class for
nearly all the user interface controls and layouts within the Android SDK

8.2 Introducing the Android Control :

The Android SDK contains a Java package named android.widget. When
we refer to controls, we are typically referring to a class within this package.
The Android SDK includes classes to draw most common objects, including
ImageView, FrameLayout, EditText, and Button classes. As mentioned previously,
all controls are typically derived from the View class. This chapter is primarily
about controls that display and collect data from the user. We cover many of
these basic controls in detail.

8.3 Introducing the Android Layout :

One special type of control found within the android.widget package is
called a layout. A layout control is still a View object, but it doesn't actually
draw anything specific on the screen. Instead, it is a parent container for
organizing other controls (children). Layout controls determine how and where
on the screen child controls are drawn. Each type of layout control draws its
children using particular rules. For instance, the LinearLayout control draws
its child controls in a single horizontal row or a single vertical column.
Similarly, a TableLayout control displays each child control in tabular format
(in cells within specific rows and columns).

These special View controls, which are derived from the android.view.
ViewGroup class, are useful only after you understand the various display

controls these containers can hold. By necessity, we use some of the layout
View objects within this chapter to illustrate how to use the controls previously
mentioned. However,we don't go into the details of the various layout types
available as part of the Android SDK until the next chapter.

8.4 Displaying Text to Users with TextView :

One of the most basic user interface elements, or controls, in the Android
SDK is the TextView control. You use it, quite simply, to draw text on the
screen.You primarily use it to display fixed text strings or labels.

Frequently, the TextView control is a child control within other screen
elements and controls. As with most of the user interface elements, it is derived
from View and is within the android.widget package. Because it is a View,
all the standard attributes such as width, height, padding, and visibility can
be applied to the object. However, as a text—displaying control, you can apply
many other TextView—specific attributes to control behavior and how the text
is viewed in a variety of situations.

First, though, let's see how to put some quick text up on the screen.
<TextView> is the XML layout file tag used to display text on the screen.You
can set the android:text property of the TextView to be either a raw text string
in the layout file or a reference to a string resource.

Here are examples of both methods you can use to set the android:text
attribute of a TextView.The first method sets the text attribute to a raw string;
the second method uses a string resource called sample text, which must be
defined in the strings.xml resource file.

<TextView

android:id="@+1id/TextView01"
android:layout width="wrap content”
android:layout height="wrap content”
android:text="Some sample text here" />
<TextView

android:id="Q@+1id/TextView02"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="@string/sample text" />

To display this TextView on the screen, all your Activity needs to do
is call the setContentView() method with the layout resource identifier in which
you defined the preceding XML shown.You can change the text displayed
programmatically by calling the setText() method on the TextView object.
Retrieving the text is done with the getText() method.

Now let's talk about some of the more common attributes of TextView
objects.

8.4.1 Configuring Layout and Sizing :

The TextView control has some special attributes that dictate how the
text is drawn and flows.You can, for instance, set the TextView to be a single
line high and a fixed width. If, however, you put a long string of text that
can't fit, the text truncates abruptly. Luckily, there are some attributes that can

User Interface Screen

Elements

101

Mobile Application handle this problem. The width of a TextView can be controlled in terms of
Development the ems measurement rather than in ixels.An em is a term used in typography
(Using Android) that is defined in terms of the point size of a particular font. (For example,

the measure of an em in a 12—point font is 12 points.)

This measurement provides better control over how much text is viewed,
regardless of the font size. Through the ems attribute, you can set the width
of the TextView.Additionally, you can use the maxEms and minEms attributes
to set the maximum width and minimum width, respectively, of the TextView
in terms of ems.

The height of a TextView can be set in terms of lines of text rather
than pixels.Again, this is useful for controlling how much text can be viewed
regardless of the font size. The lines attribute sets the number of lines that
the TextView can display.You can also use maxLines and minLines to control
the maximum height and minimum height, respectively, that the Textview
displays.

Here is an example that combines these two types of sizing attributes.This
TextView is two lines of text high and 12 ems of text wide.The layout width
and height are specified to the size of the TextView and are required attributes
in the XML schema :

<TextView

android:1d="Q@+id/TextView04"
android:layout width="wrap content"
android:layout height="wrap content"
android:lines="2"

android:ems="12"
android:text="@string/autolink test" />

Instead of having the text only truncate at the end, as happens in the
preceding example, we can enable the ellipsize attribute to replace the last
couple characters with an ellipsis (...) so the user knows that not all text is
displayed.

8.4.2 Creating Contextual Links in Text :

If your text contains references to email addresses,web pages, phone
numbers, or even street addresses, you might want to consider using the attribute
autoLink (see Figure 8.1).

The autoLink attribute has four values that you can use in combination
with each other.

When enabled, these autoLink attribute values create standard web—style
links to the application that can act on that data type. For instance, setting
the attribute to web automatically finds and links any URLs to web pages.

Your text can contain the following values for the autoLink attribute :
. none : Disables all linking.
. web : Enables linking of URLs to web pages.

. email : Enables linking of email addresses to the mail client with the
recipient filled.

102

. phone : Enables linking of phone numbers to the dialer application with User Interface Screen
the phone number filled out, ready to be dialed. Elements

. map : Enables linking of street addresses to the map application to show
the location.
. all : Enables all types of linking.

Turning on the autoLink feature relies on the detection of the various
types within the Android SDK. In some cases, the linking might not be correct
or might be misleading.

Figure 8.1 Three TextViews : Simple, AutoLink All (not clickable),
and AutoLink All (clickable).

Here is an example that links email and web pages, which, in our opinion,
are the most reliable and predictable :

<TextView
android:id="@+1id/TextView02"
android:layout width="wrap content"
android:layout height="wrap content”
android:text="@string/autolink test"
android:autoLink="web|email" />

There are two helper values for this attribute, as well.You can set it to
none to make sure no type of data is linked. You can also set it to all to
have all known types linked. Figure 8.1 illustrates what happens when you
click on these links.The default for a TextView is not to link any types. If
you want the user to see the various data types highlighted but you don't want
the user to click on them, you can set the linksClickable attribute to false.

8.5 Retrieving Text Input Using EditText Controls :

The Android SDK provides a convenient control called EditText to handle
text input from a user. The EditText class is derived from TextView. In fact,
most of its functionality is contained within TextView but enabled when created

103

Mobile Application as an EditText. The EditText object has a number of useful features enabled

Development by default, many of which are shown in Figure 8.2.

Using Android
(&) First, though, let's see how to define an EditText control in an XML

layout file
<EditText
android:id="Q@+id/EditText01"
android:layout height="wrap content”
android:hint="type here"
android:1lines="4"
android:layout width="fill parent" />

This layout code shows a basic EditText element. There are a couple
of interesting things to note. First, the hint attribute puts some text in the edit
box that goes away when the user starts entering text. Essentially, this gives
a hint to the user as to what should go there. Next is the lines attribute, which
defines how many lines tall the input box is. If this is not set, the entry field
grows as the user enters text. However, setting a size allows the user to scroll
within a fixed sized to edit the text.This also applies to the width of the entry.
By default, the user can perform a long press to bring up a context menu.This
provides to the user some basic copy, cut, and paste operations as well as the
ability to change the input method and add a word to the user's dictionary
of frequently used words (shown in Figure 8.4).You do not need to provide
any additional code for this useful behavior to benefit your users.You can also
highlight a portion of the text from code, too.A call to setSelection() does this,
and a call to selectAll() highlights the entire text entry field.

L R

Figure 8.2 : Various styles of EditText controls and
Spinner and Button controls.

The EditText object is essentially an editable TextView. This means that
you can read text from it in the same way as you did with TextView: by using
the getText() method.

You can also set initial text to draw in the text entry area using the
setText() method.

104

This is useful when a user edits a form that already has data. Finally,
you can set the editable attribute to false, so the user cannot edit the text in
the field but can still copy text out of it using a long press.

Helping the User with Auto Completion

In addition to providing a basic text editor with the EditText control,
the Android SDK also provides a way to help the user with entering commonly
used data into forms.This functionality is provided through the auto—complete
feature.

There are two forms of auto—complete. One is the more standard style
of filling in the entire text entry based on what the user types. If the user
begins typing a string that matches a word in a developer—provided list, the
user can choose to complete the word with just a tap. This is done through
the AutoCompleteTextView control (see Figure 8.3, left).The second method
allows the user to enter a list of items, each of which has autocomplete
functionality .These items must be separated in some way by providing a
Tokenizer to the MultiAutoCompleteTextView object that handles this method.
A common Tokenizer implementation is provided for comma—separated lists
and is used by specifying the MultiAutoCompleteTextView.CommaTokenizer
object. This can be helpful for lists of specifying common tags and the like.

cyan, cy

cyan

[P 0 OO0 0 Tygar OUl I

Add "Typing™ to dictionary

Figure 8.3 : (left) A long press on EditText controls typically launches a
Context menu for Select, Cut, and Paste. Using AutoCompleteTextView
(center) and MultiAutoCompleteTextView (right).

Both of the auto—complete text editors use an adapter to get the list of
text that they use to provide completions to the user.This example shows how
to provide an AutoCompleteTextView for the user that can help them type some
of the basic colors from an array in the code :

final String[] COLORS = {

"red", "green", "orange", "blue", "purple",
"black", "yellow", "cyan", "magenta" };
ArrayAdapter<String> adapter =

new ArrayAdapter<String> (this,
android.R.layout.simple dropdown item lline,

COLORS) ;

User Interface Screen

Elements

105

Mobile Application AutoCompleteTextView text = (AutoCompleteTextView)
Development

(Using Android) findvViewById(R.id.AutoCompleteTextView01l) ;

text.setAdapter (adapter) ;

In this example, when the user starts typing in the field, if he starts with
one of the letters in the COLORS array, a drop—down list shows all the available
completions. Note that this does not limit what the user can enter. The user
is still free to enter any text (such as puce). The adapter controls the look
of the drop—down list. In this case,we use a built—in layout made for such
things. Here is the layout resource definition for this

AutoCompleteTextView control
<AutoCompleteTextView
android:id="@+id/AutoCompleteTextView01l"
android:layout width="fill parent"
android:layout height="wrap content"”
android:completionHint=

"Pick a color or type your own"
android:completionThreshold="1" />

There are a couple more things to notice here. First, you can choose
when the completion drop—down list shows by filling in a value for the
completionThreshold attribute. In this case,we set it to a single character, so
it displays immediately if there is a match.The default value is two characters
of typing before it displays auto—completion options. Second, you can set some
text in the completionHint attribute.This displays at the bottom of the drop—
down list to help users. Finally, the drop—down list for completions is sized
to the TextView. This means that it should be wide enough to show the
completions and the text for the completionHint attribute.

The MultiAutoCompleteTextView is essentially the same as the regular
auto—complete, except that you must assign a Tokenizer to it so that the control
knows where each autocompletion should begin.The following is an example
that uses the same adapter as the previous example but includes a Tokenizer
for a list of user color responses, each separated by a comma :

MultiAutoCompleteTextView mtext =
(MultiAutoCompleteTextView)
findvViewById(R.id.MultiAutoCompleteTextView(l) ;
mtext.setAdapter (adapter) ;
mtext.setTokenize
(new MultiAutoCompleteTextView.CommaTokenizer());

As you can see, the only change is setting the Tokenizer. Here we use
the built-in comma Tokenizer provided by the Android SDK. In this case,
whenever a user chooses a color from the list, the name of the color is
completed, and a comma is automatically added so that the user can immediately
start typing in the next color.As before, this does not limit what the user can
enter. If the user enters "maroon" and places a comma after it, the auto—
completion starts again as the user types another color, regardless of the fact
that it didn't help the user type in the color maroon.You can create your own

106

Tokenizer by implementing the MultiAutoCompleteTextView. Tokenizer interface.
You can do this if you'd prefer entries separated by a semicolon or some other
more complex separators.

Constraining User Input with Input Filters

There are often times when you don't want the user to type just anything.
Validating input after the user has entered something is one way to do this.
However, a better way to avoid wasting the user's time is to filter the input.The
EditText control provides a way to set an InputFilter that does only this.

The Android SDK provides some InputFilter objects for use.There are
InputFilter objects that enforce such rules as allowing only uppercase text and
limiting the length of the text entered.You can create custom filters by
implementing the InputFilter interface, which contains the single method called
filter(). Here is an example of an EditText control with two built—in filters
that might be appropriate for a two—letter state abbreviation :

final EditText text filtered =

(EditText) findViewById(R.id.input filtered);
text filtered.setFilters(new InputFilter[] {
new InputFilter.AllCaps(),

new InputFilter.LengthFilter(2)

P

The setFilters() method call takes an array of InputFilter objects. This
is useful for combining multiple filters, as shown. In this case, we convert
all input to uppercase. Additionally, we set the maximum length to two
characters long. The EditText control looks the same as any other, but if you
try to type lowercase, the text is converted to uppercase, and the string is limited
to two characters.This does not mean that all possible inputs are valid, but
it does help users to not concern themselves with making the input too long
or bother with the case of the input. This also helps your application by
guaranteeing that any text from this input is a length of two. It does not constrain
the input to only letters, though. Input filters can also be defined in XML.

8.6 Giving Users Input Choices Using Spinner Controls :

Sometimes you want to limit the choices available for users to type. For
instance, if users are going to enter the name of a state, you might as well
limit them to only the valid states because this is a known set. Although you
could do this by letting them type something and then blocking invalid entries,
you can also provide similar functionality with a Spinner control. As with the
auto—complete method, the possible choices for a spinner can come from an
Adapter. You can also set the available choices in the layout definition by using
the entries attribute with an array resource (specifically a string—array that is
referenced as something such as (@array/state—list).The Spinner control isn't
actually an EditText, although it is frequently used in a similar fashion. Here
is an example of the XML layout definition for a Spinner control for choosing
a color :

<Spinner
android:id="@+id/Spinner01"

android:layout width="wrap content”

User Interface Screen

Elements

107

Mobile Application android:layout height="wrap content"
Development . L "
(Using Android) android:entries="@array/colors
android:prompt="@string/spin prompt" />

This places a Spinner control on the screen (see Figure 1.4).When the
user selects it, a pop—up shows the prompt text followed by a list of the possible
choices.This list allows only a single item to be selected at a time, and when
one is selected, the pop—up goes away.

There are a couple of things to notice here. First, the entries attribute
is set to the values that shows by assigning it to an array resource, referred
to here as @array/colors.

o P 50w [

|| @ Choose a color

lalue

mageaa

Figure 8.4 : Filtering choices with a spinner control.

Second, the prompt attribute is defined to a string resource. Unlike some
other string attributes, this one is required to be a string resource. The prompt
displays when the popup comes up and can be used to tell the user what kinds
of values that can be selected from.

Because the Spinner control is not a TextView, but a list of TextView
objects, you can't directly request the selected text from it. Instead, you have
to retrieve the selected View and extract the text directly :

final Spinner spin = (Spinner) findViewByld(R.id.Spinner01);

TextView text sel = (TextView)spin. getSelectedView();

String selected text = text sel.getText();

As it turns out, you can request the currently selected View object, which
happens to be a TextView in this case.This enables us to retrieve the text and
use it directly. Alternatively, we could have called the getSelectedltem() or
getSelectedItemld() methods to deal with other forms of selection.

8.7 Using Buttons, Check Boxes, and Radio Groups :

Another common user interface element is the button. In this section,
you learn about different kinds of buttons provided by the Android SDK. These
include the basic Button, ToggleButton, CheckBox, and RadioButton.You can
find examples of each button type in Figure 8.5.

108

A basic Button is often used to perform some sort of action, such as
submitting a form or confirming a selection.A basic Button control can contain
a text or image label.

A CheckBox is a button with two states—checked or unchecked.You often
use CheckBox controls to turn a feature on or off or to pick multiple items
from a list.

A ToggleButton is similar to a CheckBox, but you use it to visually show
the state.The default behavior of a toggle is like that of a power on/off button.

A RadioButton provides selection of an item. Grouping RadioButton
controls together in a container called a RadioGroup enables the developer to
enforce that only one RadioButton is selected at a time.

8.7.1 Using Basic Buttons :

The android.widget.Button class provides a basic button implementation
in the Android SDK. Within the XML layout resources, buttons are specified
using the Button element. The primary attribute for a basic button is the text
field. This is the label that appears on the middle of the button's face. You
often use basic Button controls for buttons with text such as "Ok,""Cancel,"
or "Submit."

| S Y 4 o0 o
| R
|

Tl‘ll"i APTon 13 CheCked

. Cption 3 Vg chmse: Qa1

.l Jption 4

| g b g

Figure 8.5 : Various types of button controls.

The following XML layout resource file shows a typical Button control
definition :

<Button
android:id="@+id/basic_button"
android:layout width="wrap content"
android:layout height="wrap content”
android:text="Basic Button" />

A button won't do anything, other than animate, without some code to
handle the click event. Here is an example of some code that handles a click
for a basic button and displays a Toast message on the screen :

User Interface Screen

Elements

109

Mobile Application setContentView (R.layout.buttons) ;
Development

fi 1B i =
(Using Android) ina utton basic button

(Button) findViewById(R.id.basic button);
basic button.setOnClickListener

(new View.OnClickListener () {

public void onClick (View v) {

Toast.makeText (RuttonsActivity.this,

"Button clicked", Toast.LENGTH SHORT) .show ()
}

b);

To handle the click event for when a button is pressed, we first get a
reference to the Button by its resource identifier. Next, the setOnClickListener()
method is called. It requires a valid instance of the class View.OnClickListener.A
simple way to provide this is to define the instance right in the method call. This
requires implementing the onClick() method.Within the onClick() method, you
are free to carry out whatever actions you need. Here,we simply display a
message to the users telling them that the button was, in fact, clicked.

A button with its primary label as an image is an ImageButton. An
ImageButton is, for most purposes, almost exactly like a basic button. Click
actions are handled in the same way. The primary difference is that you can
set its src attribute to be an image. Here is an example of an ImageButton
definition in an XML layout resource file :

<ImageButton

android:layout width="wrap content"

android:layout height="wrap content"

android:id="@+id/image button"

android:src="Q@drawable/droid" />
8.7.2 Using Check Boxes and Toggle Buttons :

The check box button is often used in lists of items where the user can
select multiple items. The Android check box contains a text attribute that
appears to the side of the check box. This is used in a similar way to the
label of a basic button. In fact, it's basically a TextView next to the button.

Here's an XML layout resource definition for a CheckBox control :

<CheckBox

android:id="@+1id/checkbox"

android:layout width="wrap content"

android:layout height="wrap content”
android:text="Check me?" />

The following example shows how to check for the state of the button
programmatically and change the text label to reflect the change :

110

final CheckBox check button = (CheckBox)
findViewById (R.id.checkbox) ;
check button.setOnClickListener
(new View.OnClickListener () {
public void onClick (View v) {
TextView tv = (TextView) findViewById (R.id.checkbox);
tv.setText (check button.isChecked() ?
"This option is checked"
"This option is not checked");
}
});

This is similar to the basic button. A check box automatically shows
the check as enabled or disabled. This enables us to deal with behavior in
our application rather than worrying about how the button should behave. The
layout shows that the text starts out one way but, after the user presses the
button, the text changes to one of two different things depending on the checked
state. As the code shows, the CheckBox is also a TextView.

A Toggle Button is similar to a check box in behavior but is usually
used to show or alter the on or off state of something. Like the CheckBox,
it has a state (checked or not). Also like the check box, the act of changing
what displays on the button is handled for us.

Unlike the CheckBox, it does not show text next to it. Instead, it has
two text fields. The first attribute is textOn, which is the text that displays
on the button when its checked state is on. The second attribute is textOff,
which is the text that displays on the button when its checked state is off.
The default text for these is "ON" and "OFFE," respectively.

The following layout code shows a definition for a toggle button that
shows "Enabled" or "Disabled" based on the state of the button :

<ToggleButton
android:id="@+id/toggle button"
android:layout width="wrap content"
android:layout height="wrap content”
android:text="Toggle"
android:textOff="Disabled"
android:textOn="Enabled" />

8.7.3 Using RadioGroups and RadioButtons :

You often use radio buttons when a user should be allowed to only select
one item from a small group of items. For instance, a question asking for gender
can give three options : male, female, and unspecified. Only one of these options
should be checked at a time. The RadioButton objects are similar to CheckBox
objects. They have a text label next to them, set via the text attribute, and
they have a state (checked or unchecked). However, you can group RadioButton
objects inside a RadioGroup that handles enforcing their combined states so
that only one RadioButton can be checked at a time. If the user selects a

User Interface Screen

Elements

111

Mobile Application RadioButton that is already checked, it does not become unchecked. However,

Development you can provide the user with an action to clear the state of the entire
(Using Android) RadioGroup so that none of the buttons are checked.

Here we have an XML layout resource with a RadioGroup containing
four RadioButton objects (shown in Figure 8.7, toward the bottom of the
screen). The RadioButton objects have text labels, "Option 1," and so on. The
XML layout resource definition is shown here :

<RadioGroup
android:id="@+id/RadioGroup01"
android:layout width="wrap content"
android:layout height="wrap content">
<RadioButton
android:id="@+id/RadioButton01"
android:layout width="wrap content"
android:layout height="wrap content"”
android:text="Option 1"></RadioButton>
<RadioButton
android:id="@+id/RadioButton02"
android:layout width="wrap content"
android:layout height="wrap content"”
android:text="Option 2"></RadioButton>
<RadioButton
android:id="@+id/RadioButton03"
android:layout width="wrap content"
android:layout height="wrap content"”
android:text="Option 3"></RadioButton>
<RadioButton
android:id="@+id/RadioButton04"
android:layout width="wrap content"
android:layout height="wrap content"
android:text="Option 4"></RadioButton>
</RadioGroup>

You handle actions on these RadioButton objects through the RadioGroup
object. The following example shows registering for clicks on the RadioButton
objects within the RadioGroup :

final RadioGroup group =

(RadioGroup) findViewById (R.id.RadioGroup01l) ;
final TextView tv = (TextView)
findvViewById(R.id.TextView(0l) ;
group.setOnCheckedChangelListener (new

RadioGroup.OnCheckedChangelListener () {
112

public void onCheckedChanged User Interface Screen

El t
(RadioGroup group, int checkedId) { ements
if (checkedId !'= -1) {
RadioButton rb = (RadioButton)

findviewById (checkedId) ;

if (rb != null) {

tv.setText ("You chose: " + rb.getText());
}

} else {

tv.setText ("Choose 1");
}

1)

As this layout example demonstrates, there is nothing special that you
need to do to make the RadioGroup and internal RadioButton objects work
properly. The preceding code illustrates how to register to receive a notification
whenever the RadioButton selection changes.

The code demonstrates that the notification contains the resource identifier
for the specific RadioButton that the user chose, as assigned in the layout file.To
do something interesting with this, you need to provide a mapping between
this resource identifier (or the text label) to the corresponding functionality
in your code. In the example,we query for the button that was selected, get
its text, and assign its text to another TextView control that we have on the
screen.

As mentioned, the entire RadioGroup can be cleared so that none of
the RadioButton objects are selected.The following example demonstrates how
to do this in response to a button click outside of the RadioGroup :

final Button clear choice =
(Button) findviewById(R.id.ButtonO1l);
clear choice.setOnClickListener
(new View.OnClickListener () {
public void onClick (View v) {
RadioGroup group = (RadioGroup)
findViewById(R.id.RadioGroupO1l) ;
if (group !'= null) {
group.clearCheck() ;

}

}

}

The action of calling the clearCheck() method triggers a call to the
onCheckedChangedListener() callback method.This is why we have to make
sure that the resource identifier we received is valid. Right after a call to the

113

114

Mobile Application
Development
(Using Android)

clearCheck() method, it is not a valid identifier but instead is set to the value
—1 to indicate that no RadioButton is currently checked.

8.8 Getting Dates and Times from Users :

The Android SDK provides a couple controls for getting date and time
input from the user. The first is the DatePicker control (Figure 8.6, top). It
can be used to get a month, day, and year from the user.

@0 BRel ne

Figure 8.6 : Date and time controls.
The basic XML layout resource definition for a DatePicker follows :
<DatePicker
android:id="@+id/DatePickerQ1"
android:layout width="wrap content"
android:layout height="wrap content" />

As you can see from this example, there aren't any attributes specific
to the DatePicker control. As with many of the other controls, your code can
register to receive a method call when the date changes.You do this by
implementing the onDateChanged() method.

However, this isn't done the usual way.

final DatePicker date =
(DatePicker) findvViewById (R.id.DatePicker01);

date.init (date.getYear (), date.getMonth(),
date.getbDayOfMonth (),

new DatePicker.OnDateChangedListener () {

public void onDateChanged (DatePicker view, int year,

int monthOfYear, int dayOfMonth) {

Date dt = new Date(year-1900, monthOfYear,
dayOfMonth, time.getCurrentHour (),

time.getCurrentMinute());

text.setText (dt.toString());
}

1)

The preceding code sets the DatePicker.OnDateChangedListener by a call
to the DatePicker.init() method. A DatePicker control is initialized with the
current date. A TextView is set with the date value that the user entered into
the DatePicker control. The value of 1900 is subtracted from the year parameter
to make it compatible with the java.util.Date class.

A TimePicker control (also shown in Figure 8.8, bottom) is similar to
the DatePicker control. It also doesn't have any unique attributes. However,
to register for a method call when the values change, you call the more
traditional method of

TimePicker.setOnTimeChangedListener () .

time.setOnTimeChangedListener (new
TimePicker.OnTimeChangedListener () {

public void onTimeChanged (TimePicker view,

int hourOfDay, int minute) {

Date dt = new Date (date.getYear()-1900,
date.getMonth (),

date.getDayOfMonth (), hourOfDay, minute);

text.setText (dt.toString());

}

});

As in the previous example, this code also sets a TextView to a string
displaying the time value that the user entered.When you use the DatePicker
control and the TimePicker control together, the user can set a full date and
time.

8.9 Using Indicators to Display Data to Users :

The Android SDK provides a number of controls that can be used to
visually show some form of information to the user. These indicator controls
include progress bars, clocks, and other similar controls.

8.9.1 Indicating Progress with ProgressBar :

Applications commonly perform actions that can take a while. A good
practice during this time is to show the user some sort of progress indicator
that informs the user that the application is off "doing something." Applications
can also show how far a user is through some operation, such as a playing
a song or watching a video. The Android SDK provides several types of progress
bars.

The standard progress bar is a circular indicator that only animates. It
does not show how complete an action is. It can, however, show that something
is taking place. This is useful when an action is indeterminate in length.There
are three sizes of this type of progress indicator (See Figure 8.7)

User Interface Screen

Elements

115

Mobile Application
Development
(Using Android)

' 6 & & ¢

Thrwed ! Wi ial:80
B1EWL &

Figure 8.7 : Various types of progress and rating indicators.

The second type is a horizontal progress bar that shows the completeness
of an action. (For example, you can see how much of a file is downloading.)
This horizontal progress bar can also have a secondary progress indicator on
it.This can be used, for instance, to show the completion of a downloading
media file while that file plays.

This is an XML layout resource definition for a basic indeterminate
progress bar :

<ProgressBar
android:id="@+id/progress _bar"
android:layout width="wrap content"
android:layout height="wrap content" />

The default style is for a medium-size circular progress indicator; not
a "bar" at all. The other two styles for indeterminate progress bar are
progressBarStyleLarge and progressBarStyleSmall. This style animates
automatically. The next sample shows the layout definition for a horizontal
progress indicator :

<ProgressBar

android:id="@+id/progress_bar"

style="7?android:attr/progressBarStyleHorizontal"

android:layout width="fill parent"

android:layout height="wrap content"”
android:max="100" />

We have also set the attribute for max in this sample to 100. This can
help mimic a percentage progress bar. That is, setting the progress to 75 shows
the indicator at 75 percent complete.

We can set the indicator progress status programmatically as follows :
mProgress =
(ProgressBar) findViewById(R.id.progress bar);

116 mProgress.setProgress (75) ;

You can also put these progress bars in your application's title bar (as
shown in Figure 8.9).

This can save screen real estate. This can also make it easy to turn on
and off an indeterminate progress indicator without changing the look of the
screen. Indeterminate progress indicators are commonly used to display progress
on pages where items need to be loaded before the page can finish drawing.
This is often employed on web browser screens. The following code demonstrates
how to place this type of indeterminate progress indicator on your Activity
screen :

requestiWindowFeature (Window.FEATURE INDETERMINATE PROGRESS) ;
requestWindowFeature (Window.FEATURE PROGRESS) ;
setContentView (R.layout.indicators);
setProgressBarIndeterminateVisibility (true);
setProgressBarVisibility (true) ;

setProgress (5000) ;

To use the indeterminate indicator on your Activity objects title bar, you
need to request the feature Window. FEATURE INDETERMINATE
PROGRESS, as previously shown. This shows a small circular indicator in the
right side of the title bar. For a horizontal progress bar style that shows behind
the title, you need to enable the Window. FEATURE PROGRESS.

These features must be enabled before your application calls the
setContentView() method, as shown in the preceding example.

You need to know about a couple of important default behaviors. First,
the indicators are visible by default. Calling the visibility methods shown in
the preceding example can set their visibility on or off. Second, the horizontal
progress bar defaults to a maximum progress value of 10,000. In the preceding
example,we set it to 5,000, which is equivalent to 50 percent.When the value
reaches the maximum value, the indicators fade away so that they aren't
visible.This happens for both indicators.

8.9.2 Adjusting Progress with SeekBar :

You have seen how to display progress to the user. What if, however,
you want to give the user some ability to move the indicator, for example,
to set the current cursor position in a playing media file or to tweak a volume
setting ? You accomplish this by using the SeekBar control provided by the
Android SDK. It's like the regular horizontal progress bar, but includes a thumb,
or selector, that can be dragged by the user. A default thumb selector is provided,
but you can use any drawable item as a thumb. In Figure 8.7 (center),we
replaced the default thumb with a little Android graphic.

Here we have an example of an XML layout resource definition for a
simple SeekBar :

<SeekBar

android:id="@+id/seekbarl"
android:layout height="wrap content”
android:layout width="240px"

android:max="500" />

User Interface Screen

Elements

117

Mobile Application

118

Development
(Using Android)

With this sample SeekBar, the user can drag the thumb to any value
between 0 and 500. Although this is shown visually, it might be useful to show
the user what exact value the user is selecting.To do this, you can provide
an implementation of the onProgressChanged() method, as shown here :

SeekBar seek =

(SeekBar) findViewById(R.id.seekbarl);
seek.setOnSeekBarChangelListener (

new SeekBar.OnSeekBarChangeListener () {
public void onProgressChanged (

SeekBar seekBar, int progress,boolean fromTouch) {
((TextView) findViewById(R.id.seek text))
.setText ("Value: "+progress);
seekBar.setSecondaryProgress (
(progress+seekBar.getMax ()) /2);

}

});

There are two interesting things to notice in this example. The first is
that the fromTouch parameter tells the code if the change came from the user
input or if, instead, it came from a programmatic change as demonstrated with
the regular ProgressBar controls. The second interesting thing is that the
SeekBar still enables you to set a secondary progress value. In this example,
we set the secondary indicator to be halfway between the user's selected value
and the maximum value of the progress bar.You might use this feature to show
the progress of a video and the buffer stream.

8.9.3 Displaying Rating Data with RatingBar :

Although the SeekBar is useful for allowing a user to set a value, such
as the volume, the RatingBar has a more specific purpose : showing ratings
or getting a rating from a user. By default, this progress bar uses the star
paradigm with five stars by default. A user can drag across this horizontal to
set a rating. A program can set the value, as well. However, the secondary
indicator cannot be used because it is used internally by this particular control.

Here's an example of an XML layout resource definition for a RatingBar
with four stars :

<RatingBar
android:id="@+id/ratebarl"
android:layout width="wrap content"
android:layout height="wrap content"”
android:numStars="4"
android:stepSize="0.25" />

This layout definition for a RatingBar demonstrates setting both the
number of stars and the increment between each rating value. Here, users can
choose any rating value between 0 and 4.0, but only in increments of 0.25,
the stepSize value. For instance, users can set a value of 2.25. This is visualized
to the users, by default, with the stars partially filled. Figure 8.9 (center)
illustrates how the RatingBar behaves.

Although the value is indicated to the user visually, you might still want
to show a numeric representation of this value to the user. You can do this
by implementing the onRatingChanged() method of the RatingBar.OnRatingBar
ChangeListener class.

RatingBar rate =

(RatingBar) findViewById(R.id.ratebarl);
rate.setOnRatingBarChangelListener (new
RatingBar.OnRatingBarChangeListener () {

public void onRatingChanged(RatingBar ratingBar,
float rating, boolean fromTouch) ({

((TextView) findViewById(R.id.rating text))
.setText ("Rating: "+ rating);

}

});

The preceding example shows how to register the listener. When the user
selects a rating using the control, a TextView is set to the numeric rating the
user entered. One interesting thing to note is that, unlike the SeekBar, the
implementation of the onRatingChange() method is called after the change is
complete, usually when the user lifts a finger.That is, while the user is dragging
across the stars to make a rating, this method isn't called. It is called when
the user stops pressing the control.

8.9.4 Showing Time Passage with the Chronometer :

Sometimes you want to show time passing instead of incremental progress.
In this case, you can use the Chronometer control as a timer (see Figure 8.9,
bottom). This might be useful if it's the user who is taking time doing some
task or in a game where some action needs to be timed.The Chronometer control
can be formatted with text, as shown in this XML layout resource definition :

<Chronometer
android:id="@+id/Chronometer01"
android:layout width="wrap content"
android:layout height="wrap content”
android:format="Timer: %s" />

You can use the Chronometer object's format attribute to put text around
the time that displays. A Chronometer won't show the passage of time until
its start() method is called. To stop it, simply call its stop() method. Finally,
you can change the time from which the timer is counting. That is, you can
set it to count from a particular time in the past instead of from the time it's
started. You call the setBase() method to do this. In this next example code,
the timer is retrieved from the View by its resource identifier.

We then check its base value and set it to 0. Finally,we start the timer
counting up from there.

final Chronometer timer =
(Chronometer) findvViewById (R.id.Chronometer01l) ;

long base = timer.getBase();

User Interface Screen

Elements

119

Mobile Application

120

Development
(Using Android)

Log.d(ViewsMenu.debugTag, "base = "+ base);
timer.setBase (0) ;
timer.start () ;

8.9.5 Displaying the Time :

Displaying the time in an application is often not necessary because
Android devices have a status bar to display the current time.However, there
are two clock controls available to display this information: the DigitalClock
and AnalogClock controls.

Using the DigitalClock

The DigitalClock control (Figure 8.9, bottom) is a compact text display
of the current time in standard numeric format based on the users' settings.
It is a TextView, so anything you can do with a TextView you can do with
this control, except change its text.You can change the color and style of the
text, for example.

By default, the DigitalClock control shows the seconds and automatically
updates as each second ticks by. Here is an example of an XML layout resource
definition for a DigitalClock control :

<DigitalClock
android:id="@+id/DigitalClock01l"
android:layout width="wrap content"
android:layout height="wrap content" />
Using the AnalogClock

The AnalogClock control (Figure 8.9, bottom) is a dial-based clock with
a basic clock face with two hands, one for the minute and one for the hour.
It updates automatically as each minute passes.The image of the clock scales
appropriately with the size of its View.

Here is an example of an XML layout resource definition for an
AnalogClock control :

<AnalogClock
android:id="@+id/AnalogClock01l"
android:layout width="wrap content"
android:layout height="wrap content" />

The AnalogClock control's clock face is simple. However you can set
its minute and hour hands. You can also set the clock face to specific drawable
resources, if you want to jazz it up. Neither of these clock controls accepts
a different time or a static time to display. They can show only the current
time in the current time zone of the device, so they are not particularly useful.

8.10 Providing Users with Options and Context Menus :

You need to be aware of two special application menus for use within
your Android applications : the options menu and the context menu.

8.10.1 Enabling the Options Menu :

The Android SDK provides a method for users to bring up a menu by
pressing the menu key from within the application (see Figure 8.8). You can
use options menus within your application to bring up help, to navigate, to

provide additional controls, or to configure options. The OptionsMenu control
can contain icons, submenus, and keyboard shortcuts.

S0 Ml D Gr2ew

Events
Indicators
Containers
Text Display

Forms

Figure 8.8 : An Option Menu
For an options menu to show when a user presses the Menu button on
their device, you need to override the implementation of onCreateOptionsMenu()
in your Activity.
Here is a sample implementation that gives the user three menu items
to choose from :

public boolean onCreateOptionsMenu
(android.view.Menu menu) {
super.onCreateOptionsMenu (menu) ;

menu.add ("Forms")
.setIcon(android.R.drawable.ic menu edit)
.setIntent (new Intent (this, FormsActivity.class));
menu.add ("Indicators")

.setIntent (new Intent (this,
IndicatorsActivity.class))
.setIcon(android.R.drawable.ic menu info details);
menu.add ("Containers")
.setIcon(android.R.drawable.ic menu view)
.setIntent (new Intent (this,
ContainersActivity.class));

return true;

}

To handle the event when a menu option item is selected, we also
implement the onOptionsltemSelected() method, as shown here :

public boolean onOptionsItemSelected (Menultem item) {

if (item.getItemId() == light id) {

User Interface Screen

Elements

121

Mobile Application

122

Development
(Using Android)

item.setChecked (true);
isLight = true;
return true;
} else if (item.getItemId() == dark id) {
item.setChecked (true);
isLight = false;
return true;
}
return super.onOptionsItemSelected(item);
}
8.10.2 Enabling the ContextMenu :

The ContextMenu is a subtype of Menu that you can configure to display
when a long press is performed on a View.As the name implies, the ContextMenu
provides for contextual menus to display to the user for performing additional
actions on selected items.

ContextMenu objects are slightly more complex than OptionsMenu objects.
You need to implement the onCreateContextMenu() method of your Activity
for one to display.

However, before that is called, you must call the registerForContextMenu()
method and pass in the View for which you want to have a context menu.This
means each View on your screen can have a different context menu, which
is appropriate as the menus are designed to be highly contextual.

Here we have an example of a Chronometer timer, which responds to
a long click with a context menu :

registerForContextMenu(timer);

After the call to the registerForContextMenu() method has been executed,
the user can then long click on the View to open the context menu. Each time
this happens, your Activity gets a call to the onCreateContextMenu() method,
and your code creates the menu each time the user performs the long click.

The following is an example of a context menu for the Chronometer
control, as previously used :

public void onCreateContextMenu (
ContextMenu menu, View v, ContextMenuInfo menulInfo) {

super.onCreateContextMenu (menu, v, menulnfo);

if (v.getId() == R.id.Chronometer01l) {
getMenulInflater () .inflate (R.menu.timer context,
menu) ;

menu.setHeaderIcon (android.R.drawable.ic media play)
.setHeaderTitle ("Timer controls");

}

}

Recall that any View control can register to trigger a call to the
onCreateContextMenu() method when the user performs a long press.That
means we have to check which View control it was for which the user tried
to get a context menu. Next, we inflate the appropriate menu from a menu
resource that we defined with XML. Because we can't define header information
in the menu resource file,we set a stock Android SDK resource to it and add
a title. Here is the menu resource that is inflated :

<menu

xmlns:android=
"http://schemas.android.com/apk/res/android">
<item
android:id="@+id/start timer"
android:title="Start" />
<item
android:id="@+id/stop timer"
android:title="Stop" />
<item
android:id="@+id/reset timer"
android:title="Reset" />
</menu>

Now we need to handle the ContextMenu clicks by implementing the
onContextltemSelected() method in our Activity. Here's an example :

public boolean onContextItemSelected (Menultem item) {
super.onContextItemSelected (item) ;

boolean result = false;

Chronometer timer =

(Chronometer) findViewById (R.id.Chronometer(Ql) ;
switch (item.getItemId()) {

case R.id.stop timer:

timer.stop ()

result = true;

break;

case R.id.start timer:

timer.start () ;

result = true;

break;

case R.id.reset timer:

timer.setBase (SystemClock.elapsedRealtime());

result = true;

User Interface Screen

Elements

123

Mobile Application

124

Development
(Using Android)

break;

}

return result;

}
8.11 Handling User Events :

You've seen how to do basic event handling in some of the previous
control examples. For instance, you know how to handle when a user clicks
on a button.There are a number of other events generated by various actions
the user might take.This section briefly introduces you to some of these events.
First, though,we need to talk about the input states within Android.

8.11.1 Listening for Touch Mode Changes :

The Android screen can be in one of two states. The state determines
how the focus on View controls is handled. When touch mode is on, typically
only objects such as EditText get focus when selected. Other objects, because
they can be selected directly by the user tapping on the screen,won't take focus
but instead trigger their action, if any. When not in touch mode, however, the
user can change focus between even more object types. These include buttons
and other views that normally need only a click to trigger their action. In this
case, the user uses the arrow keys, trackball, or wheel to navigate between
items and select them with the Enter or select keys.

Knowing what mode the screen is in is useful if you want to handle
certain events. If, for instance, your application relies on the focus or lack
of focus on a particular control, your application might need to know if the
phone is in touch mode because the focus behavior is likely different.

Your application can register to find out when the touch mode changes
by using the addOnTouchModeChangeListener() method within the
android.view. ViewTreeObserver class. Your application needs to implement the
ViewTreeObserver.OnTouchModeChangeListener class to listen for these events.

Here is a sample implementation:
View all = findViewById(R.id.events screen);
ViewTreeObserver vto = all.getViewTreeObserver();
vto.addOnTouchModeChangeListener (
new ViewTreeObserver.OnTouchModeChangeListener () {
public void onTouchModeChanged (
boolean isInTouchMode) {
events.setText ("Touch mode: " + isInTouchMode) ;
}
b) g
8.11.2 Listening for Events on the Entire Screen :

You saw in the last section how your application can watch for changes
to the touch mode state for the screen using the ViewTreeObserver class. The
ViewTreeObserver also provides three other events that can be watched for
on a full screen or an entire View and all of its children. These are

. PreDraw : Get notified before the View and its children are drawn

. GlobalLayout : Get notified when the layout of the View and its children
might change, including visibility changes

. GlobalFocusChange : Get notified when the focus within the View and
its children changes

Your application might want to perform some actions before the screen
is drawn. You can do this by calling the method addOnPreDrawListener() with
an implementation of the ViewTreeObserver.OnPreDrawListener class interface.

Similarly, your application can find out when the layout or visibility of
a View has changed. This might be useful if your application is dynamically
changing the display contents of a view and you want to check to see if a
View still fits on the screen. Your application needs to provide an implementation
of the ViewTreeObserver.OnGlobalLayoutListener class interface to the
addGlobalLayoutListener() method of the ViewTreeObserver object.

Finally, your application can register to find out when the focus changes
between a View control and any of its child View controls. Your application
might want to do this to monitor how a user moves about on the screen.When
in touch mode, though, there might be fewer focus changes than when the
touch mode is not set. In this case, your application needs to provide an
implementation of the

ViewTreeObserver.OnGlobalFocusChangelListener class
interface to the
addGlobalFocusChangeListener () method. Here is a sample
implementation of this
vto.addOnGlobalFocusChangelListener (new
ViewTreeObserver.OnGlobalFocusChangelListener () {

public wvoid onGlobalFocusChanged (

View oldFocus, View newFocus) {

if (oldFocus != null && newfFocus != null) {
events.setText ("Focus \nfrom: " +
oldFocus.toString() + "™ A\nto: " +

newFocus.toString());
}
}
}) i
8.11.3 Listening for Long Clicks :

In a previous section discussing the ContextMenu control, you learned
that you can add a context menu to a View that is activated when the user
performs a long click on that view. A long click is typically when a user presses
on the touch screen and holds his finger there until an action is performed.
However, a long press event can also be triggered if the user navigates there
with a non—touch method, such as via a keyboard or trackball, and then holds
the Enter or Select key for a while. This action is also often called a press—
andhold action.

User Interface Screen

Elements

125

Mobile Application Although the context menu is a great typical use case for the long—click
Development event, you can listen for the long—click event and perform any action you want.
(Using Android) However, this is the same event that triggers the context menu. If you've already
added a context menu to a View, you might not want to listen for the long—
click event as other actions or side effects might confuse the user or even
prevent the context menu from showing. As always with good user interface
design, try to be consistent for usability sake Your application can listen to
the long—click event on any View.The following example demonstrates how

to listen for a long—click event on a Button control :

Button long press =

(Button) findvViewById(R.id.long press);

long press.setOnLongClickListener (new
View.OnLongClickListener () {

public boolean onLongClick (View v) {

events.setText ("Long click: " + v.toString());

return true;

}
}):

8.11.4 Listening for Focus Changes :

We already discussed focus changes for listening for them on an entire
screen. All View objects, though, can also trigger a call to listeners when their
particular focus state changes. You do this by providing an implementation of
the View.OnFocusChangeListener class to the setOnFocusChangeListener()
method.The following is an example of how to listen for focus change events
with an EditText control :

TextView focus =

(TextView) findViewById(R.id.text focus_ change);

focus.setOnFocusChangelListener (new
View.OnFocusChangelListener () {

public void onFocusChange (View v, boolean hasFocus) {

if (hasFocus) {

1f (mSaveText != null) {

((TextView)vVv) .setText (mSaveText) ;

}

} else {
mSaveText = ((TextView)v) .getText () .toString();
((TextView)v) .setText ("") ;

}
}

8.12 Working with Dialogs :

An Activity can use dialogs to organize information and react to user—
driven events. For example, an activity might display a dialog informing the

126 user of a problem or ask the user to confirm an action such as deleting a

data record. Using dialogs for simple tasks helps keep the number of application
activities manageable

8.12.1 Exploring the Different Types of Dialogs :

There are a number of different dialog types available within the Android
SDK. Each has a special function that most users should be somewhat familiar
with.The dialog types available include n Dialog : The basic class for all Dialog
types. A basic Dialog is shown in the top left of Figure.

. AlertDialog : A Dialog with one, two, or three Button controls. An
AlertDialog is shown in the top center of Figure.

. CharacterPickerDialog : A Dialog for choosing an accented character
associated with a base character. A CharacterPickerDialog is shown in
the top right of Figure.

. DatePickerDialog : A Dialog with a DatePicker control. A
DatePickerDialog is shown in the bottom left of Figure.

. ProgressDialog : A Dialog with a determinate or indeterminate ProgressBar
control. An indeterminate ProgressDialog is shown in the bottom center
of Figure.

. TimePickerDialog : A Dialog with a TimePicker control. A
TimePickerDialog is shown in the bottom right of Figure

A Luglag weibs 0 TiGe

G Dipalli, Bitel 1L 10T

Figure 8.9 : The different dialog types available in Android.

8.12.2 Tracing the Lifecycle of a Dialog :

Each Dialog must be defined within the Activity in which it is used.A
Dialog may be launched once, or used repeatedly. Understanding how an
Activity manages the Dialog lifecycle is important to implementing a Dialog
correctly. Let's look at the key methods that an Activity must use to manage
a Dialog :

. The showDialog() method is used to display a Dialog.

. The dismissDialog() method is used to stop showing a Dialog.The Dialog
is kept around in the Activity's Dialog pool. If the Dialog is shown again
using showDialog(), the cached version is displayed once more.

. The removeDialog() method is used to remove a Dialog from the Activity
objects Dialog pool. The Dialog is no longer kept around for future use.
If you call showDialog() again, the Dialog must be re—created.

Adding the Dialog to an Activity involves several steps :

1. Define a unique identifier for the Dialog within the Activity.

User Interface Screen

Elements

127

Mobile Application 2. Implement the onCreateDialog() method of the Activity to return a Dialog

Development of the appropriate type, when supplied the unique identifier.

Usi Android e
(Using Android) 3. Implement the onPrepareDialog() method of the Activity to initialize the

Dialog as appropriate.

4, Launch the Dialog using the showDialog() method with the unique
identifier.

8.13 Working with Styles :

A style is a group of common View attribute values. You can apply the
style to individual View controls. Styles can include such settings as the font
to draw with or the color of text. The specific attributes depend on the View
drawn. In essence, though, each style attribute can change the look and feel
of the particular object drawn.

In the previous examples of this chapter, you have seen how XML layout
resource files can contain many references to attributes that control the look
of TextView objects. You can use a style to define your application's standard
TextView attributes once and then reference to the style either in an XML
layout file or programmatically from within Java.

In Chapter 6, we see how you can use one style to indicate mandatory
form fields and another to indicate optional fields. Styles are typically defined
within the resource file res/values/styles.xml. The XML file consists of a
resources tag with any number of style tags, which contain an item tag for
each attribute and its value that is applied with the style.

The following is an example with two different styles :
<?xml version="1.0" encoding="utf-8"?>
<resources>
<style name="padded small">
<item name="android:padding">2px</item>
<item name="android:textSize">8px</item>
</style>
<style name="padded large">
<item name="android:padding">4px</item>
<item name="android:textSize">16px</item>
</style>

</resources>

When applied, this style sets the padding to two pixels and the textSize
to eight pixels.

The following is an example of how it is applied to a TextView from
within a layout resource file :

<TextView
style="@style/padded small"
android:layout width="fill parent"
android:layout height="wrap content"”
android:text="Small Padded" />

128

Styles support inheritance; therefore, styles can also reference another

style as a parent.

1S an

This way, they pick up the attributes of the parent style. The following
example of how you might use this :

<style name="red padded">

<item name="android:textColor">#F00</item>

<item name="android:padding">3px</item>

</style>

<style name="padded normal" parent="red padded">
<item name="android:textSize">12px</item>
</style>

<style name="padded italics" parent="red padded">
<item name="android:textSize">14px</item>

<item name="android:textStyle">italic</item>
</style>

Here you find two common attributes in a single style and a reference

to them from the other two styles that have different attributes. You can
reference any style as a parent style; however, you can set only one style as
the style attribute of a View. Applying the padded italics style that is already
defined makes the text 14 pixels in size, italic, red, and padded. The following

1S an

example of applying this style :

<TextView

style="@style/padded italics"
android:layout width="fill parent"
android:layout height="wrap content”
android:text="Italic w/parent color" />

As you can see from this example, applying a style with a parent is

no different than applying a regular style. In fact, a regular style can be used
for applying to Views and used as a parent in a different style.

<style name="padded xlarge">
<item name="android:padding">10px</item>
<item name="android:textSize">100px</item>
</style>

<style name="green glow" parent="padded xlarge">
<item name="android:shadowColor">#0F0</item>
<item name="android:shadowDx">0</item>
<item name="android:shadowDy">0</item>
<item name="android:shadowRadius">10</item>
</style>

Here the padded xlarge style is set as the parent for the green glow style.

All six attributes are then applied to any view that this style is set to.

User Interface Screen

Elements

129

Mobile Application 8.14 Working with Themes :
Development

(Using Android) A theme is a collection of one or more styles (as defined in the resources)
but instead of applying the style to a specific control, the style is applied to
all View objects within a specified Activity. Applying a theme to a set of View
objects all at once simplifies making the user interface look consistent and
can be a great way to define color schemes and other common control attribute
settings.

An Android theme is essentially a style that is applied to an entire screen.
You can specify the theme programmatically by calling the Activity method
setTheme() with the style resource identifier. Each attribute of the style is
applied to each View within that Activity, as applicable. Styles and attributes
defined in the layout files explicitly override those in the theme.

For instance, consider the following style :

<style name="right">

<item name="android:gravity">right</item>
</style>

You can apply this as a theme to the whole screen, which causes any
view displayed within that Activity to have its gravity attribute to be right—
justified. Applying this theme is as simple as making the method call to the
setTheme() method from within the Activity, as shown here :

setTheme (R.style.right);

You can also apply themes to specific Activity instances by specifying
them as an attribute within the <activity> element in the AndroidManifest.xml
file, as follows :

<activity android:name=".myactivityname"

android:label="@string/app name"

android:theme="@style/myApplsStyling">

Unlike applying a style in an XML layout file, multiple themes can be

applied to a screen.

This gives you flexibility in defining style attributes in advance while
applying different configurations of the attributes based on what might be
displayed on the screen. This is demonstrated in the following code :

setTheme (R.style.right);
setTheme (R.style.green glow);
setContentView (R.layout.style samples);

In this example, both the right style and the green glow style are applied
as a theme to the entire screen.You can see the results of green glow and right—
aligned gravity, applied to a variety of TextView controls on a screen, as shown
in Figure 8.10. Finally, we set the layout to the Activity. You must do this
after setting the themes. That is, you must apply all themes before calling the
method setContentView() or the inflate() method so that the themes' attributes
can take effect.

130

a6 458

Figure 8.10 : Packaging styles for glowing text, padding,
and alignment into a theme.

A combination of well-designed and thought—out themes and styles can

make the look of your application consistent and easy to maintain. Android
comes with a number of built-in themes that can be a good starting point.
These include such themes as Theme Black, Theme Light, and
Theme NoTitleBar Fullscreen, as defined in the android.R.style class. They are
all variations on the system theme, Theme, which built—in apps use.

a
1.

Check Your Progress :

Which of the following method is used to handle what happens after
clicking a button ?

(A) onPause() (B) onRestart() (C) onStop() (D) onClick()

In which state the activity is, if it is not in focus, but still visible on
the screen ?

(A) pause state (B) start state (C) restart state (D) stop state
All layout classes are the subclasses of

(A) android.java (B) android.view.ViewGroup
(C) android.layout (D) android.permission

Which of the following layout in android arranges its children into rows
and columns ?

(A) RelativeLayout (B) CardLayout
(C) TableLayout (D) None of the Above
A theme is a collection of one or more

(A) services (B) layouts (C) fragments (D) styles

8.15 Let Us Sum Up :

In this unit we have learnt how to use interface & Android control, learn

how to create screen elements with control and to understand the views and
layouts.

User Interface Screen

Elements

131

Mobile Application

Development
(Using Android) 1. (D) 2. (A) 3. (B) 4. (C) 5. (D)

8.17 Glossary :

SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

8.16 Answers for Check Your Progress :

E ol

8.18 Assignment :

Explain different Layout available in Android.
Explain different Common user interface elements available in Android.

What is menu? Which two types of menus available in Android ?

B b=

Explain Different Types of Dialogs with lifecycle in Android.

8.19 Activities :

1. Use the various android control and arrange them with proper layouts
available in the android.

8.20 Case Study :

Identify the system and design the user interface with proper layout and
look and feel.

8.21 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

132

Unit DESIGNING USER

09\ INTERFACES WITH LAYOUTS

9.0 Learning Objectives

9.1 Introduction
9.2 Creating User Interfaces in Android
9.2.1 Creating Layouts Using XML Resources
9.2.2 Creating Layouts Programmatically
9.3 Organizing Your User Interface
9.3.1 Understanding View Versus ViewGroup
9.3.2 Sub Topic
9.4 Using Built-In Layout Classes
9.4.1 Using FrameLayout
9.4.2 Using LinearLayout
9.4.3 Using RelativeLayout
9.4.4 Using TableLayout
9.5 Let Us Sum Up
9.6 Answers for Check Your Progress
9.7 Glossary
9.8 Assignment
9.9 Activities
9.10 Case Study
9.11 Further Readings

9.0 Learning Objectives :

. To learn how to use user interface in Android
. To learn how to create screen elements
. To understand the views and layouts

9.1 Introduction :

In this unit, we discuss how to design user interfaces for Android
applications. Here we focus on the various layout controls you can use to
organize screen elements in different ways. We also cover some of the more
complex View objects we call container views. These are View objects that
can contain other View objects and controls.

9.2 Creating User Interfaces in Android :

Application user interfaces can be simple or complex, involving many
different screens or only a few. Layouts and user interface controls can be
defined as application resources or created programmatically at runtime.

133

Mobile Application 9.2.1 Creating Layouts Using XML Resources :
Development

(Using Android) As discussed in previous unit, Android provides a simple way to create

layout files in XML as resources provided in the /res/layout project directory.
This is the most common and convenient way to build Android user interfaces
and is especially useful for defining static screen elements and control properties
that you know in advance, and to set default attributes that you can modify
programmatically at runtime.

You can configure almost any ViewGroup or View (or View subclass)
attribute using the XML layout resource files. This method greatly simplifies
the user interface design process, moving much of the static creation and layout
of user interface controls, and basic definition of control attributes, to the XML,
instead of littering the code. Developers reserve the ability to alter these layouts
programmatically as necessary, but they can set all the defaults in the XML
template.

You'll recognize the following as a simple layout file with a LinearLayout
and a single TextView control. This is the default layout file provided with
any new Android project in Eclipse, referred to as /res/layout/main.xml :

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout height="fill parent" >
<TextView

android:layout width="fill parent"
android:layout height="wrap content"”
android:text="@string/hello" />
</LinearLayout>

This block of XML shows a basic layout with a single TextView. The
first line, which you might recognize from most XML files, is required. Because
it's common across all the files, we do not show it in any other examples.

Next, we have the LinearLayout element. LinearLayout is a ViewGroup
that shows each child View either in a single column or in a single row.When
applied to a full screen, it merely means that each child View is drawn under
the previous View if the orientation is set to vertical or to the right of the
previous View if orientation is set to horizontal.

Finally, there is a single child View—in this case, a TextView. A TextView
is a control, which is also a View. A TextView draws text on the screen. In
this case, it draws the text defined in the "@string/hello" string resource.

Creating only an XML file, though,won't actually draw anything on the
screen. A particular layout is usually associated with a particular Activity. In
your default Android project, there is only one activity, which sets the main.xml
layout by default. To associate the main.xml layout with the activity, use the
method call setContentView() with the identifier of the main.xml layout. The
ID of the layout matches the XML filename without the extension. In this case,

134

the preceding example came from main.xml, so the identifier of this layout
is simply main :

setContentView(R.layout.main);
9.2.2 Creating Layouts Programmatically :

You can create user interface components such as layouts at runtime
programmatically, but for organization and maintainability, it's best that you
leave this for the odd case rather than the norm.The main reason is because
the creation of layouts programmatically is onerous and difficult to maintain,
whereas the XML resource method is visual, more organized, and could be
done by a separate designer with no Java skills.

The following example shows how to programmatically have an Activity
instantiate a LinearLayout view and place two TextView objects within it. No
resources whatsoever are used; actions are done at runtime instead.

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

TextView textl = new TextView (this);
textl.setText ("Hi there!");

TextView text?2 = new TextView (this);
text2.setText ("I'm second. I need to wrap.");
text2.setTextSize ((float) 60);

LinearLayout 11 = new LinearLayout (this);
11l.setOrientation (LinearLayout.VERTICAL) ;
11l.addView (textl);

1ll.addView (text?2) ;

setContentView (1l1l);

}

The onCreate() method is called when the Activity is created. The first
thing this method does is some normal Activity housekeeping by calling the
constructor for the base class.

Next, two TextView controls are instantiated. The Text property of each
TextView is set using the setText() method.All TextView attributes, such as
TextSize, are set by making method calls on the TextView object. These actions
perform the same function that you have in the past by setting the properties
Text and TextSize using the Eclipse layout resource designer, except these
properties are set at runtime instead of defined in the layout files compiled
into your application package.

To display the TextView objects appropriately, we need to encapsulate
them within a container of some sort (a layout). In this case, we use a
LinearLayout with the orientation set to VERTICAL so that the second TextView
begins beneath the first, each aligned to the left of the screen.The two TextView
controls are added to the LinearLayout in the order we want them to display.

Finally, we call the setContentView() method, part of your Activity class,
to draw the LinearLayout and its contents on the screen.

Designing User
Interfaces with Layouts

135

Mobile Application As you can see, the code can rapidly grow in size as you add more
Development View controls and you need more attributes for each View. Here is that same
(Using Android) layout, now in an XML layout file :

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout height="fill parent"

>

<TextView

android:id="@+id/TextViewl"
android:layout width="fill parent"
android:layout height="wrap content"
android:text="Hi There!"

/>

<TextView

android:id="Q@+id/TextView2"
android:layout width="fill parent"
android:layout height="wrap content"
android:textSize="60px"
android:text="1I'm second. I need to wrap."
/>

</LinearLayout>

You might notice that this isn't a literal translation of the code example
from the previous

section, although the output is identical, as shown in Figure 9.1.

‘ Ghl® o

Im second.
[need to
wrap.

Figure 9.1 : Two different methods to create a screen have the same result.
136

First, in the XML layout files, layout width and layout height are required
attributes.

Next, you see that each TextView object has a unique id property assigned
so that it can be accessed programmatically at runtime. Finally, the textSize
property needs to have its units defined. The XML attribute takes a dimension
type (as described in Chapter 6) instead of a float.

The end result differs only slightly from the programmatic method.
However, it's far easier to read and maintain. Now you need only one line
of code to display this layout view. Again, if the layout resource is stored in
the /res/layout/resource based layout.xml file, that is

setContentView(R.layout.resource based layout);

9.3 Organizing Your User Interface :

In previous unit, we talk about how the class View is the building block
for user interfaces in Android. All user interface controls, such as Button,
Spinner, and EditText, derive from the View class.

Now we talk about a special kind of View called a ViewGroup. The
classes derived from ViewGroup enable developers to display View objects on
the screen in an organized fashion.

9.3.1 Understanding View versus ViewGroup :

Like other View objects, including the controls from previous unit,
ViewGroup controls represent a rectangle of screen space. What makes ViewGroup
different from your typical control is that ViewGroup objects contain other View
objects. A View that contains other View objects is called a parent view. The
parent View contains View objects called child views, or children.

You add child View objects to a ViewGroup programmatically using the
method addView(). In XML, you add child objects to a ViewGroup by defining
the child View control as a child node in the XML (within the parent XML
element, as we've seen various times using the LinearLayout ViewGroup).

ViewGroup subclasses are broken down into two categories :
. Layout classes
. View container controls
9.3.2 Sub Topic :

Check Your Progress

9.4 Using Built-In Layout Classes :

We talked a lot about the LinearLayout layout, but there are several other
types of layouts. Each layout has a different purpose and order in which it
displays its child View controls on the screen. Layouts are derived from
android.view.ViewGroup.

The types of layouts built-in to the Android SDK framework include
. FrameLayout
. LinearLayout
. RelativeLayout
. TableLayout

Designing User
Interfaces with Layouts

137

Mobile Application All layouts, regardless of their type, have basic layout attributes. Layout

Development attributes apply to any child View within that layout.You can set layout

(Using Android) attributes at runtime programmatically, but ideally you set them in the XML
layout files using the following syntax :

android:layout_attribute_name="value"

There are several layout attributes that all ViewGroup objects share.
These include size attributes and margin attributes. You can find basic layout
attributes in the ViewGroup.LayoutParams class. The margin attributes enable
each child View within a layout to have padding on each side. Find these
attributes in the ViewGroup.MarginLayoutParams classes. There are also a
number of ViewGroup attributes for handling child View drawing bounds and
animation settings.

Some of the important attributes shared by all ViewGroup subtypes are
shown in Table 9.1.

Table 9.1 : Important ViewGroup Attributes

Attribute Name Applies To Description Value
android: Parent view Height of the view. Specific dimension value,
layout_height Child view Required attribute £ill_parent,Of

for child view wrap_content.

cantrols in layouts, The match parent option s

avallable in APl Level 8+.

android: Farent view Wicith of the view. Specific dimension value,
layout width Child view Required atiribute £i11 parent. or

far child view wrap_content.

controls in layouts. The match_parent option is

available in APl Level 84,

android: Child view Extra space on all Specific dimension value,
layout margin sides of the view.

Here's an XML layout resource example of a LinearLayout set to the
size of the screen, containing one TextView that is set to its full height and
the width of the LinearLayout (and therefore the screen) :

<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:layout width="fill parent"
android:layout height="fill parent">
<TextView

android:id="@Q+id/TextView01l"

android:layout height="fill parent"
android:layout width="fill parent" />
</LinearLayout>

Here is an example of a Button object with some margins set via XML
used in a layout resource file :

<Button
android:id="@+id/Button01"

android:layout width="wrap content"
138 - N

android:layout height="wrap content"
android:text="Press Me"
android:layout marginRight="20px"
android:layout marginTop="60px" />

Remember that layout elements can cover any rectangular space on the
screen; it doesn't need to be the entire screen. Layouts can be nested within
one another. This provides great flexibility when developers need to organize
screen elements. It is common to start with a FrameLayout or LinearLayout
as the parent layout for the entire screen and then organize individual screen
elements inside the parent layout using whichever layout type is most appropriate.

Now let's talk about each of the common layout types individually and
how they differ from one another.

9.4.1 Using FrameLayout :

A FrameLayout view is designed to display a stack of child View
items.You can add multiple views to this layout, but each View is drawn from
the top—left corner of the layout. You can use this to show multiple images
within the same region, as shown in Figure 9.2, and the layout is sized to
the largest child View in the stack.

You can find the layout attributes available for FrameLayout child View
objects in android.control.FrameLayout.LayoutParams. Table 9.2 describes some
of the mportant attributes specific to FrameLayout views.

Table 9.2 : Important FrameLayout View Attributes

Attribute Applies To Description Value
MName
android: Parent view Drawabhle to draw over Drawable resource.
foreground the content.
android: Paren! view Gravity of foreground One or more constants sepamted
foreground- drawable. by °|". The constams available are
Gravity top. bottom, left, right, cen-
ter vertical, fill vertical.
center_horizontal, £i11
horizontal, center, and £111.,
androide Parent view Restrict size of layolt True or false.
measuranll- to all ehild views ol
Childran just the child views seat
10 VISIBLE (and not
those set 1o
INVISTHLE),
android: Chilel view A gEravity constant that Orne of more constants separatod
layouot describes how to place by °[". The constanis avallabie ane
gravity the child view within tap. bottonm, left, right.

the parent. canter_wertical. £i11_
vartical. center horizontal.
fill horizontal, center,

and £111.

Designing User
Interfaces with Layouts

139

Mobile Application n.;,,',musr..
Development Al
(Using Android)

Figure 9.2 : An example of FrameLayout usage.

Here's an example of an XML layout resource with a FrameLayout and
two child View objects, both ImageView objects.The green rectangle is drawn
first and the red oval is drawn on top of it.The green rectangle is larger, so
it defines the bounds of the

FrameLayout :

<Framelayout xmlns:android=
http://schemas.android.com/apk/res/android
android:id="@+id/FrameLayout01"
android:layout width="wrap content"
android:layout height="wrap content"”
android:layout gravity="center">
<ImageView
android:id="@+id/ImageView01l"
android:layout width="wrap content"
android:layout height="wrap content"
android:src="@drawable/green rect"
android:minHeight="200px"
android:minWidth="200px" />
<ImageView
android:id="@+id/ImageView02"
android:layout width="wrap content"
android:layout height="wrap content"”
android:src="@drawable/red oval"
android:minHeight="100px"
android:minWidth="100px"
android:layout gravity="center" />

</FrameLayout>
140

9.4.2 Using LinearLayout :

A LinearLayout view organizes its child View objects in a single row,
shown in Figure 9.3, or column, depending on whether its orientation attribute
is set to horizontal or vertical.

This is a very handy layout method for creating forms.

Figure 9.3 : An example of LinearLayout (horizontal orientation).

You can find the layout attributes available for LinearLayout child View
objects in android.control.LinearLayout.LayoutParams. Table 9.3 describes some
of the important attributes specific to LinearLayout views.

Table 9.3 : Important LinearLayout View Attributes

Attribute
Name

Applies To

android: Parent view

orientation

android: Parent view

gravity

android: Child view
layout

gravity

android: Child view
layout

weight

Description

Layout is a single row
(hornzontal) or single
column (vertical),

Gravity of child views
within layout.

The gravity for a specific
child view. Used for
pasitioning of views.

The welght for a specific
child view, Used to
provide ratio of screen
space used within the
parert cantrol,

9.4.3 Using RelativeLayout :

Value

Horlzontal or vertical.

One-or mare constants separated by
*|7. The constants available are top,
bottom, left, right, center
vertical, fill vertical,
center horizontal.fill_

horizontal, center, and £411.

One or mone constants separated by
*|”. The constants available are top,
bottom, left, right, center
vertical, fill vertical,
center horizontal €111
horizontal.center,and £i11.

The sum-of values across all child
views In a parent view must equal 1.
For example, one child control might
have a value af .3 and another
have a value of .7.

The RelativeLayout view enables you to specify where the child view
controls are in relation to each other. For instance, you can set a child View

Designing User

Interfaces with Layouts

141

Mobile Application to be positioned "above" or "below" or "to the left of" or "to the right of"
Development another View, referred to by its unique identifier. You can also align child View
(Using Android) objects relative to one another or the parent layout edges. Combining
RelativeLayout attributes can simplify creating interesting user interfaces without
resorting to multiple layout groups to achieve a desired effect. Figure 9.4 shows

how each of the button controls is relative to each other.

You can find the layout attributes available for RelativeLayout child View
objects in android.control.RelativeLayout.LayoutParams. Table 9.4 describes
some of the important attributes specific to RelativeLayout views.

't Vil &8 55w

R st

PO

Figure 9.4 : An example of RelativeLayout usage.

Table 9.4 : Important RelativeLayout View Attributes

Attribute Name Applies To Description Value
android: Patant viow Gravity of child Views within One or morne constants
gravity layei. separated by °|°, The

constants avallable
dare top, bottom
laft, cight

center vertical,
fill vertical
center _horizontal,
£ill_horizontal,

center, and £111

android: Child view Centers child view honzon True or false.
layout tally and verticaly within

centerinParsnt pararnt visw.

android: Child view Canters child view hofizontally True or false
layout within parent view,

centérHerizantal

androids: Child view Canters child view vertically True or falee
layout within parant yien,
cepterVertical

android: Child wiew Aligns child view with top Trune or false
layout edie of paranl view.
alignParantTop

android: Child view Aligns ahiblel view with bottom True of falsa
layout edige of parent view,

142 alignParentBottom

android: Child view Aligns ohilld view with len Trize or false.

layout edge af parent view,

alignParentLeft

android: Child vigw Aligns child view with right Tiue or false.

layout edgn of parent view.

alignParentRight

android: Child view Aligns ahitel view with right A view |0 for exam.
layout edge of another child view, ple, Bid/Buttonl
alignRight specified by 1D,

android: Chiled view Aligns child view with ledt A view 1D; for exam-
layout adge of anether child view, ple, #id/Buttonl
allignteft specified by 100

android: Child view Aligns: child view with top A view |D; for exam:
layout edge of another child view, ple. gids/Buttonl
alignTop specified by 1D,

android: Child vigw Aligns ahild view with bottom A view 1D; for exam-
layout edge of another child view, ple, 8id/Buttonl
allgnBattiom spetiffed by 1D

android: Chilet view Pasitions bottom edae of A view 10: Tor exan.
layout child view above another ple, #id/Bottonl
above chilt) view, specified by 1D,

androids: Child view Positions top adgo of child A view 1D for exatn.
layout view below another child ple, #id/auttonl
below view, specificd by 10,

androids Chlld view Pasitions right edge of child A view 1D; far exarm.
layout view 10 the left of another ple, #id/Buttonl
toleftof child view, specified by D,

androids: Child vigw Pasitions laft adge of child A view 1D for exatn.
layout view to the right of another ple, #id/Buttonl
toRightOf child view. specified by 1D.

Here's an example of an XML layout resource with a RelativeLayout
and two child View objects, a Button object aligned relative to its parent, and
an ImageView aligned and positioned relative to the Button (and the parent) :

<?xml version="1.0" encoding="utf-8"7?>
<Relativelayout xmlns:android=
"http://schemas.android.com/apk/res/android"
android:id="@+id/RelativeLayout0l"
android:layout height="fill parent"
android:layout width="fill parent">
<Button

android:id="@+id/ButtonCenter"
android:text="Center"

android:layout width="wrap content"
android:layout height="wrap content”
android:layout centerInParent="true" />
<ImageView

android:id="@+id/ImageView01"

Designing User
Interfaces with Layouts

143

Mobile Application

144

Development
(Using Android)

android:layout width="wrap content"
android:layout height="wrap content"”
android:layout above="@id/ButtonCenter"
android:layout centerHorizontal="true"
android:src="@drawable/arrow" />

</Relativelayout>

9.4.4 Using TableLayout :

A TableLayout view organizes children into rows, as shown in Figure
9.5. You add individual View objects within each row of the table using a
TableRow layout View (which is basically a horizontally oriented LinearLayout)
for each row of the table. Each column of the TableRow can contain one View
(or layout with child View objects). You place View items added to a TableRow
in columns in the order they are added.You can specify the column number
(zero—based) to skip columns as necessary (the bottom row shown in Figure
9.5 demonstrates this); otherwise, the View object is put in the next column
to the right. Columns scale to the size of the largest View of that column.You
can also include normal View objects instead of TableRow elements, if you
want the View to take up an entire row.

‘ o M 8 285

Figure 9.5 : An example of TableLayout usage.

You can find the layout attributes available for TableLayout child View
objects in android.control.TableLayout.LayoutParams. You can find the layout
attributes available for TableRow child View objects in android.control. TableRow.
LayoutParams.

Table 9.5 describes some of the important attributes specific to TableLayout
View objects.

Table 9.5 : Important TableLayout and TableRow View Attributes

Attribute Name Applies To

androld: Tak lelayout
collapsetolunna

androld: Tab lelayout
shrinklolosns
andriod: Tablalayout

ptretohColumnna

androddt Takb laRow
layout column el view
android: Tob | eflow
layout dpan Ehik visw

Description
A comima-delirmited

lis{ of column indices
10 collapss [D-Das2d)

A comfia-deimited
Izl of column indices
1o shrink (based)

A commemaditlimited
st of polumn ndices
to stretch {O-bazad)

Index of column this
child view should be
displayed in (Obased)

Number of columns
this child visw shoeio
span acress

Valise

SHHng or string mioyuice.
For examgle, “0,1,3, %"

SHInNE of Sting resouics.
Lige == for all Columns.,
for exampla, *6,1,3,5%"
Stnng of String resouice,
e "= for @l columns,
For exampls, "0,1,3,5°

Integer OF INteger re-
SOUME,

For sxmmple, §

Irfteges or integer re
soume grestsr than o
equal to'1.

For exsmgiea, 3

Here's an example of an XML layout resource with a TableLayout with
two rows (two TableRow child objects). The TableLayout is set to stretch the
columns to the size of the screen width. The first TableRow has three columns;
each cell has a Button object. The second TableRow puts only one Button
view into the second column explicitly :

<TablelLayout xmlns:android=

"http://schemas.android.com/apk/res/android"

android:id="@+id/TableLayout01l"

android:layout width="fill parent"
android:layout height="fill parent"

android:stretchColumns="*">

<TableRow

android:id="@+id/TableRow01">

<Button
android:id=
"@+id/ButtonLeft"

<Button

android:id="@+id/ButtonMiddle"

android:text="Middle Door" />

<Button

android:id="@+id/ButtonRight"

android:text="Right Door" />

</TableRow>
<TableRow

android:id="@+id/TableRow02">

android:text="Left Door" />

Designing User
Interfaces with Layouts

145

Mobile Application <Button
Development

: :' ="Q+1 1]
(Using Android) android:id="@+id/ButtonBack

android:text="Go Back"
android:layout column="1" />
</TableRow>
</TableLayout>
a Check Your Progress :
1. What is the default value of the orientation attribute in LinearLayout ?
(A) Vertical (B) Relative (C) Absolute (D) Horizontal
2. What is the nine—patch images tool in android?
(A) It is used to change the bitmap images into nine sections
(B) It is used to change the image into various parts
(C) It is used to decorate the image
(D) None of the Above

3. The _____ view enables you to specify where the child view controls
are in relation to each other.
(A) LinearLayout (B) TableRow
(C) RelativeLayout (D) CardLayout

4, A _____ view is designed to display a stack of child View items.
(A) RelativeLayout (B) TableRow
(C) LinearLayout (D) FrameLayout

5. — is not in a layout available in android.
(A) Relative (B) Absolute (C) Linear (D) Table

9.5 Let Us Sum Up :

In this unit we learnt about various android screen elements and various
layout available for the proper design and look out of the application. We
discussed in depth regarding the implementation of all kind of layout and screen
elements.

9.6 Answers for Check Your Progress :

1. (D) 2. (A) 3. (C) 4. (D) 5. (B)

9.7 Glossary :

SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

B » -

9.8 Assignment :

1. Which method and attribute is used to set image of ImageView ?

2. For what purpose Chronometer is used? Explain the Chronometer object's
format attribute and explain the different methods associated with
Chronometer

146

3. Which method and attribute are used to set image of ImageView ? Designing User

. Interf: ith L t
4. Explain various Layout available in Android. nterfaces wi ayouts

9.9 Activities :

I. Identify the various android controls and arrange them with proper layouts
available in the android.

9.10 Case Study :

Analysis of the system and design the user interface with proper layout
and look and feel.

9.11 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

147

Mobile Application

148

Development
(Using Android)

DRAWING AND WORKING
WITH ANIMATION

10.0 Learning Objectives
10.1 Introduction

10.2 Drawing on the Screen
10.2.1 Working with Canvases and Paints
10.2.2 Working with Text
10.2.3 Working with Bitmaps
10.2.4 Working with Shapes
10.3 Working with Animation
10.3.1 Working with Frame-by—Frame Animation
10.3.2 Working with Tweened Animations
10.4 Let Us Sum Up
10.5 Answers for Check Your Progress
10.6 Glossary
10.7 Assignment
10.8 Activities
10.9 Case Study
10.10 Further Reading

10.0 Learning Objectives :

. To learn working with drawing & Animation

. To learn & understand the use of Canvas and Paint

. To understand the work with bitmap and shapes

. To understand how to set and apply animation in Android Application

10.1 Introduction :

This unit talks about the drawing and animation features built into
Android, including creating custom View classes and working with Canvas and
Paint to draw shapes and text. We also talk about animating objects on the
screen in a variety of ways. In previous unit, we talk about layouts and the
various View classes available in Android to make screen design simple and
efficient. Now we must think at a slightly lower level and talk about drawing
objects on the screen. With Android, we can display images such as PNG and
JPG graphics, as well as text and primitive shapes to the screen. We can paint
these items with various colors, styles, or gradients and modify them using
standard image transforms. We can even animate objects to give the illusion
of motion.

10.2 Drawing on the Screen : Drawing and
Working with Animation

10.2.1 Working with Canvases and Paints :

To draw to the screen, you need a valid Canvas object. Typically we get
a valid Canvas object by extending the View class for our own purposes and
implementing the onDraw() method.

For example, here's a simple View subclass called ViewWithRedDot. We
override the onDraw() method to dictate what the View looks like; in this case,
it draws a red circle on a black background.

private static class ViewWithRedDot extends View {
public ViewWithRedDot (Context context) ({
super (context) ;

}

@Override

protected void onDraw(Canvas canvas) {
canvas.drawColor (Color.BLACK) ;

Paint circlePaint = new Paint():;
circlePaint.setColor (Color.RED) ;
canvas.drawCircle (canvas.getWidth () /2,
canvas.getHeight () /2,

canvas.getWidth () /3, circlePaint);

}

}

We can then use this View like any other layout. For example,we might
override the onCreate() method in our Activity with the following :

setContentView (new ViewWithRedDot (this)) ;

|
Figure 10.1 : The ViewWithRedDot view draws a
red circle on a black canvas background.

149

Mobile Application Understanding the Canvas :
Development

(Using Android) The Canvas (android.graphics.Canvas) object holds the draw calls, in

order, for a rectangle of space. There are methods available for drawing images,
text, shapes, and support for clipping regions. The dimensions of the Canvas
are bound by the container view.You can retrieve the size of the Canvas using
the getHeight() and getWidth() methods.

Understanding the Paint :

In Android, the Paint (android.graphics.Paint) object stores far more than
a color. The Paint class encapsulates the style and complex color and rendering
information, which can be applied to a drawable like a graphic, shape, or piece
of text in a given Typeface.

Working with Paint Color :

You can set the color of the Paint using the setColor() method. Standard
colors are predefined within the android.graphics. Color class. For example,
the following code sets the paint color to red :

Paint redPaint = new Paint();
redPaint.setColor(Color.RED);
Working with Paint Antialiasing :

Antialiasing makes many graphics—whether they are shapes or typefaces—
look smoother on the screen. This property is set within the Paint of an object.
For example, the following code instantiates a Paint object with antialiasing
enabled :

Paint aliasedPaint = new Paint(Paint. ANTI _ALIAS FLAG);
Working with Paint Styles :

Paint style controls how an object is filled with color. For example, the
following code instantiates a Paint object and sets the Style to STROKE, which
signifies that the object should be painted as a line drawing and not filled
(the default) :

Paint linePaint = new Paint();
linePaint.setStyle(Paint.Style. STROKE);
Working with Paint Gradients :

You can create a gradient of colors using one of the gradient subclasses.The
different gradient classes (see Figure 10.2), including LinearGradient,
RadialGradient, and SweepGradient, are available under the superclass
android.graphics.Shader.

All gradients need at least two colors—a start color and an end color—
but might contain any number of colors in an array. The different types of
gradients are differentiated by the direction in which the gradient "flows."
Gradients can be set to mirror and repeat as necessary.

You can set the Paint gradient using the setShader() method.

150

Figure 10.2 : An example of a LinearGradient (top),
a RadialGradient (right), and a SweepGradient (bottom).

: ﬁ&lﬂ G4t

Working with Linear Gradients :

A linear gradient is one that changes colors along a single straight line.
The top-left circle in Figure 10.2 is a linear gradient between black and red,

which is mirrored.

You can achieve this by creating a LinearGradient and setting the Paint
drawing on a Canvas, as follows :

method setShader() before

import
import
import
import

import

android.
android.
android.
android.

android.

graphics
graphics
graphics
graphics

graphics

Paint circlePaint =

.Canvas;

.Color;
.LinearGradient;
.Paint;

.Shader;

new Paint (Paint.ANTI ALIAS FLAG);

LinearGradient linGrad

new LinearGradient (0, O

Color.RED, Color.BLACK,

, 25, 25,

Shader.TileMode .MIRROR) ;

circlePaint.setShader (linGrad) ;

canvas.drawCircle (100,

Working with Radial Gradients :

A radial gradient is one that changes colors starting at a single point
and radiating outward in a circle.The smaller circle on the right in Figure 10.2

100, 100, circlePaint);

is a radial gradient between green and black.

You can achieve this by creating a RadialGradient and setting the Paint
method setShader() before drawing on a Canvas, as follows :

Drawing and
Working with Animation

151

Mobile Application

152

Development
(Using Android)

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.RadialGradient;
import android.graphics.Paint;

import android.graphics.Shader;

Paint circlePaint =

new Paint (Paint.ANTI ALIAS FLAG);

RadialGradient radGrad = new RadialGradient (250,
175, 50, Color.GREEN, Color.BLACK,
Shader.TileMode.MIRROR) ;

circlePaint.setShader (radGrad) ;
canvas.drawCircle (250, 175, 50, circlePaint);
Working with Sweep Gradients :

A sweep gradient is one that changes colors using slices of a pie. This
type of gradient is often used for a color chooser. The large circle at the bottom
of Figure 10.2 is a sweep gradient between red, yellow, green, blue, and
magenta.

You can achieve this by creating a SweepGradient and setting the Paint
method setShader() before drawing on a Canvas, as follows :

import android.graphics.Canvas;

import android.graphics.Color;

import android.graphics.SweepGradient;
import android.graphics.Paint;

import android.graphics.Shader;

Paint circlePaint =

new Paint (Paint.ANTI ALIAS FLAG);

SweepGradient sweepGrad = new

SweepGradient (canvas.getWidth () -175,
canvas.getHeight ()-175,

new int[] { Color.RED, Color.YELLOW, Color.GREEN,
Color.BLUE, Color.MAGENTA }, null);
circlePaint.setShader (sweepGrad) ;
canvas.drawCircle (canvas.getWidth()-175,
canvas.getHeight ()-175, 100,

circlePaint);

Working with Paint Utilities for Drawing Text :

The Paint class includes a number of utilities and features for rendering
text to the screen in different typefaces and styles. Now is a great time to
start drawing some text to the screen.

10.2.2 Working with Text :

Android provides several default font typefaces and styles. Applications
can also use custom fonts by including font files as application assets and
loading them using the Asset Manager, much as one would use resources

Using Default Fonts and Typefaces :

By default,Android uses the Sans Serif typeface, but Monospace and Serif
typefaces are also available. The following code excerpt draws some antialiased
text in the default typeface (Sans Serif) to a Canvas :

import android.graphics.Canvas;
import android.graphics.Color;
import android.graphics.Paint;

import android.graphics.Typeface;

Paint mPaint = new Paint (Paint.ANTI ALIAS FLAG);
Typeface mType;

mPaint.setTextSize (16);

mPaint.setTypeface (null);

canvas.drawText ("Default Typeface", 20, 20, mPaint);

You can instead load a different typeface, such as
Monotype:

Typeface mType = Typeface.create (Typeface.MONOSPACE,
Typeface.NORMAL) ;

Perhaps you would prefer italic text, in which case you can simply set
the style of the typeface and the font family :

Typeface mType = Typeface.create (Typeface.SERIF,
Typeface.ITALIC) ;

You can set certain properties of a typeface such as antialiasing, underlining,
and strikethrough using the setFlags() method of the Paint object :

mPaint.setFlags(Paint. UNDERLINE TEXT FLAG);

Figure 10.3 shows some of the Typeface families and styles available
by default on Android.

Drawing and
Working with Animation

153

Mobile Application

154

Development
(Using Android)

Figure 10.3 : Some typefaces and typeface styles available on Android.
Using Custom Typefaces :

You can easily use custom typefaces with your application by including
the font file as an application asset and loading it on demand. Fonts might
be used for a custom look— and feel, for implementing language symbols that
are not supported natively, or for custom symbols.

For example, you might want to use a handy chess font to implement
a simple, scalable chess game. A chess font includes every symbol needed to
implement a chessboard, including the board and the pieces. Hans Bodlaender
has kindly provided a free chess font called Chess Utrecht. Using the Chess
Utrecht font, the letter Q draws a black queen on a white square, whereas
a q draws a white queen on a white square, and so on. This nifty font is available
at www.chessvariants.com/d.font/utrecht.html as chessl.ttf.

To use a custom font, such as Chess Utrecht, simply download the font
from the website and copy the chess1.ttf file from your hard drive to the project
directory /assets/fonts/chess].ttf.

Now you can load the Typeface object programmatically much as you
would any resource :

import android.graphics.Typeface;
import android.graphics.Color;

import android.graphics.Paint;

Paint mPaint = new Paint (Paint.ANTI ALIAS FLAG);
Typeface mType =
Typeface.createFromAsset (getContext () .getAssets (),
"fonts/chessl.ttf");

You can then use the Chess Utrecht typeface to "draw" a chessboard
(see Figure 10.4) using the appropriate character sequences.

lmﬁ!.'m il

Figure 10.4 : Using the Chess Utrecht font to draw a chessboard.
Measuring Text Screen Requirements :

You can measure how large text with a given Paint is and how big of
a rectangle you need to encompass it using the measureText() and getTextBounds()
methods.

10.2.3 Working with Bitmaps :

You can find lots of goodies for working with graphics such as bitmaps
(including NinePatch) in the android.graphics package. The core class for
bitmaps is android.graphics.Bitmap.

Drawing Bitmap Graphics on a Canvas :

You can draw bitmaps onto a valid Canvas, such as within the onDraw()
method of a View, using one of the drawBitmap() methods. For example, the
following code loads a Bitmap resource and draws it on a canvas :

import android.graphics.Bitmap;

import android.graphics.BitmapFactory;

Bitmap pic =

BitmapFactory.decodeResource (getResources (),
R.drawable.bluejay);

canvas.drawBitmap (pic, 0, 0, null);

Scaling Bitmap Graphics :

Perhaps you want to scale your graphic to a smaller size. In this case,
you can use the createScaledBitmap() method, like this :

Bitmap sm = Bitmap.createScaledBitmap(pic, 50, 75, false);

You can preserve the aspect ratio of the Bitmap by checking the getWidth()
and getHeight() methods and scaling appropriately.

Drawing and
Working with Animation

155

156

Mobile Application Transforming Bitmaps Using Matrixes :
Development

(Using Android) You can use the helpful Matrix class to perform transformations on a

Bitmap graphic (see Figure 10.5). Use the Matrix class to perform tasks such
as mirroring and rotating graphics, among other actions.

The following code uses the createBitmap() method to generate a new
Bitmap that is a mirror of an existing Bitmap called pic:

import android.graphics.Bitmap;

import android.graphics.Matrix;

Matrix mirrorMatrix = new Matrix();
mirrorMatrix.preScale (-1, 1);

Bitmap mirrorPic = Bitmap.createBitmap (pic, 0, O,
pic.getWidth (), pic.getHeight (), mirrorMatrix, false);

You can perform a 30—degree rotation in addition to mirroring by using
this Matrix instead :

Matrix mirrorAndTilt30 = new Matrix () ;
mirrorAndTilt30.preRotate (30);
mirrorAndTilt30.preScale (-1, 1);

You can see the results of different combinations of tilt and mirror Matrix
transforms in Figure 10.5. When you're no longer using a Bitmap, you can
free its memory using the recycle() method :

pic.recycle();

Figure 10.5 : A single—source bitmap : scaled, tilted,
and mirrored using Android Bitmap classes.

There are a variety of other Bitmap effects and utilities available as part
of the Android SDK, but they are numerous and beyond the scope of this book.
See the android.graphics package for more details.

10.2.4 Working with Shapes :

You can define and draw primitive shapes such as rectangles and ovals
using the ShapeDrawable class in conjunction with a variety of specialized
Shape classes. You can define Paintable drawables as XML resource files, but
more often, especially with more complex shapes, this is done programmatically.

Defining Shape Drawables as XML Resources :

We show you how to define primitive shapes such as rectangles using
specially formatted XML files within the /res/drawable/resource directory.

The following resource file called /res/drawable/green rect.xml describes
a simple, green rectangle shape drawable :

<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android=
"http://schemas.android.com/apk/res/android"
android:shape="rectangle">

<solid android:color="#0£f0"/>

</shape>

You can then load the shape resource and set it as the Drawable as
follows :

ImageView iView =
(ImageView) findViewById(R.id.ImageViewl) ;
iView.setImageResource (R.drawable.green rect);

You should note that many Paint properties can be set via XML as part
of the Shape definition. For example, the following Oval shape is defined with
a linear gradient (red to white) and stroke style information :

<?xml version="1.0" encoding="utf-8"?>
<shapexmlns:android=
"http://schemas.android.com/apk/res/android"
android:shape="oval">

<solid android:color="#£f00"/>

<gradient android:startColor="#£f00"
android:endColor="4#fff"

android:angle="180"/>

<stroke android:width="3dp" android:color="#00f"
android:dashWidth="5dp" android:dashGap="3dp"/>
</shape>

Defining Shape Drawables Programmatically :

You can also define these ShapeDrawable instances programmatically.
The different shapes are available as classes within the android.graphics.drawable.
shapes package. For example, you can programmatically define the aforementioned
green rectangle as follows :

Drawing and
Working with Animation

157

Mobile Application

158

Development
(Using Android)

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.RectShape;

ShapeDrawable rect =

new ShapeDrawable (new RectShape()):
rect.getPaint () .setColor (Color.GREEN) ;

You can then set the Drawable for the ImageView directly :
ImageView iView =

(ImageView) findViewById(R.id.ImageViewl) ;
iView.setImageDrawable (rect) ;

The resulting green rectangle is shown in Figure 10.6.
Drawing Different Shapes :

Some of the different shapes available within the android.graphics.drawable.

shapes package include Rectangles (and squares)

Rectangles with rounded corners
Ovals (and circles)
Arcs and lines

Other shapes defined as paths

uﬂﬁt;umM

ﬂ.
m

Figure 10.6 : A green rectangle.

You can create and use these shapes as Drawable resources directly within

ImageView views, or you can find corresponding methods for creating these
primitive shapes within a Canvas.

Drawing Rectangles and Squares :

Drawing rectangles and squares (rectangles with equal height/width values)

is simply a matter of creating a ShapeDrawable from a RectShape object. The
RectShape object has no dimensions but is bound by the container object—
in this case, the ShapeDrawable.

You can set some basic properties of the ShapeDrawable, such as the

Paint color and the default size.

For example, here we create a magenta—colored rectangle that is 100- Drawing and
pixels long and 2—pixels wide, which looks like a straight, horizontal line. We =~ Working with Animation
then set the shape as the drawable for an ImageView so the shape can be
displayed :

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.RectShape;

ShapeDrawable rect =

new ShapeDrawable (new RectShape())
rect.setIntrinsicHeight (2) ;
rect.setIntrinsicWidth (100) ;
rect.getPaint () .setColor (Color.MAGENTA) ;
ImageView iView =

(ImageView) findViewById(R.id.ImageViewl) ;
iView.setImageDrawable (rect) ;

Drawing Rectangles with Rounded Corners :

You can create rectangles with rounded corners, which can be nice for
making custom buttons. Simply create a ShapeDrawable from a RoundRectShape
object. The RoundRectShape requires an array of eight float values, which
signify the radii of the rounded corners. For example, the following creates
a simple cyan—colored, rounded—corner rectangle :

import android.graphics.drawable.ShapeDrawable;
import android.graphics.drawable.shapes.

RoundRectShape;

ShapeDrawable rndrect = new ShapeDrawable (
new RoundRectShape(new float][]

{5 5,5 5,5, 5 5, 51}, null, null));
rndrect.setIntrinsicHeight (50) ;
rndrect.setIntrinsicWidth (100) ;
rndrect.getPaint () .setColor (Color.CYAN) ;
ImageView iView =

(ImageView) findViewById(R.id.ImageViewl) ;
iView.setImageDrawable (rndrect) ;

The resulting round—corner rectangle is shown in Figure 10.7.

You can also specify an inner—rounded rectangle within the outer rectangle,
if you so choose.The following creates an inner rectangle with rounded edges
within the outer white rectangle with rounded edges :

import android.graphics.drawable.ShapeDrawable;
import android.graphics.drawable.shapes.

RoundRectShape;

159

Mobile Application float[] outerRadii =

(U'Z‘i’:l’zl?ﬂ:::d) new float[]{ 6, 6, 6, 6, 6, 6, 6, 6 };
RectF insetRectangle =
new RectF (8, 8, 8, 8);
float[] innerRadii =
new float[]{ 6, 6, 6, 6, 6, 6, 6, 6 };
ShapeDrawable rndrect = new ShapeDrawable (
new RoundRectShape (
outerRadii, insetRectangle, innerRadii));
rndrect.setIntrinsicHeight (50) ;
rndrect.setIntrinsicWidth (100) ;
rndrect.getPaint () .setColor (Color.WHITE) ;
ImageView iView =
(ImageView) findViewById(R.id.ImageViewl) ;

iView.setImageDrawable (rndrect) ;

o ML 130w

Figure 10.8 : A white rectangle with rounded corners,
160 with an inset rounded rectangle.

Drawing Ovals and Circles :

You can create ovals and circles (which are ovals with equal height/width
values) by creating a ShapeDrawable using an OvalShape object. The OvalShape
object has no dimensions but is bound by the container object—in this case,
the ShapeDrawable. You can set some basic properties of the ShapeDrawable,
such as the Paint color and the default size.

For example, here we create a red oval that is 40—pixels high and 100—
pixels wide, which looks like a Frisbee :

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.OvalShape;

ShapeDrawable oval =

new ShapeDrawable (new OvalShape())
oval.setIntrinsicHeight (40);
oval.setIntrinsicWidth (100) ;
oval.getPaint () .setColor (Color.RED) ;
ImageView iView =

(ImageView) findViewById(R.id.ImageViewl) ;
iView.setImageDrawable (oval) ;

The resulting red oval is shown in Figure 10.9.

HH

Figure 10.9 : A red oval.
Drawing Arecs :

You can draw arcs, which look like pie charts or Pac—-Man, depending
on the sweep angle you specify. You can create arcs by creating a ShapeDrawable
by using an ArcShape object.

The ArcShape object requires two parameters: a startAngle and a
sweepAngle. The startAngle begins at 3 o'clock. Positive sweepAngle values
sweep clockwise; negative values sweep counterclockwise. You can create a
circle by using the values 0 and 360.

Drawing and
Working with Animation

161

Mobile Application The following code creates an arc that looks like a magenta Pac—Man :
Development

(Using Android) import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.ArcShape;

ShapeDrawable pacMan =

new ShapeDrawable (new ArcShape (0, 345));
pacMan.setIntrinsicHeight (100) ;
pacMan.setIntrinsicWidth (100) ;
pacMan.getPaint () .setColor (Color .MAGENTA) ;
ImageView iView =

(ImageView) findViewById(R.id.ImageViewl) ;
iView.setImageDrawable (pacMan) ;

The resulting arc is shown in Figure 10.10.

| Ml 3w

Figure 10.10 : A magenta arc of 345 degrees (resembling Pac—Man).
Drawing Paths :

You can specify any shape you want by breaking it down into a series
of points along a path. The android.graphics.Path class encapsulates a series
of lines and curves that make up some larger shape.

For example, the following Path defines a rough five—point star shape :

import android.graphics.Path;

Path p = new Path{();
.moveTo (50, 0);
.1ineTo (25,100) ;
.1ineTo (100, 50) ;
.1lineTo (0,50);
.1ineTo (75,100) ;
.1ineTo (50,0);

s ‘v 'O 'O T T

162

You can then encapsulate this star Path in a PathShape, create a Drawing and
ShapeDrawable, and paint it yellow. Working with Animation

import android.graphics.drawable.ShapeDrawable;

import android.graphics.drawable.shapes.PathShape;

ShapeDrawable star =

new ShapeDrawable (new PathShape (p, 100, 100));
star.setIntrinsicHeight (100) ;
star.setIntrinsicWidth (100) ;
star.getPaint () .setColor (Color.YELLOW) ;

By default, this generates a star shape filled with the Paint color yellow
(see Figure 10.11).

Or, you can set the Paint style to Stroke for a line drawing of a star.
star.getPaint().setStyle(Paint.Style. STROKE);
The resulting star would look something like Figure 10.12.

b 1) R 125w

Figure 10.11 : A yellow star.

| e R D 128

I nn

Figure 10.12 : A yellow star using the stroke style of Paint.

163

Mobile Application 10.3 Working with Animation :

Development
(Using Android) The Android platform supports three types of graphics animation :
. Animated GIF images
. Frame—by—frame animation
. Tweened animation

Animated GIFs store the animation frames within the image, and you
simply include these GIFs like any other graphic drawable resource. For frame—
by—frame animation, the developer must provide all graphics frames of the
animation. However, with tweened animation, only a single graphic is needed,
upon which transforms can be programmatically applied.

10.3.1 Working with Frame-by—-Frame Animation :

You can think of frame—by—frame animation as a digital flipbook in which
a series of similar images display on the screen in a sequence, each subtly
different from the last. When you display these images quickly, they give the
illusion of movement. This technique is called frame-by—frame animation and
is often used on the Web in the form of animated GIF images.

Frame-by—frame animation is best used for complicated graphics
transformations that are not easily implemented programmatically.

For example,we can create the illusion of a genie juggling gifts using
a sequence of three images, as shown in Figure 10.13.

Figure 10.13 : Three frames for an animation of a genie juggling.

In each frame, the genie remains fixed, but the gifts are repositioned
slightly. The smoothness of the animation is controlled by providing an adequate
number of frames and choosing the appropriate speed on which to swap them.

The following code demonstrates how to load three Bitmap resources
(our three genie frames) and create an AnimationDrawable. We then set the
AnimationDrawable as the background resource of an ImageView and start the
animation :

ImageView img =

(ImageView) findViewById(R.id.ImageViewl) ;
BitmapDrawable framel =

(BitmapDrawable) getResources () .
getDrawable (R.drawable.fl);
BitmapDrawable frame2 =

(BitmapDrawable) getResources () .

164

getDrawable (R.drawable.f2);

BitmapDrawable frame3 =
(BitmapDrawable)getResources () .

getDrawable (R.drawable.f3);

int reasonableDuration = 250;

AnimationDrawable mAnimation =

new AnimationDrawable () ;

mAnimation.addFrame (framel, reasonableDuration);
mAnimation.addFrame (frame2, reasonableDuration);
mAnimation.addFrame (frame3, reasonableDuration) ;
img.setBackgroundDrawable (mAnimation) ;

To name the animation loop continuously, we can call the setOneShot()
method :

mAnimation.setOneShot (false);

To begin the animation,we call the start() method:
mAnimation.start();

We can end our animation at any time using the stop() method:
mAnimation.stop () ;

Although we used an ImageView background in this example, you can
use a variety of different View widgets for animations. For example, you can
instead use the ImageSwitcher view and change the displayed Drawable resource
using a timer. This sort of operation is best done on a separate thread.The
resulting animation might look something like Figure 10.14 you just have to
imagine it moving.

by M 40 655 pu

Figure 10.14 : The genie animation in the Android emulator.

Drawing and
Working with Animation

165

Mobile Application

166

Development
(Using Android)

Figure 10.15 : Rotating a green rectangle shape drawable (left)
and a TableLayout (right).

10.3.2 Working with Tweened Animations :

With tweened animation, you can provide a single Drawable resource—
it is a Bitmap graphic (see Figure 10.15, left), a ShapeDrawable, a TextView
(see Figure 10.15, right), or any other type of View object—and the intermediate
frames of the animation are rendered by the system.Android provides tweening
support for several common image transformations, including alpha, rotate,
scale, and translate animations. You can apply tweened animation transformations
to any View, whether it is an ImageView with a Bitmap or shape Drawable,
or a layout such as a TableLayout.

Defining Tweening Transformations :

You can define tweening transformations as XML resource files or
programmatically. All tweened animations share some common properties,
including when to start, how long to animate, and whether to return to the
starting state upon completion.

Defining Tweened Animations as XML Resources :

In Chapter 6, we showed you how to store animation sequences as
specially formatted

XML files within the /res/anim/ resource directory. For example, the
following resource file called /res/anim/spin.xml describes a simple five—second
rotation :

<?xml version="1.0" encoding="utf-8" ?>

<set xmlns:android

= "http://schemas.android.com/apk/res/android"
android:shareInterpolator="false">

<rotate

android: fromDegrees="0"

android:toDegrees="360"

android:pivotX="50%"
android:pivotY="50%"
android:duration="5000" />

</set>

Defining Tweened Animations Programmatically :

You can programmatically define these animations.The different types of
transformations are available as classes within the android.view.animation package.
For example, you can define the aforementioned rotation animation as follows :

import android.view.animation.RotateAnimation;

RotateAnimation rotate = new RotateAnimation (
0, 360, RotateAnimation.RELATIVE TO SELF, 0.5f,
RotateAnimation.RELATIVE TO SELF, 0.5f);
rotate.setDuration (5000) ;

Defining Simultaneous and Sequential Tweened Animations :

Animation transformations can happen simultaneously or sequentially
when you set the startOffset and duration properties, which control when and
for how long an animation takes to complete. You can combine animations
into the <set> tag (programmatically, using AnimationSet) to share properties.

For example, the following animation resource file /res/anim/grow.xml
includes a set of two scale animations :

First,we take 2.5 seconds to double in size, and then at 2.5 seconds,
we start a second animation to shrink back to our starting size :

<?xml version="1.0" encoding="utf-8" 2>
<set xmlns:android=
http://schemas.android.com/apk/res/android
android:shareInterpolator="false">
<scale

android:pivotX="50%"
android:pivotY="50%"
android:fromXScale="1.0"
android:from¥Scale="1.0"
android:toXScale="2.0"
android:toYScale="2.0"
android:duration="2500" />

<scale

android:startOffset="2500"
android:duration="2500"
android:pivotX="50%"
android:pivotY="50%"

android:fromXScale="1.0"

Drawing and
Working with Animation

167

Mobile Application android:fromYScale="1.0"
Development

(Using Android) android:toXScale="0.5

android:toYScale="0.5" />
</set>
Loading Animations :

Loading animations is made simple by using the AnimationUtils helper
class. The following code loads an animation XML resource file called /res/
anim/grow.xml and applies it to an ImageView whose source resource is a green
rectangle shape drawable :

import android.view.animation.Animation;

import android.view.animation.AnimationUtils;

ImageView iView =

(ImageView) findViewById(R.id.ImageViewl) ;
iView.setImageResource (R.drawable.green rect);
Animation an =
AnimationUtils.loadAnimation (this, R.anim.grow);
iView.startAnimation (an) ;

We can listen for Animation events, including the animation start, end,
and repeat events, by implementing an AnimationListener class, such as the
MyListener class shown here :

class MyListener implements Animation.
AnimationlListener {

public void onAnimationEnd (Animation animation) {
// Do at end of animation

}

public void onAnimationRepeat (Animation animation) {
// Do each time the animation loops

}

public void onAnimationStart (Animation animation) {
// Do at start of animation

}

}

You can then register your AnimationListener as follows:
an.setAnimationListener (new MyListener());
Exploring the Four Different Tweening Transformations :

Now let's look at each of the four types of tweening transformations
individually. These types are

. Transparency changes (Alpha)
. Rotations (Rotate)

168

. Scaling (Scale)
. Movement (Translate)
Working with Alpha Transparency Transformations :

Transparency is controlled using Alpha transformations. Alpha
transformations can be used to fade objects in and out of view or to layer
them on the screen.

Alpha values range from 0.0 (fully transparent or invisible) to 1.0 (fully
opaque or visible).

Alpha animations involve a starting transparency (fromAlpha) and an
ending transparency (toAlpha).

The following XML resource file excerpt defines a transparency—change
animation, taking five seconds to fade in from fully transparent to fully opaque :

<alpha
android:fromAlpha="0.0"
android:toAlpha="1.0"
android:duration="5000">
</alpha>

Programmatically, you can create this same animation using the
AlphaAnimation class within the android.view.animation package.

Working with Rotating Transformations :

You can use rotation operations to spin objects clockwise or
counterclockwise around a pivot point within the object's boundaries.

Rotations are defined in terms of degrees. For example, you might want
an object to make one complete clockwise rotation. To do this, you set the
fromDegrees property to 0 and the toDegrees property to 360. To rotate the
object counterclockwise instead, you set the toDegrees property to —360.

By default, the object pivots around the (0,0) coordinate, or the top—
left corner of the object. This is great for rotations such as those of a clock's
hands, but much of the time, you want to pivot from the center of the object;
you can do this easily by setting the pivot point, which can be a fixed coordinate
or a percentage.

The following XML resource file excerpt defines a rotation animation,
taking five seconds to make one full clockwise rotation, pivoting from the center
of the object :

<rotate

android: fromDegrees="0"
android:toDegrees="360"
android:pivotX="50%"
android:pivotY="50%"
android:duration="5000" />

Programmatically, you can create this same animation using the
RotateAnimation class within the android.view.animation package.

Drawing and
Working with Animation

169

Mobile Application Working with Scaling Transformations :
Development

(Using Android) You can use scaling operations to stretch objects vertically and horizontally.

Scaling operations are defined as relative scales. Think of the scale value of
1.0 as 100 percent, or fullsize.

To scale to half-size, or 50 percent, set the target scale value of 0.5.

You can scale horizontally and vertically on different scales or on the
same scale (to preserve aspect ratio). You need to set four values for proper
scaling: starting scale (fromXScale, fromYScale) and target scale (toXScale,
toY Scale). Again, you can use a pivot point to stretch your object from a specific
(x,y) coordinate such as the center or another coordinate.

The following XML resource file excerpt defines a scaling animation,
taking five seconds to double an object's size, pivoting from the center of the
object :

<scale
android:pivotX="50%"
android:pivotY="50%"
android: fromXScale="1.0"
android:fromYScale="1.0"
android:toXScale="2.0"
android:toYScale="2.0"
android:duration="5000" />

Programmatically, you can create this same animation using the
ScaleAnimation class within the android.view.animation package.

Working with Moving Transformations :

You can move objects around using translate operations.Translate operations
move an object from one position on the (X,y) coordinate to another coordinate.

To perform a translate operation, you must specify the change, or delta,
in the object's coordinates. You can set four values for translations: starting
position (fromXDelta, fromYDelta) and relative target location (toXDelta,
toYDelta).

The following XML resource file excerpt defines a translate animation,
taking 5 seconds to move an object up (negative) by 100 on the y—axis. We
also set the fillAfter. property to be true, so the object doesn't "jump" back
to its starting position when the animation finishes:

<translate android:to¥YDelta="-100"
android:fillAfter="true"
android:duration="2500" />

Programmatically, you can create this same animation using the
TranslateAnimation class within the android.view.animation package.

Working with Different Interpolators :

The animation interpolator determines the rate at which a transformation
happens in time. There are a number of different interpolators provided as part
of the Android SDK framework. Some of these interpolators include n
AccelerateDeceleratelnterpolator : Animation starts slowly, speeds up, and ends

170 slowly

. Acceleratelnterpolator : Animation starts slowly and then accelerates
. Anticipatelnterpolator : Animation starts backward, and then flings forward
. AnticipateOvershootInterpolator : Animation starts backward, flings

forward, overshoots its destination, and then settles at the destination
. Bouncelnterpolator : Animation "bounces" into place at its destination

. Cyclelnterpolator : Animation is repeated a certain number of times
smoothly transitioning from one cycle to the next

. Deceleratelnterpolator : Animation begins quickly, and then decelerates
. LinearInterpolator : Animation speed is constant throughout
. OvershootInterpolator : Animation overshoots its destination, and then

settles at the destination

You can specify the interpolator used by an animation programmatically
using the setlnterpolator() method or in the animation XML resource using the
android:interpolator attribute.

a Check Your Progress :

1. How many types of animation available in Android ?
(A) One (B) Two (C) Three (D) Four
2. Which method is used to start the Animation ?
(A) startAnim() (B) start()
(C) startAnimation() (D) Animation()
3. Which method is used to load the Animation ?
(A) Load() (B) loadAnimation()
(C) load() (D) loadAnim()
4. Images and Shapes are stored in __________ folder.
(A) asset (B) src (C) Layout (D) Drawable
5. Animation can be found in ______ package in android.
(A) android.animation (B) android.layout
(C) android.view (D) android.view.animation

104 Let Us Sum Up :

In this unit we discussed regarding to learn working with drawing &
Animation, to learn & understand the use of Canvas and Paint, to understand
the work with bitmap and shapes & to understand how to set and apply
animation in Android Application

10.5 Answers for Check Your Progress :
1. (B) 2. (C) 3. (B) 4. (D) 5. (D)
10.6 Glossary :
SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

Lol ol

Drawing and
Working with Animation

171

Mobile Application 10.7 Assignment :

Development
(Using Android) L. What is Animation ? Explain Frame-by—Frame and Tweened Animation
in details.
2. Explain the Different twining Transformation

10.8 Activities :

1. Apply the various methods of amination in application and check the
type of animation.

10.9 Case Study :

Create application in android which shows the use of both frame by frame
and twined animation.

10.10 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

172

BLOCK SUMMARY :

In this block we have seen so far regarding to understand the user
interface screen elements, to design the user interface and layouts and to

understand working with Drawing and Amination.

173

Mobile Application

174

Development
(Using Android)

BLOCK ASSIGNMENT :

What is Animation? Explain Frame—by—Frame and Twined Animation in
details.

Explain the Different twining Transformation.

Explain different Layout available in Android.

How to retrieve data from user ? Discuss with example.

Explain different Common user interface elements available in Android.
What is menu ? Which two types of menu available in Android ?

For what purpose Chronometer is used ? Explain the Chronometer object's
format attribute explain the different methods associated with Chronometer.

Explain Different Types of Dialogs with lifecycle in Android.

Which method and attribute is used to set image of ImageView ?

Short Questions :

What is Animation ?

List out type of Layouts in Android.

Difference between frame by frame animation and twined animation.
How to load the animation ?

Which method is used to start the animation ?

Long Questions :

What is Animation ? Explain Frame-by—Frame and Twined Animation
in details.

Explain the Different twining Transformation.

Explain different Layout available in Android.

How to retrieve data from user ? Discuss with example.

Explain different Common user interface elements available in Android.
What is menu ? Which two types of menu available in Android ?

For what purpose Chronometer is used ? Explain the Chronometer object's
format attribute explain the different methods associated with Chronometer.

Explain Different Types of Dialogs with lifecycle in Android.

Which method and attribute is used to set image of ImageView ?

175

Mobile Application EX Enrolment No. : | |

Development
(Using Android) 1. How many hours did you need for studying the units ?
Unit No. 8 9 10
No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D D I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

Feed back to CYP
Question

3. Any other Comments

176

Education Open University Ahmedabad
" for All

@B AOU Dr. Babasaheb Ambedkar BCAR-503

MOBILE APPLICATION
DEVELOPMENT (USING ANDROID)

BLOCK 4 : COMMON ANDROID APIS & DEPLOYING ANDROID
APPLICATION

UNIT 11 MANAGING DATA USING SQLITE

UNIT 12 USING ANDROID NETWORKING APIS

UNIT 13 USING ANDROID WEB APIS & TELEPHONY APIS

UNIT 14 SELLING YOUR ANDROID APPLICATION

COMMON ANDROID APIS &
DEPLOYING ANDROID
APPLICATION

Block Introduction :

Applications are about functionality and data. In this Block, we explore the
various ways you can store, manage, and share application data with Android.
Applications can store and manage data in different ways. For example, applications
can use a combination of application preferences, the file system, and built-in
SQLite database support to store information locally. The methods your application
uses depend on your requirements. In this chapter, you learn how to use each of

these mechanisms to store, retrieve, and interact with data.

Block Objectives :

. To understand the common API available in Android.
. To implement Database Connection Application using SQLite Database.
. To understand the network and web connection using implementation of

Network and Web APIs.

. To create the Android Application for Calling & Message sending using
Android Telephony APIL

. To understand how to deploy Android and sell the Android Application.

Block Structure :

Unit 11 : Managing Data Using SQLite

Unit 12 : Using Android Networking APIs

Unit 13 : Using Android Web APIs & Telephony APIs
Unit 14 : Selling Your Android Application

11.0
111
11.2

11.3

11.4

11.5

11.6

11.7

11.8

11.9

11.10
11.11
11.12
11.13
11.14

MANAGING DATA USING
SOLITE

Learning Objectives
Introduction
Creating a SQLite Database

11.2.1 Creating a SQLite Database Instance Using the Application
Context

11.2.2 Finding the Application's Database File on the Device File
System

11.2.3 Configuring the SQLite Database Properties
11.2.4 Creating Tables and Other SQLite Schema Objects
Creating, Updating, and Deleting Database Records
11.3.1 Imserting Records

11.3.2 Updating Records

11.3.3 Deleting Records

11.3.4 Working with Transactions

Querying SQLite Databases

11.4.1 Working with Cursors

11.4.2 Executing Simple Queries

Closing and Deleting a SQLite Database

11.5.1 Deleting Tables and Other SQLite Objects
11.5.2 Closing a SQLite Database

11.5.3 Deleting a SQLite Database Instance Using the Application
Context

Designing Persistent Databases

11.6.1 Keeping Track of Database Field Names

11.6.2 Extending the SQLiteOpenHelper Class
Binding Data to the Application User Interface

11.7.1 Working with Database Data Like Any Other Data
11.7.2 Binding Data to Controls Using Data Adapters
Let Us Sum Up

Answers for Check Your Progress

Glossary

Assignment

Activities

Case Study

Further Readings

177

Mobile Application
Development
(Using Android) . To learn how to use SQLite Database in Android Application

11.0 Learning Objectives :

. To learn how to create Database Application using SQLite Database

. To understand and apply various Object and Methods available in SQLite
database

11.1 Introduction :

For occasions when your application requires a more robust data storage
mechanism, the Android file system includes support for application—specific
relational databases using SQLite. SQLite databases are lightweight and file—
based, making them ideally suited for embedded devices.

These databases and the data within them are private to the application.
To share application data with other applications, you must expose the data
you want to share by making your application a content provider (discussed
later in this chapter).

The Android SDK includes a number of useful SQLite database
management classes. Many of these classes are found in the
android.database.sqlite package. Here you can find utility classes for managing
database creation and versioning, database management, and query builder
helper classes to help you format proper SQL statements and queries.

The package also includes specialized Cursor objects for iterating query
results. You can also find all the specialized exceptions associated with SQLite.

Here we focus on creating databases within our Android applications.
For that, we use the built-in SQLite support to programmatically create and
use a SQLite database to store application information. However, if your
application works with a different sort of database, you can also find more
generic database classes (within the android.database package) to help you work
with data from other providers. In addition to programmatically creating and
using SQLite databases, developers can also interact directly with their
application's database using the sqlite3 command-line tool that's accessible
through the ADB shell interface. This can be an extremely helpful debugging
tool for developers and quality assurance personnel, who might want to manage
the database state (and content) for testing purposes.

11.2 Creating a SQLite Database :

You can create a SQLite database for your Android application in several
ways. To illustrate how to create and use a simple SQLite database, let's create
an Android project called Simple Database.

11.2.1 Creating a SQLite Database Instance Using the Application Context :

The simplest way to create a new SQLiteDatabase instance for your
application is to use the openOrCreateDatabase() method of your application
Context, like this :

178

import android.database.sglite.SQLiteDatabase;

SQLiteDatabase mDatabase;

mDatabase =
openOrCreateDatabase ("my sqglite database.db",
SQLiteDatabase.CREATE IF NECESSARY, null);

11.2.2 Finding the Application's Database File on the Device File System :

Android applications store their databases (SQLite or otherwise) in a
special application directory: /data/data/<application package name>/databases/
<databasename>

So, in this case, the path to the database would be

/data/data/com.androidbook.SimpleDatabase/databases/my_sqlite
database.db

You can access your database using the sqlite3 command-line interface
using this path.
11.2.3 Configuring the SQLite Database Properties :

Now that you have a valid SQLiteDatabase instance, it's time to configure
it. Some important database configuration options include version, locale, and
the thread—safe locking feature.

import java.util.Locale;

mDatabase.setLocale (Locale.getDefault())
mDatabase.setLockingEnabled (true);
mDatabase.setVersion (1) ;
11.2.4 Creating Tables and Other SQLite Schema Objects :

Creating tables and other SQLite schema objects is as simple as forming
proper SQLite statements and executing them. The following is a valid CREATE
TABLE SQL statement. This statement creates a table called tbl authors.The
table has three fields: a unique id number, which auto—increments with each
record and acts as our primary key, and firstname and lastname text fields :

CREATE TABLE tbl authors (

id INTEGER PRIMARY KEY AUTOINCREMENT,
firstname TEXT,

lastname TEXT) ;

You can encapsulate this CREATE TABLE SQL statement in a static
final String variable (called CREATE AUTHOR TABLE) and then execute it
on your database using the execSQL() method :

mDatabase.execSQL(CREATE AUTHOR _TABLE),

The execSQL() method works for nonqueries.You can use it to execute
any valid SQLite SQL statement. For example, you can use it to create, update,
and delete tables, views, triggers, and other common SQL objects. In our
application,we add another table called tbl books. The schema for tbl books
looks like this :

Managing Data Using

SQLite

179

Mobile Application

180

Development
(Using Android)

CREATE TABLE tbl books (

id INTEGER PRIMARY KEY AUTOINCREMENT,

title TEXT,

dateadded DATE,

authorid INTEGER NOT NULL CONSTRAINT authorid
REFERENCES tbl_authors(id) ON DELETE

CASCADE) ;

Unfortunately, SQLite does not enforce foreign key constraints. Instead,
we must enforce them ourselves using custom SQL triggers. So we create
triggers, such as this one that enforces that books have valid authors :

private static final String CREATE TRIGGER ADD =

"CREATE TRIGGER fk insert book BEFORE INSERT ON
tbl books

FOR EACH ROW
BEGIN

SELECT RAISE (ROLLBACK, 'insert on table \"tbl books\"
violates foreign key

constraint \"fk authorid\"') WHERE (SELECT id FROM
tbl authors WHERE id =

NEW.authorid) IS NULL;

END;";

We can then create the trigger simply by executing the CREATE TRIGGER
SQL statement :

mDatabase.execSQL (CREATE TRIGGER ADD) ;

We need to add several more triggers to help enforce our link between
the author and book tables, one for updating th/ books and one for deleting
records from tbl authors.

11.3 Creating, Updating, and Deleting Database Records :

Now that we have a database set up, we need to create some data. The
SQLiteDatabase class includes three convenience methods to do that. They are,
as you might expect, insert(), update(), and delete().

11.3.1 Inserting Records :

We use the insert() method to add new data to our tables. We use the
ContentValues object to pair the column names to the column values for the
record we want to insert.

For example, here we insert a record into th! authors for J.K. Rowling :

import android.content.ContentValues;

ContentValues values = new ContentValues();
values.put ("firstname", "J.K.");

values.put ("lastname", "Rowling");

long newAuthorID = mDatabase.insert ("tbl authors",
null, wvalues);

The insert() method returns the id of the newly created record. We use
this author id to create book records for this author.

You might want to create simple classes (that is, class Author and class
Book) to encapsulate your application record data when it is used
programmatically.

11.3.2 Updating Records :

You can modify records in the database using the update() method. The
update() method takes four arguments :

. The table to update records
. A ContentValues object with the modified fields to update

. An optional WHERE clause, in which ? identifies a WHERE clause
argument

. An array of WHERE clause arguments, each of which is substituted in
place of the ?'s from the second parameter Passing null to the WHERE
clause modifies all records within the table, which can be useful for
making sweeping changes to your database.

Most of the time, we want to modify individual records by their unique
identifier.

The following function takes two parameters : an updated book title and
a bookld. We find the record in the table called b/ books that corresponds
with the id and update that book's title. Again, we use the ContentValues object
to bind our column names to our data values :

public void updateBookTitle (Integer bookId, String
newtitle) {

ContentValues values = new ContentValues();
values.put ("title", newtitle);

mDatabase.update ("tbl books",

values, "id=?", new String[] { bookId.toString() });
}

Because we are not updating the other fields, we do not need to include
them in the ContentValues object. We include only the title field because it
is the only field we change.

11.3.3 Deleting Records :

You can remove records from the database using the remove() method.
The remove() method takes three arguments:

. The table to delete the record from

. An optional WHERE clause, in which ? identifies a WHERE clause
argument

. An array of WHERE clause arguments, each of which is substituted in
place of the ?'s from the second parameter

Managing Data Using

SQLite

181

Mobile Application Passing null to the WHERE clause deletes all records within the table.

Development For example, this function call deletes all records within the table called
(Using Android) tbl_authors :

mDatabase.delete ("tbl authors", null, null);

Most of the time, though, we want to delete individual records by their
unique identifiers.

The following function takes a parameter bookld and deletes the record
corresponding to that unique id (primary key) within the table called b/ _books :

public void deleteBook (Integer bookId) {
mDatabase.delete ("tbl books", "id=?",
new String[] { bookId.toString () 1});

}

You need not use the primary key (id) to delete records; the WHERE
clause is entirely up to you. For instance, the following function deletes all
book records in the table th! books for a given author by the author's unique
id :

public void deleteBooksByAuthor (Integer authorID) {

int numBooksDeleted = mDatabase.delete ("tbl books",
"authorid=?",

new String[] { authorID.toString() });
}
11.3.4 Working with Transactions :

Often you have multiple database operations you want to happen all
together or not at all.

You can use SQL Transactions to group operations together; if any of
the operations fails, you can handle the error and either recover or roll back
all operations. If the operations all succeed, you can then commit them. Here
we have the basic structure for a transaction :

mDatabase.beginTransaction () ;

try {

// Insert some records, updated others, delete a few
// Do whatever you need to do as a unit, then commit
it

mDatabase.setTransactionSuccessful () ;

} catch (Exception e) {

// Transaction failed. Failed! Do something here.
// It's up to you.

} finally {

mDatabase.endTransaction () ;

}

Now let's look at the transaction in a bit more detail. A transaction always
begins with a call to beginTransaction() method and a try/catch block. If your

operations are successful, you can commit your changes with a call to the
182

setTransactionSuccessful() method. If you do not call this method, all your
operations are rolled back and not committed.

Finally, you end your transaction by calling endTransaction(). It's as
simple as that.

In some cases, you might recover from an exception and continue with
the transaction.

For example, if you have an exception for a read—only database, you
can open the database and retry your operations.

Finally, note that transactions can be nested, with the outer transaction
either committing or rolling back all inner transactions.

11.4 Querying SQLite Databases :

Databases are great for storing data in any number of ways, but retrieving
the data you want is what makes databases powerful. This is partly a matter
of designing an appropriate database schema, and partly achieved by crafting
SQL queries, most of which are SELECT statements.

Android provides many ways in which you can query your application
database. You can run raw SQL query statements (strings), use a number of
different SQL statement builder utility classes to generate proper query statements
from the ground up, and bind specific user interface controls such as container
views to your backend database directly.

11.4.1 Working with Cursors :

When results are returned from a SQL query, you often access them using
a Cursor found in the android.database.Cursor class. Cursor objects are rather
like file pointers; they allow random access to query results.

You can think of query results as a table, in which each row corresponds
to a returned record. The Cursor object includes helpful methods for determining
how many results were returned by the query the Cursor represents and methods
for determining the column names (fields) for each returned record. The
columns in the query results are defined by the query, not necessarily by the
database columns. These might include calculated columns, column aliases, and
composite columns.

Cursor objects are generally kept around for a time. If you do something
simple (such as get a count of records or in cases when you know you retrieved
only a single simple record), you can execute your query and quickly extract
what you need; don't forget to close the Cursor when you're done, as shown
here :

// SIMPLE QUERY: select * from tbl books
Cursor c¢ = mDatabase.query
("tbl books",null,null,null,null,null,null);
// Do something quick with the Cursor here...
c.close();

11.4.2 Executing Simple Queries :

Your first stop for database queries should be the query() methods
available in the SQLiteDatabase class. This method queries the database and
returns any results as in a Cursor object

Managing Data Using

SQLite

183

Mobile Application

184

Development
(Using Android)

Figure 11.1 : Sample log output for the logCursorInfo() method.

The query() method we mainly use takes the following parameters:
[String] : The name of the table to compile the query against

[String Array] : List of specific column names to return (use null for
all)

[String] The WHERE clause : Use null for all; might include selection
args as ?'s

[String Array] : Any selection argument values to substitute in for the
?'s in the earlier parameter

[String] GROUP BY clause : null for no grouping

[String] HAVING clause : null unless GROUP BY clause requires one
[String] ORDER BY clause : If null, default ordering used

[String] LIMIT clause : If null, no limit

Previously in the chapter, we called the query() method with only one

parameter set to the table name.

Cursor ¢ =mDatabase.query ("tbl books",null,null,null,
null,null, null);

This is equivalent to the SQL query
SELECT * FROM tbl books;

Add a WHERE clause to your query, so you can retrieve one record

at a time :

Cursor c¢ = mDatabase.query("tbl books", null,
"id=?", new String[]{"9"}, null, null, null);
This is equivalent to the SQL query

SELECT * tbl books WHERE id=9;

Selecting all results might be fine for tiny databases, but it is not terribly

efficient. You should always tailor your SQL queries to return only the results
you require with no extraneous information included. Use the powerful language
of SQL to do the heavy lifting.

for you whenever possible, instead of programmatically processing results

yourself. For example, if you need only the titles of each book in the book
table, you might use the following call to the query() method :

String asColumnsToReturn[] = { "title", "id" };
String strSortOrder = "title ASC";

Cursor c = mDatabase.query("tbl books",
asColumnsToReturn,

null, null, null, null, strSortOrder);

This is equivalent to the SQL query
SELECT title, id FROM tbl books ORDER BY title ASC;

11.5 Closing and Deleting a SQLite Database :

Although you should always close a database when you are not using
it, you might on occasion also want to modify and delete tables and delete
your database.

11.5.1 Deleting Tables and Other SQLite Objects :

You delete tables and other SQLite objects in exactly the same way you
create them. Format the appropriate SQLite statements and execute them. For
example, to drop our tables and triggers, we can execute three SQL statements :

mDatabase.execSQL ("DROP TABLE tbl books;");
mDatabase.execSQL ("DROP TABLE tbl authors;");

mDatabase.execSQL ("DROP TRIGGER IF EXISTS
fk insert book;");

11.5.2 Closing a SQLite Database :

You should close your database when you are not using it. You can close
the database using the close() method of your SQLiteDatabase instance, like
this :

mDatabase.close();
11.5.3 Deleting a SQLite Database Instance Using the Application Context :

The simplest way to delete a SQLiteDatabase is to use the deleteDatabase()
method of your application Context. You delete databases by name and the
deletion is permanent.

You lose all data and schema information.

deleteDatabase ("my sqglite database.db");

11.6 Designing Persistent Databases :

Generally speaking, an application creates a database and uses it for the
rest of the application's lifetime—by which we mean until the application is
uninstalled from the phone. So far, we've talked about the basics of creating
a database, using it, and then deleting it.

In reality, most mobile applications do not create a database on—the—fly,
use them, and then delete them. Instead, they create a database the first time
they need it and then use it.

The Android SDK provides a helper class called SQLiteOpenHelper to
help you manage your application's database.

To create a SQLite database for your Android application using the
SQOLiteOpenHelper, you need to extend that class and then instantiate an
instance of it as a member variable for use within your application. To illustrate
how to do this, let's create a new Android project called PetTracker.

11.6.1 Keeping Track of Database Field Names :

You've probably realized by now that it is time to start organizing your
database fields programmatically to avoid typos and such in your SQL queries.
One easy way you do this is to make a class to encapsulate your database
schema in a class, such as PetDatabase, shown here :

Managing Data Using

SQLite

185

Mobile Application

186

Development
(Using Android)

import android.provider.BaseColumns;

public final class PetDatabase {

private PetDatabase () {}

public static final class Pets implements BaseColumns {
private Pets () {}

public static final String
PETS TABLE NAME="table pets";

public static final String PET NAME="pet name";
public static final String PET TYPE ID="pet type id";

public static final String DEFAULT SORT ORDER=
"pet name ASC";

}

public static final class PetType implements
BaseColumns {

private PetType () {}

public static final String PETTYPE TABLE NAME=
"table pettypes";

public static final String PET TYPE NAME="pet type";

public static final String DEFAULT SORT ORDER=
"pet type ASC";

}

}

By implementing the BaseColumns interface, we begin to set up the
underpinnings for using database—friendly user interface controls in the future,
which often require a specially named column called id to function properly.
We rely on this column as our primary key.

11.6.2 Extending the SQLiteOpenHelper Class :

To extend the SQLiteOpenHelper class,we must implement several
important methods, which help manage the database versioning.The methods
to override are onCreate(), onUpgrade(), and onOpen().We use our newly
defined PetDatabase class to generate appropriate SQL statements, as shown
here:

import android.content.Context;
import android.database.sglite.SQLiteDatabase;
import android.database.sglite.SQLiteOpenHelper;

import com.androidbook.PetTracker.PetDatabase.
PetType;

import com.androidbook.PetTracker.PetDatabase.Pets;

class PetTrackerDatabaseHelper extends
SQLiteOpenHelper {

private static final String DATABASE NAME
"pet tracker.db";

private static final int DATABASE VERSION

Il
'_\
~.

PetTrackerDatabaseHelper (Context context) {

super (context, DATABASE NAME, null, DATABASE VERSION) ;
}

@Override

public void onCreate (SQLiteDatabase db) {

db.execSQL ("CREATE TABLE " +PetType.PETTYPE TABLE
NAME+" (" + PetType. ID + " INTEGER PRIMARY KEY
AUTOINCREMENT ," + PetType.PET TYPE NAME + "
TEXT" + ");");

db.execSQL ("CREATE TABLE " + Pets.PETS TABLE
NAME + " (" + Pets._ID + " INTEGER PRIMARY KEY
AUTOINCREMENT ," + PetS.PET_NAME + " TEXT,"
+ Pets.PET TYPE ID + " INTEGER" // FK to pet type
table + ");");

}

@Override

public void onUpgrade (SQLiteDatabase db, int
oldVersion, int newVersion) {

// Housekeeping here.
// Implement how "move" your application data
// during an upgrade of schema versions
// Move or delete data as required. Your call.
}
@Override
public void onOpen (SQLiteDatabase db) {
super.onOpen (db) ;
}

}
Now we can create a member variable for our database like this:
PetTrackerDatabaseHelper mDatabase = new
PetTrackerDatabaseHelper (this.getApplicationContext ()) ;

Now, whenever our application needs to interact with its database, we
request a valid database object. We can request a read—only database or a
database that we can also write to. We can also close the database. For example,
here we get a database we can write data to:

SQLiteDatabase db = mDatabase.getWritableDatabase() ;

11.7 Binding Data to the Application User Interface :

In many cases with application databases, you want to couple your user
interface with the data in your database. You might want to fill drop—down
lists with values from a database table, or fill out form values, or display only
certain results. There are various ways to bind database data to your user
interface. You, as the developer, can decide whether to use built in data—binding

Managing Data Using

187

Mobile Application functionality provided with certain user interface controls, or you can build
Development your own user interfaces from the ground up.

(Using Android)
11.7.1 Working with Database Data Like Any Other Data :

If you peruse the PetTracker application provided on the book website,
you notice that its functionality includes no magical data—binding features, yet
the application clearly uses the database as part of the user interface.

Specifically, the database is leveraged :

. When you fill out the Pet Type field, the AutoComplete feature is seeded
with pet types already in listed in the table pettypes table (Figure 11.2,
left).

Figure 11.2 : The PetTracker application :
Entry Screen (left, middle) and Pet Listing Screen (right).

. When you save new records using the Pet Entry Form (Figure 11.2,
middle).

. When you display the Pet List screen, you query for all pets and use
a Cursor to programmatically build a TableLayout on—the—fly (Figure
11.2, right).

This might work for small amounts of data; however, there are various
drawbacks to this method. For example, all the work is done on the main thread,
so the more records you add, the slower your application response time
becomes. Second, there's quite a bit of custom code involved to map the
database results to the individual user interface components. If you decide you
want to use a different control to display your data, you have quite a lot of
reworks to do. Third, we constantly requery the database for fresh results, and
we might be re querying far more than necessary.

11.7.2 Binding Data to Controls Using Data Adapters :

Ideally, you'd like to bind your data to user interface controls and let
them take care of the data display. For example, we can use a fancy ListView
to display the pets instead of building a 7ableLayout from scratch. We can
spin through our Cursor and generate ListView child items manually, or even
better, we can simply create a data adapter to map the Cursor results to each
TextView child within the ListView. We included a project called PetTracker2
on the book website that does this. It behaves much like the PetTracker sample
application, except that it uses the SimpleCursorAdapter with ListView and an
ArrayAdapter to handle AutoCompleteTextView features.

188

Binding Data Using SimpleCursorAdapter :

Let's now look at how we can create a data adapter to mimic our Pet
Listing screen, with each pet's name and species listed. We also want to continue
to have the ability to delete records from the list.

Remember from Chapter 8, "Designing User Interfaces with Layouts,"
that the ListView container can contain children such as TextView objects. In
this case, we want to display each Pet's name and type.We therefore create
a layout file called pet_item.xml that becomes our ListView item template:

<?xml version="1.0" encoding="ut{-8"7>

<RelativeLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/RelativeLayoutHeader"

android:layout height="wrap content"
android:layout_width="fill parent">

<TextView

android:id="@+id/TextView PetName"

android:layout width="wrap_content"
android:layout_height="?android:attr/listPreferredltemHeight"
android:layout alignParentLeft="true" />

<TextView

android:id="@+id/TextView PetType"
android:layout_width="wrap_content"
android:layout_height="?android:attr/listPreferredltemHeight"
android:layout_alignParentRight="true" />
</RelativeLayout>

Next, in our main layout file for the Pet List, we place our ListView
in the appropriate place on the overall screen. The ListView portion of the
layout file might look something like this :

<ListView

android:layout width="wrap_content"
android:layout_height="wrap content"
android:id="@-+id/petList" android:divider="#000" />

Now to programmatically fill our ListView,we must take the following
steps :

1. Perform our query and return a valid Cursor (a member variable).

2. Create a data adapter that maps the Cursor columns to the appropriate
TextView controls within our pet item.xml layout template.

3. Attach the adapter to the ListView.
In the following code,we perform these steps:
SQLiteQueryBuilder queryBuilder = new SQLiteQueryBuilder();
queryBuilder.setTables(Pets.PETS_ TABLE NAME +", " +
PetType.PETTYPE TABLE NAME);

Managing Data Using

SQLite

189

Mobile Application queryBuilder.appendWhere(Pets. PETS TABLE NAME + "." +
(U'Z‘i’;’zl‘::’ﬁ:::d) Pets.PET_TYPE_ID + "=" + PetType.PETTYPE_TABLE_NAME + "." +

PetType._ID);
String asColumnsToReturn[] = { Pets.PETS TABLE NAME + "." +
Pets.PET_NAME, Pets.PETS_ TABLE NAME -+
"" + Pets._ID, PetType.PETTYPE TABLE NAME + "." +
PetType.PET TYPE NAME };
mCursor = queryBuilder.query(mDB, asColumnsToReturn, null, null,
null, null, Pets. DEFAULT SORT_ORDER);
startManagingCursor(mCursor);
ListAdapter adapter = new SimpleCursorAdapter(this,
R.layout.pet_item, mCursor,
new String[]{Pets.PET NAME, PetType.PET TYPE NAME},
new int[]{R.id.TextView PetName, R.id.TextView PetType });
ListView av = (ListView)findViewByld(R.id.petList);
av.setAdapter(adapter);

Notice that the _id column as well as the expected name and type columns
appears in the query. This is required for the adapter and ListView to work
properly.

Using a ListView (Figure 11.3, left) instead of a custom user interface
enables us to take advantage of the ListView control's built—in features, such
as scrolling when the list becomes longer, and the ability to provide context
menus as needed.The id column is used as the unique identifier for each
ListView child node. If we choose a specific item on the list,we can act on
it using this identifier, for example, to delete the item.

[i€
|

Delete Pet Recard?

Dalets

Add More Peis

Figure 11.3 : The PetTracker2 application :
Pet Listing Screen ListView (left) with Delete feature (right).

190

Now we re—implement the Delete functionality by listening for Managing Data Using
onltemClick() events and providing a Delete Confirmation dialog (Figure 11.3, SQLite
right) :

av.setOnltemClickListener(new AdapterView.OnltemClickListener() {
public void onltemClick(AdapterView<?> parent, View view,

int position, long id) {

final long deletePetld = id;

new AlertDialog.Builder(PetTrackerListActivity.this).setMessage(
"Delete Pet Record?").setPositiveButton(

"Delete", new Dialoglnterface.OnClickListener() {

@QOverride

public void onClick(Dialoglnterface dialog,int which) {
deletePet(deletePetld);

mCursor.requery();

}1)-show();

H

1)s

You can see what this would look like on the screen in Figure 11.3.

Note that within the PetTracker2 sample application,we also use an

ArrayAdapter to bind the data in the pet_types table to the AutoCompleteTextView
on the Pet Entry screen. Although our next example shows you how to do
this in a preferred manner, we left this code in the PetTracker sample to show
you that you can always intercept the data your Cursor provides and do what
you want with it. In this case,we create a String array for the AutoText options
by hand.We use a built-in Android layout resource called android.R.layout.simple
dropdown_item 1line to specify what each individual item within the AutoText
listing looks like.You can find the built-in layout resources provided within
your appropriate Android SDK version's resource subdirectory.

Storing Nonprimitive Types (Such as Images) in the Database

Because SQLite is a single file, it makes little sense to try to store binary

data within the database. Instead store the location of data, as a file path or
a URI in the database, and access it appropriately. We show an example of
storing image URIs in the database in the next chapter.

a
1.

Check Your Progress :

SQLite supports many of the features of SQL and is fast; however,
procedures are not supported.

(A) Function (B) Triger
(C) View (D) Store Procedures

databases can be accessed simultaneously with SQLite in the
same session.

(A) Single (B) Multiple
(C) Triple (D) None of the Above

191

Mobile Application

192

Development
(Using Android)

3. SQLite is available on ___ Operation System.

(A) Android (B) MAC (C) Linux (D) Windows
4. How many types of SQLite commands are there ?

(A) 2 B) 3 ©) 4 (D) 5
5. Based on case—sensitivity, SQLite is

(A) Case Sensitive
(B) Not Case Sensitive
(C) Not case sensitive with few commands being case sensitive

(D) None of the Above

11.8 Let Us Sum Up :

In this unit we discussed regarding the various classes and methods
available in android to implement data driven application by using the SQLite
database.

11.9 Answers for Check Your Progress :
1. (D) 2. (B) 3. (A) 4. (B) 5. (O)
11.10 Glossary :
SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

Eal o S .

11.11 Assignment :

1. Explain how to Create, Update, and Delete Database Records in SQLite
with example.

2. What is Cursor ? Explain the use of Cursor in SQLite Database.

3. Explain the use of ContentValues to insert the record and Which four
arguments are taken by update() ?

4. What is SQLite ?
5. How to create SQLite database ?
6. How to create tables in SQLite database ?

11.12 Activities :

1. Define the application which will have the record which can be processed
and managed by the SQLite database with proper class and methods
available in android.

11.13 Case Study :

Create android application which shows the data management by the
SQLite database.

11.14 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

USING ANDROID
NETWORKING APIS

12.0 Learning Objectives

12.1 Introduction

12.2 Accessing the Internet (HTTP)
12.3 Reading Data from the Web
12.4 Using HttpURLConnection

12.5 Parsing XML from the Network

12.6 Processing Asynchronously

12.7 Working with AsyncTask

12.8 Using Threads for Network Calls
12.9 Displaying Images from a Network Resource
12.10 Retrieving Android Network Status
12.11 Let Us Sum Up

12.12 Answers for Check Your Progress
12.13 Glossary

12.14 Assignment

12.15 Activities

12.16 Case Study

12.17 Further Readings

12.0 Learning Objectives :

. To learn how to use Network API in Android Application
. To learn how to Access the Internet (HTTP)

. To understand how to Read Data from the Web

. To learn parsing the XML Data

. To understand how to get Network status

12.1 Introduction :

Applications written with networking components are far more dynamic
and content rich than those that are not. Applications leverage the network
for a variety of reasons: to deliver fresh and updated content, to enable social
networking features of an otherwise standalone application, to offload heavy
processing to high—powered servers, and to enable data storage beyond what
the user can achieve on the device. Those accustomed to Java networking will
find the java.net package familiar. There are also some helpful Android utility
classes for various types of network operations and protocols. This chapter
focuses on Hypertext Transfer Protocol (HTTP), the most common protocol
for networked mobile applications.

193

Mobile Application Networking on the Android platform is standardized, using a combination
Development of powerful yet familiar technologies and libraries such as java.net. Network
(Using Android) implementation is generally straightforward, but mobile application developers
need to plan for less stable connectivity than one might expect in a home or
office network setting—connectivity depends on the location of the users and
their devices. Users demand stable, responsive applications. This means that
you must take extra care when designing network—enabled applications. Luckily,
the Android SDK provides a number of tools and classes for ensuring just

that.

12.2 Accessing the Internet (HTTP) :

The most common way to transfer data to and from the network is to
use HTTP. You can use HTTP to encapsulate almost any type of data and to
secure the data with Secure Sockets Layer (SSL), which can be important when
you transmit data that falls under privacy requirements. Also, most common
ports used by HTTP are typically open from the phone networks.

12.3 Reading Data from the Web :

Reading data from the Web can be extremely simple. For example, if
all you need to do is read some data from a website and you have the web
address of that data, you can leverage the URL class (available as part of the
java.net package) to read a fixed amount of text from a file on a web server,
like this :

import java.io.InputStream;
import java.net.URL;

//

URL text = new URL(

"http://api.flickr.com/services/feeds/photos
public.gne" + "?id=26648248@N04&lang=en-us&format=
atom") ;

InputStream isText = text.openStream();

byte[] bText new byte[250];

int readSize = isText.read (bText);
Log.i("Net", "readSize = " + readSize);
Log.i("Net", "bText = "+ new String (bText));

isText.close ()

First, a new URL object is created with the URL to the data we want
to read. A stream is then opened to the URL resource. From there,we read
the data and close the InputStream. Reading data from a server can be that
simple.

However, remember that because we work with a network resource, errors
can be more common. Our phone might not have network coverage; the server
might be down for maintenance or disappear entirely; the URL might be invalid;
and network users might experience long waits and timeouts.

This method might work in some instances—for example, when your
application has lightweight, noncritical network features—but it's not particularly
elegant. In many cases, you might want to know more about the data before

194

reading from it from the URL. For instance, you might want to know how
big it is.
Finally, for networking to work in any Android application, permission

is required.Your application needs to have the following statement in its
AndroidManifest.xml file :

<uses-permission

android:name="android.permission.INTERNET" />

12.4 Using HttpURLConnection :

We can use the HttpURLConnection object to do a little reconnaissance
on our URL before we transfer too much data. HttpURLConnection retrieves
some information about the resource referenced by the URL object, including
HTTP status and header information.

Some of the information you can retrieve from the HttpURLConnection
includes the length of the content, content type, and date—time information so
that you can check to see if the data changed since the last time you accessed
the URL.

Here is a short example of how to use HttpURLConnection to query
the same URL previously used :

import java.io.InputStream;

import java.net.HttpURLConnection;
import java.net.URL;

//

URL text = new URL(

"http://api.flickr.com/services/feeds/
photos public.gne

=?1d=26648248@N04&lang=en-us&format=atom") ;
HttpURLConnection http =

(HttpURLConnection) text.openConnection () ;
Log.i("Net", "length =" + http.getContentLength());
Log.i("Net", "respCode =" + http.getResponseCode ()) ;
Log.1i("Net", "contentType ="+ http.getContentType());
Log.1i("Net", "content = "+http.getContent());

The log lines demonstrate a few useful methods with the
HttpURLConnection class. If the URL content is deemed appropriate, you can
then call http.getlnputStream() to get the same InputStream object as before.
From there, reading from the network resource is the same, but more is known
about the resource.

12.5 Parsing XML from the Network :

A large portion of data transmitted between network resources is stored
in a structured fashion in Extensible Markup Language (XML). In particular,
RSS feeds are provided in a standardized XML format, and many web services
provide data using these feeds.

Using Android
Networking APIs

195

Mobile Application Android SDK provides a variety of XML utilities. We dabble with the

Development XML Pull Parser in Chapter 6, "Managing Application Resources." We also

(Using Android) cover the various SAX and DOM support available in Chapter 10, "Using
Android Data and Storage APIs."

Parsing XML from the network is similar to parsing an XML resource
file or a raw file on the file system. Android provides a fast and efficient XML
Pull Parser, which is a parser of choice for networked applications.

The following code demonstrates how to use the XML Pull Parser to
read an XML file from flickr.com and extract specific data from within it.
A TextView called status is assigned before this block of code is executed
and displays the status of the parsing operation.

import java.net.URL;

import org.xmlpull.vl.XmlPullParser;

import org.xmlpull.vl.XmlPullParserFactory;
//

URL text = new URL(

"http://api.flickr.com/services/feeds/photos
public.gne

=?1d=26648248@N04&lang=en-us&format=atom") ;

XmlPullParserFactory parserCreator =

XmlPullParserFactory.newlInstance();

XmlPullParser parser = parserCreator.newPullParser () ;

parser.setInput (text.openStream(), null);

status.setText ("Parsing...");

int parserEvent = parser.getEventType ()

while (parserEvent != XmlPullParser.END DOCUMENT) {

switch (parserEvent) {

case XmlPullParser.START TAG:

String tag = parser.getName () ;

if (tag.compareTo ("link") == 0) {

String relType =

parser.getAttributeValue (null, "rel");

if (relType.compareTo ("enclosure") == 0) {

String encType =
parser.getAttributeValue (null, "type"):;

if (encType.startsWith ("image/")) {

String imageSrc =

parser.getAttributeValue (null, "href");

Log.1i("Net",

"image source = " + imageSrc);

}

196

break;

}

parserEvent = parser.next();

}
status.setText ("Done...");

After the URL is created, the next step is to retrieve an XmlPullParser
instance from the XmlPullParserFactory. A Pull Parser has a main method that
returns the next event. The events returned by a Pull Parser are similar to
methods used in the implementation of a SAX parser handler class. Instead,
though, the code is handled iteratively. This method is more efficient for mobile
use.

In this example, the only event that we check for is the START TAG
event, signifying the beginning of an XML tag. Attribute values are queried
and compared. This example looks specifically for image URLs within the XML
from a flickr feed query.When found, a log entry is made.

You can check for the following XML Pull Parser events :
. START _TAG : Returned when a new tag is found (that is, <tag>)

. TEXT : Returned when text is found (that is, <tag>text</tag> where
text has been found)

. END_TAG : Returned when the end of tag is found (that is, </tag>)
. END_DOCUMENT : Returned when the end of the XML file is reached

Additionally, the parser can be set to validate the input. Typically, parsing
without validation is used when under constrained memory environments, such
as a mobile environment.

Compliant, nonvalidating parsing is the default for this XML Pull Parser.

12.6 Processing Asynchronously :

Users demand responsive applications, so time—intensive operations such
as networking should not block the main UI thread. The style of networking
presented so far causes the Ul thread it runs on to block until the operation
finishes. For small tasks, this might be acceptable. However, when timeouts,
large amounts of data, or additional processing, such as parsing XML, is added
into the mix, you should move these time—intensive operations off of the main
UI thread.

Offloading intensive operations such as networking provides a smoother,
more stable experience to the user. The Android SDK provides two easy ways
to manage offload processing from the main UI thread: the AsyncTask class
and the standard Java Thread class. The AsyncTask class is a special class
for Android development that encapsulates background processing and helps
facilitate communication to the UI thread while managing the lifecycle of the
background task within the context of the activity lifecycle. Developers can
also construct their own threading solutions using the standard Java methods
and classes—but they are then responsible for managing the entire thread
lifecycle as well.

Using Android
Networking APIs

197

Mobile Application 12.7 Working with AsyncTask :
Development

(Using Android) AsyncTask is an abstract helper class for managing background operations
that eventually post back to the UI thread. It creates a simpler interface for
asynchronous operations than manually creating a Java Thread class.

Instead of creating threads for background processing and using messages
and message handlers for updating the Ul, you can create a subclass of
AsyncTask and implement the appropriate event methods. The onPreExecute()
method runs on the UI thread before background processing begins. The
dolnBackground() method handles background processing, whereas
publishProgress() informs the UI thread periodically about the background
processing progress. When the background processing finishes, the
onPostExecute() method runs on the UI thread to give a final update.

The following code demonstrates an example implementation of AsyncTask
to perform the same functionality as the code for the Thread :

private class ImagelLoader extends
AsyncTask<URL, String, String> {
@Override
protected String doInBackground (
URL... params) {
// just one param
try |
URL text = params[0];
// ... parsing code {
publishProgress (
"imgCount = " 4+ curImageCount);
// ... end parsing code }
}
catch (Exception e) {
Log.e ("Net",
"Failed in parsing XML", e);

return "Finished with failure.";
}
return "Done...";
}
protected void onCancelled() {
Log.e("Net", "Async task Cancelled");
}
protected void onPostExecute (String result) {
mStatus.setText (result);

}

protected void onPreExecute () {

198

mStatus.setText ("About to load URL");
}

protected void onProgressUpdate (
String... values) {

// just one value, please
mStatus.setText (values[0]) ;

}}

When launched with the AsyncTask.execute() method, doinBackground ()
runs in a background thread while the other methods run on the UI thread.
There is no need to manage a Handler or post a Runnable object to it. This
simplifies coding and debugging.

12.8 Using Threads for Network Calls :

The following code demonstrates how to launch a new thread that
connects to a remote server, retrieves and parses some XML, and posts a
response back to the UI thread to change a TextView :

import java.net.URL;
import org.xmlpull.vl.XmlPullParser;

import org.xmlpull.vl.XmlPullParserFactory;

//

new Thread () {
public void run () {
try |

URL text = new URL(

"http://api.flickr.com/services/feeds/
photos public.gne?

=1d=26648248@N04&lang=en-us&format=atom") ;
XmlPullParserFactory parserCreator =
XmlPullParserFactory.newInstance();
XmlPullParser parser =
parserCreator.newbPullParser () ;
parser.setlInput (text.openStream (), null);
mHandler.post (new Runnable () {
public void run () {
status.setText ("Parsing...");
}
b) i
int parserEvent = parser.getEventType () ;
while (parserEvent !=
XmlPullParser.END DOCUMENT) {

// Parsing code here

Using Android
Networking APIs

199

Mobile Application

200

Development
(Using Android)

parserEvent = parser.next();

}

mHandler.post (new Runnable () {
public void run{() {
status.setText ("Done...");

}

b)

} catch (Exception e) {
Log.e("Net", "Error in network call", e);
}

}

}.start () ;

For this example, an anonymous Thread object will do. We create it and
call its start() method immediately. However, now that the code runs on a
separate thread, the user interface updates must be posted back to the main
thread. This is done by using a Handler object on the main thread and creating
Runnable objects that execute to call setText() on the TextView widget named
status.

The rest of the code remains the same as in the previous examples.
Executing both the parsing code and the networking code on a separate thread
allows the user interface to continue to behave in a responsive fashion while
the network and parsing operations are done behind the scenes, resulting in
a smooth and friendly user experience. This also all ows for handling of interim
actions by the user, such as canceling the transfer. You can accomplish this
by implementing the Thread to listen for certain events and check for certain
flags.

12.9 Displaying Images from a Network Resource :

Now that we have covered how you can use a separate thread to parse
XML, let's take our example a bit deeper and talk about working with non—
primitive data types. Continuing with the previous example of parsing for image
locations from a flickr feed, let's display some images from the feed. The
following example reads the image data and displays it on the screen,
demonstrating another way you can use network resources :

import java.io.InputStream;

import java.net.URL;

import org.xmlpull.vl.XmlPullParser;

import org.xmlpull.vl.XmlPullParserFactory;
import android.os.Handler;

//

final String imageSrc =
parser.getAttributeValue (null, "href");

final String currentTitle = new String(title);

imageThread.queueEvent (new Runnable () {

public void run () {

InputStream bmis;

try {
bmis = new URL (imageSrc) .openStream() ;
final Drawable image = new BitmapDrawable (

BitmapFactory.decodeStream (bmis)) ;
mHandler.post (new Runnable () {

public void run () {
imageSwitcher.setImageDrawable (image) ;
info.setText (currentTitle) ;

}

b) g

} catch (Exception e) {

Log.e("Net", "Failed to grab image", e);
}

1)

You can find this block of code within the parser thread, as previously
described. After the image source and title of the image have been determined,
a new Runnable object is queued for execution on a separate image handling
thread. The thread is merely a queue that receives the anonymous Runnable
object created here and executes it at least 10 seconds after the last one,
resulting in a slideshow of the images from the feed.

As with the first networking example, a new URL object is created and
an InputStream retrieved from it. You need a Drawable object to assign to the
ImageSwitcher. Then you use the BitmapFactory.decodeStream() method, which
takes an InputStream. Finally, from this Runnable object, which runs on a
separate queuing thread, spacing out image drawing, another anonymous Runnable
object posts back to the main thread to actually update the ImageSwitcher with
the new image. Figure 12.1 shows what the screen might look like showing
decoding status and displaying the current image.

e T 702 e

Spring 2010: Crocus

Figure 12.1 : Screen showing a flickr image and decoding status of feed.

Using Android
Networking APIs

201

Mobile Application Although all this continues to happen while the feed from flickr is
Development decoded, certain operations are slower than others. For instance, while the image
(Using Android) is decoded or drawn on the screen, you can notice a distinct hesitation in the
progress of the decoding. This is to be expected on current mobile devices
because most have only a single thread of execution available for applications.
You need to use careful design to provide a reasonably smooth and responsive

experience to the user.

12.10 Retrieving Android Network Status :

The Android SDK provides utilities for gathering information about the
current state of the network. This is useful to determine if a network connection
is even available before trying to use a network resource. The
ConnectivityManager class provides a number of methods to do this. The
following code determines if the mobile (cellular) network is available and
connected. In addition, it determines the same for the Wi—Fi network:

import android.net.ConnectivityManager;

import android.net.NetworkInfo;

//

ConnectivityManager cm = (ConnectivityManager)
getSystemService(Context.CONNECTIVITY_SERVICE);
NetworkInfo ni =

cm.getNetworkInfo (ConnectivityManager.TYPE WIFI);
boolean isWifiAvail = ni.isAvailable();

boolean isWifiConn = ni.isConnected() ;

ni = cm.getNetworkInfo (ConnectivityManager.TYPE
MOBILE) ;
boolean isMobileAvail = ni.isAvailable();

boolean isMobileConn = ni.isConnected() ;

status.setText ("WiFi\nAvail = "+ isWifiAvail +
"\nConn = " + isWifiConn +

"\nMobile\nAvail = "+ isMobileAvail +

"\nConn = " + isMobileConn) ;

First, an instance of the ConnectivityManager object is retrieved
with a call to the getSystemService() method, available as part of your application
Context. Then this instance retrieves NetworkInfo objects for both TYPE WIFI
and TYPE_MOBILE (for the cellular network). These objects are queried for
their availability but can also be queried at a more detailed status level to
learn exactly what state of connection (or disconnection) the network is in.
Figure 12.2 shows the typical output for the emulator in which the mobile
network is simulated but Wi-Fi isn't available.

If the network is available, this does not necessarily mean the server
that the network resource is on is available. However, a call to the
ConnectivityManager method requestRouteToHost() can answer this question.
This way, the application can give the user better feedback when there are
network problems.

202

For your application to read the status of the network, it needs explicit

permission. The following statement is required to be in its AndroidManifest.xml

file :

<uses-permission

android:name="android.permission.ACCESS NETWORK STATE"/>

m@,iﬁ Tiiem -

Figure 12.2 : Typical network status of the Android SDK emulator.

a
1.

Check Your Progress :

Which package should be imported to use Android Networking API ?
(A) import java.awt.*; (B) import java.util.*;

(C) import java.io.*; (D) import java.net.*;

HTTP stands for

(A) Hypertexture Transfer Protocol

(B) Hypertext Transfer Protocol

(C) Hypertext Transportation Protocol

(D) Hypertension Transfer Protocol

retrieves some information about the resource referenced by
the URL object, including HTTP status and header information

(A) HttpURLConnection (B) WebHttpURLConnection
(C) XmIURLConnection (D) WebURLConnection

Which of the following class in android executes the task asynchronously
with your service ?

(A) SyncTask (B) AsyncTask

(C) WebTask (D) AsyncronousTask
Parser to read an XML file

(A) HTML Pull (B) Web Pull

(C) XML Pull (D) Text Pull

Using Android
Networking APIs

203

Mobile Application 12.11 Let Us Sum Up :
Development

(Using Android) In this unit we discussed regarding to learn how to use Network API
in Android Application, to learn how to Access the Internet (HTTP), to
understand how to Read Data from the Web, to learn parsing the XML Data
and to understand how to get Network status

12.12 Answers for Check Your Progress :
1. (D) 2. (B) 3. (A) 4. (B) 5. (O)
12.13 Glossary :
SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

B » -

12.14 Assignment :

What is Android networking ?
What are network libraries in Android ?

What is networking on phone ?

Ll

Explain in details Android Networking API with its supported methods.

12.15 Activities :

Search the nearby firm who require android application with network
facility and analysis it and collect data for further development of the application.

12.16 Case Study :

Create Network enabled Android Application with internet access.

12.17 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

204

USING ANDROID WEB APIS &
TELEPHONY APIS

13.0 Learning Objectives
13.1 Introduction
13.2 Browsing the Web with WebView
13.2.1 Designing a Layout with a WebView Control
13.2.2 Loading Content into a WebView Control
13.2.3 Adding Features to the WebView Control
13.3 Building Web Extensions Using WebKit
13.3.1 Browsing the WebKit APIs
13.3.2 Extending Web Application Functionality to Android
13.4 Using Android Telephony APIs
13.4.1 Working with Telephony Utilities
13.5 Using SMS
13.6 Making and Receiving Phone Calls
13.7 Let Us Sum Up
13.8 Answers for Check Your Progress
13.9 Glossary
13.10 Assignment
13.11 Activities
13.12 Case Study
13.13 Further Readings

13.0 Learning Objectives :

. To learn how to use Web API in Android Application

. To learn how to Design Layout with a WebView Control
. To understand how to apply WebKit API

. To learn and create Flash Application Using Android

. To lean about Telephony API in Android Application

. To understand and create mobile application with calling a number
. To understand and create mobile application to send the message on
number

13.1 Introduction :

Mobile developers often rely upon web technologies to enrich their
applications, provide fresh content, and integrate with popular web services
such as social networks. Android application can harness the power of the
Internet in a variety of ways, including adding browser functionality to applications
using the special WebView control and extending web—based functionality using

205

Mobile Application standard WebKit libraries. Newer Android devices can also run Flash applications.

Development In this unit, we discuss the web technologies available on the Android platform.
(Using Android)

13.2 Browsing the Web with WebView :

Applications that retrieve and display content from the Web often end
up displaying that data on the screen. Instead of customizing various screens
with custom controls, Android applications can simply use the WebView control
to display web content to the screen. You can think of the WebView control
as a browser—like view. The WebView control uses the WebKit rendering engine
to draw HTML content on the screen. This content could be HTML pages
on the Web or it can be locally sourced. WebKit is an open source browser
engine. You can read more about it on its official website at http://webkit.org.

Using the WebView control requires the android.permission.INTERNET
permission. You can add this permission to your application's Android manifest
file as follows :

<uses—-permission android:name="android.permission.
INTERNET" />

When deciding if the WebView control is right for your application,
consider that you can always launch the Browser application using an Intent.
When you want the user to have full access to all Browser features, such as
bookmarking and browsing, you're better off launching into the Browser
application to a specific website, letting users do their browsing, and having
them return to your application when they're done. You can do this as follows :

Uri uriUrl = Uri.parse("http://androidbook.
blogspot.com/") ;

Intent launchBrowser = new Intent (Intent .ACTION VIEW,
uriUrl) ;

startActivity (launchBrowser) ;

Launching the Browser via an Intent does not require any special
permissions. This means that your application is not required to have the
android.permission.INTERNET permission.

In addition, because Android transitions from your application's current
activity to a specific Browser application's activity, and then returns when the
user presses the back key, the experience is nearly as seamless as implementing
your own Activity class with an embedded WebView.

13.2.1 Designing a Layout with a WebView Control :

The WebView control can be added to a layout resource file like any
other view. It can take up the entire screen or just a portion of it. A typical
WebView definition in a layout resource might look like this :

<WebView
android:id="@+id/web holder"
android:layout height="wrap content"
android:layout width="fill parent"
/>

Generally speaking, you should give your WebView controls ample room
to display text and graphics. Keep this in mind when designing layouts using
206 the WebView control.

13.2.2 Loading Content into a WebView Control : Using Android Web APIs

You can load content into a WebView control in a variety of ways. For & Telephony APIs

example, a WebView control can load a specific website or render raw HTML
content. Web pages can be stored on a remote web server or stored on the
device.

Here is an example of how to use a WebView control to load content
from a specific website :

final WebView wv = (WebView) findViewById(R.id.web
holder) ;

wv.loadUrl ("http://www.perlgurl.org/");

You do not need to add any additional code to load the referenced web
page on the screen. Similarly, you could load an HTML file called webby.html
stored in the application's assets directory like this :

wv.loadUrl ("file:///android asset/webby.html");

If, instead, you want to render raw HTML, you can use the loadData()
method :

String strPageTitle = "The Last Words of Oscar Wilde";
String strPageContent = "<hl>" + strPageTitle +

": </h1>\"Either that wallpaper goes, or I do.\"";
String myHTML = "<html><title>" + strPageTitle
+"</title><body>"+ strPageContent +"</body></html>";
wv.loadData (myHTML, "text/html", "utf-8");

The resulting WebView control is shown in Figure 13.1.

et M 2 2300

Th-e Last Words of
Oscar Wilde:

TEuler (AT wallpaper goes, of | go

Figure 13.1 : A WebView control used to display HTML.

Unfortunately, not all websites are designed for mobile devices. It can
be handy to change the scale of the web content to fit comfortably within
the WebView control. You can achieve this by setting the initial scale of the
control, like this :

wv.setInitialScale (30);

207

Mobile Application The call to the setlnitialScale() method scales the view to 30 percent
Development of the original size. For pages that specify absolute sizes, scaling the view
(Using Android) is necessary to see the entire page on the screen. Some text might become
too small to read, though, so you might need to test and make page design

changes (if the web content is under your control) for a good user experience.

13.2.3 Adding Features to the WebView Control :

You might have noticed that the WebView control does not have all the
features of a full browser. For example, it does not display the title of a webpage
or provide buttons for reloading pages. In fact, if the user clicks on a link
within the WebView control, that action does not load the new page within
the view. Instead, it fires up the Browser application. By default, all the WebView
control does is display the web content provided by the developer using its
internal rendering engine, WebKit. You can enhance the WebView control in
a variety of ways, though. You can use three classes, in particular, to help
modify the behavior of the control: the WebSettings class, the WebViewClient
class, and the WebChromeClient class.

Modifying WebView Settings with WebSettings

By default, a WebView control has various default settings: no zoom
controls, JavaScript disabled, default font sizes, user—agent string, and so on.
You can change the settings of a WebView control using the getSettings()
method. The getSettings() method returns a WebSettings object that can be used
to configure the desired WebView settings. Some useful settings include

. Enabling and disabling zoom controls using the setSupportZoom() and
setBuiltInZoomControls() methods

. Enabling and disabling JavaScript using the setJavaScriptEnabled() method

. Enabling and disabling mouseovers using the setLightTouchEnabled()
method

. Configuring font families, text sizes, and other display characteristics

You can also use the WebSettings class to configure WebView plug—
ins and allow for multiple windows.

Handling WebView Events with WebViewClient

The WebViewClient class enables the application to listen for certain
WebView events, such as when a page is loading, when a form is submitted,
and when a new URL is about to be loaded. You can also use the WebViewClient
class to determine and handle any errors that occur with page loading. You
can tie a valid WebViewClient object to a WebView using the setWebViewClient()
method.

The following is an example of how to use WebViewClient to handle
the onPageFinished() method to draw the title of the page on the screen :

WebViewClient webClient = new WebViewClient () {
public void onPageFinished (WebView view, String url) {
super.onPageFinished (view, url);
String title = wv.getTitle();
pageTitle.setText (title);
byi

wv.setWebViewClient (webClient) ;

208

When the page finishes loading, as indicated by the call to
onPageFinished(), a call to the getTitle() method of the WebView object
retrieves the title for use. The result of this call is shown in Figure 13.2.

=

Figure 13.2 : A WebView control with
microbrowser features such as title display

Adding Browser Chrome with WebChromeClient :

You can use the WebChromeClient class in a similar way to the
WebViewClient. However, WebChromeClient is specialized for the sorts of items
that will be drawn outside the region in which the web content is drawn,
typically known as browser chrome. The WebChromeClient class also includes
callbacks for certain JavaScript calls, such as onJsBeforeUnload(), to confirm
navigation away from a page. A valid WebChromeClient object can be tied
to a WebView using the setWebChromeClient() method.

The following code demonstrates using WebView features to enable
interactivity with the user. An EditText and a Button control are added below
the WebView control, and a Button handler is implemented as follows :

Button go = (Button) findViewById(R.id.go button);
go.setOnClickListener (new View.OnClickListener () {
public void onClick (View v) {

wv.loadUrl (et.getText () .toString());

}

b)

Calling the loadUrl() method again, as shown, is all that is needed to
cause the WebView control to download another HTML page for display, as
shown in Figure 13.3. From here, you can build a generic web browser in
to any application, but you can apply restrictions so that the user is restricted
to browsing relevant materials.

Using Android Web APIs
& Telephony APIs

209

Mobile Application

210

Development
(Using Android)

- - —
plfandraldbonk blogipat.cam H 5
1

Figure 13.3 : WebView with EditText allowing entry of arbitrary URLs.

Using WebChromeClient can help add some typical chrome on the screen.
For instance, you can use it to listen for changes to the title of the page, various
JavaScript dialogs that might be requested, and even for developer—oriented
pieces, such as the console messages.

WebChromeClient webChrome = new WebChromeClient () {

@Override

public void onReceivedTitle

(WebView view, String title) {

Log.v (DEBUG TAG, "Got new title");

super.onReceivedTitle (view, title);

pageTitle.setText (title);

}

bi

wv.setWebChromeClient (webChrome) ;

Here the default WebChromeClient is overridden to receive changes to
the title of the page. This title of the web page is then set to a TextView visible
on the screen. Whether you use WebView to display the main user interface
of your application or use it sparingly to draw such things as help pages, there
are circumstances where it might be the ideal control for the job to save coding
time, especially when compared to a custom screen design. Leveraging the
power of the open source engine, WebKit, WebView can provide a powerful,
standards—based HTML viewer for applications. Support for WebKit is widespread
because it is used in various desktop browsers, including Apple Safari and
Google Chrome, a variety of mobile browsers, including those on the Apple

108, Nokia, Palm WebOS, and BlackBerry handsets, and various other platforms,
such as Adobe AIR.

13.3 Building Web Extensions Using WebKit :

All HTML rendering on the Android platform is done using the WebKit
rendering engine. The android.webkit package provides a number of APIs for

browsing the Internet using the powerful WebView control. You should be aware
of the WebKit interfaces and classes available, as you are likely to need them
to enhance the WebView user experience. These are not classes and interfaces
to the Browser app (although you can interact with the Browser data using
contact providers). Instead, these are the classes and interfaces that you must
use to control the browsing abilities of WebView controls you implement in
your applications.

13.3.1 Browsing the WebKit APIs :

Some of the most helpful classes of the android.webkit package are

. The CacheManager class gives you some control over cache items of
a WebView.
. The ConsoleMessage class can be used to retrieve JavaScript console

output from a WebView.

. The CookieManager class is used to set and retrieve user cookies for
a WebView.

. The URLUtl class is handy for validating web addresses of different
types.

. The WebBackForwardList and WebHistoryltem classes can be used to
inspect the web history of the WebView.

Now let's take a quick look at how you might use some of these classes
to enhance a WebView.

13.3.2 Extending Web Application Functionality to Android :

Let's take some of the WebKit features we have discussed so far in this
chapter and work through an example. It is fairly common for mobile developers
to design their applications as web applications in order to reach users across
a variety of platforms. This minimizes the amount of platform—specific code
to develop and maintain. However, on its own, a web application cannot call
into native platform code and take advantage of the features that native apps
(such as those written in Java for the Android platform) can, such as using
a built-in camera or accessing some other underlying Android feature. Developers
can enhance web applications by designing a lightweight shell application in
Java and using a WebView control as a portal to the web application content.
Two—way communication between the web application and the native Java
application is possible through scripting languages such as JavaScript.

Let's create a simple Android application that illustrates communication
between web content and native Android code. This example requires that you
understand JavaScript.

To create this application, take the following steps :
L. Create a new Android application.

2. Create a layout with a WebView control called html viewer and a Button
control called call js. Set the onClick attribute of the Button control to
a method called setHTMLText.

3. In the onCreate() method of your application activity, retrieve the WebView
control using the findViewByld() method.

4. Enable JavaScript within the WebView by retrieving its WebSettings and
calling the setJavaScriptEnabled() method.

Using Android Web APIs
& Telephony APIs

211

Mobile Application 5. Create a WebChromeClient object and implement its onConsoleMessage()
Development method in order to monitor the JavaScript console messages.

Usi Android
(Using Android) 6. Add the WebChromeClient object to the WebView using the
setWebChromeClient() method.

7. Allow the JavaScript interface to control your application by calling the
addJavascriptinterface() method of the WebView control. You will need
to define the functionality that you want the JavaScript interface to be
able to control and within what namespace the calls will be available.
In this case, we allow the JavaScript to initiate Toast messages.

8. Load your content into the WebView control using one of the standard
methods, such as the loadUrl() method. In this case, we load an HTML
asset we defined within the application package.

If you followed these steps, you should end up with your activity's
onCreate() method looking something like this :

@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView (R.layout.main) ;

final WebView wv = (WebView) findViewById(R.id.html
viewer) ;

WebSettings settings = wv.getSettings();
settings.setJavaScriptEnabled (true);
WebChromeClient webChrome = new WebChromeClient () {
@Override

public boolean onConsoleMessage (ConsoleMessage
consoleMessage) {

Log.v (DEBUG TAG, consoleMessage.lineNumber ()

+ ": " + consoleMessage.message ())

return true;

}

i

wv.setWebChromeClient (webChrome) ;

wv.addJavascriptInterface (new JavaScriptExtensions (),
"jse");

wv.loadUrl ("file:///android asset/sample.html");

}

A custom WebChromeClient class is set so that any JavaScript console.log
messages go out to LogCat output, using a custom debug tag as usual to enable
easy tracking of log output specific to the application. Next, a new JavaScript
interface is defined with the namespace called jse—the namespace is up to you.
To call from JavaScript to this Java class, the JavaScript calls must all start
with namespace jse., followed by the appropriate exposed method—for instance,
jse.javaMethod().

212

You can define the JavaScriptExtensions class as a subclass within the
activity as a subclass with a single method that can trigger Android Toast
messages :

class JavaScriptExtensions {
public static final int TOAST LONG = Toast.LENGTH LONG;

public static final int TOAST SHORT = Toast.LENGTH
SHORT;

public void toast (String message, int length) {

Toast.makeText (SimpleWebExtension.this, message,
length) .show () ;

}
}

The JavaScript code has access to everything in the JavaScriptExtensions
class, including the member variables as well as the methods. Return values
work as expected from the methods, too.

Now switch your attention to defining the web page to load in the
WebView control.

For this example, simply create a file called sample.html in the /assets
directory of the application.

The contents of the sample.html file are shown here :
<html>

<head>

<script type="text/javascript">
function doToast () {

Jse.toast ("'"+document.getElementById('form
text') .value +

"' —-From Java!", Jjse.TOAST LONG) ;
}

function doConsoleLog () {
console.log("Console logging.");
}

function doAlert () {

alert ("This is an alert.");

}

function doSetFormText (update) {
document.getElementById (' form text') .value =update;
}

</script>

</head>

<body>

<h2>This is a test.</h2>

Using Android Web APIs
& Telephony APIs

213

Mobile Application

214

Development
(Using Android)

<input type="text" id="form text" value="Enter
something here..." />

<input type="button" value="Toast" onclick="doToast () ;
" />

<input type="button" wvalue="Log" onclick=
"doConsolelLog () ;" />

<input type="button" wvalue="Alert" onclick=
"doAlert () ;" />

</body>
</html>

The sample.html file defines four JavaScript functions and displays the

form shown within the WebView :

The doToast() function calls into the Android application using the jse
object defined earlier with the call to the addJavaScriptinterface() method.
The addJavaScriptInterface() method, for all practical intents and purposes,
can be treated literally as the JavaScriptExtensions class as if that class
had been written in JavaScript. If the doToast() function had returned
a value, we could assign it to a variable here.

The doConsoleLog() function writes into the JavaScript console log,
which is picked up by the onConsoleMessage() callback of the
WebChromeClient.

The doAlert() function illustrates how alerts work within the WebView
control by launching a dialog. If you want to override what the alert
looks like, you can override the WebChromeClient.onJSAlert() method.

The doSetFormText() function illustrates how native Java code can
communicate back through the JavaScript interface and provide data to
the web application. Finally, to demonstrate making a call from Java back
to JavaScript, you need to define the click handler for the Button control
within your Activity class. Here, the onClick handler, called setHTMLText(),
executes some JavaScript on the currently loaded page by calling a
JavaScript function called doSetFormText(), which we defined earlier in
the web page.

Here is an implementation of the setHTMLText() method :
public void setHTMLText (View view) {
WebView wv = (WebView) findViewById(R.id.html viewer);

wv.loadUrl ("javascript:doSetFormText ('Java->JS
call');");

}

This method of making a call to the JavaScript on the currently loaded

page does not allow for return values. There are ways, however, to structure
your design to allow checking of results, generally by treating the call as
asynchronous and implementing another method for determining the response.

13.4 Using Android Telephony APIs :

Although the Android platform has been designed to run on almost any

type of device, the Android devices available on the market are primarily

phones. Applications can take advantage of this fact by integrating phone
features into their feature set. This chapter introduces you to the telephony—
related APIs available within the Android SDK.

13.4.1 Working with Telephony Utilities :

The Android SDK provides a number of useful utilities for applications
to integrate phone features available on the device. Generally speaking, developers
should consider an Android device first and foremost as a phone. Although
these devices might also run applications, phone operations generally take
precedence. Your application should not interrupt a phone conversation, for
example. To avoid this kind of behavior, your application should know something
about what the user is doing, so that it can react differently. For instance, an
application might query the state of the phone and determine that the user is
talking on the phone and then choose to vibrate instead of play an alarm. In
other cases, applications might need to place a call or send a text message.
Phones typically support a Short Message Service (SMS), which is popular
for texting (text messaging). Enabling the capability to leverage this feature
from an application can enhance the appeal of the application and add features
that can't be easily replicated on a desktop environment. Because many Android
devices are phones, applications frequently deal with phone numbers and the
contacts database; some might want to access the phone dialer to place calls
or check phone status information. Adding telephony features to an application
enables a more integrated user experience and enhances the overall value of
the application to the users.

Gaining Permission to Access Phone State Information

Let's begin by looking at how to determine telephony state of the device,
including the ability to request the hook state of the phone, information of
the phone service, and utilities for handling and verifying phone numbers. The
TelephonyManager object within the android.telephony package is a great place
to start. Many of the method calls in this section require explicit permission
set with the Android application manifest file. The READ PHONE STATE
permission is required to retrieve information such as the call state, handset
phone number, and device identifiers or serial numbers. The
ACCESS COARSE LOCATION permission is required for cellular location
information.

The following block of XML is typically needed in your application's
AndroidManifest.xml file to access basic phone state information :

<uses-permission
android:name="android.permission.READ PHONE STATE"/>
Requesting Call State

You can use the TelephonyManager object to retrieve the state of the
phone and some information about the phone service itself, such as the phone
number of the handset.

You can request an instance of TelephonyManager using the
getSystemService() method, like this :

TelephonyManager telManager = (TelephonyManager)
getSystemService (Context.TELEPHONY SERVICE) ;

Using Android Web APIs
& Telephony APIs

215

Mobile Application

Development
(Using Android)

With a valid TelephonyManager instance, an application can now make

several queries.

One important method is getCallState().This method can determine the
voice call status of the handset. The following block of code shows how to

query for the call state and all the possible return values:

int callStatus = telManager.getCallState();

String callState = null;

switch (callStatus) {

case TelephonyManager.

callState = "Phone is

break;

case TelephonyManager.

callState = "Phone 1is

break;

case TelephonyManager.

callState = "Phone 1is

CALL STATE IDLE:
idle.";

CALL STATE OFFHOOK:

in use.";

CALL STATE RINGING:

ringing!";

break;
}
Log.i("telephony", callState);

The three call states can be simulated with the emulator through the
Dalvik Debug Monitor Service (DDMS) tool, which is discussed in detail in
Appendix B, "The Android DDMS Quick-Start Guide."

Querying for the call state can be useful in certain circumstances.
However, listening for changes in the call state can enable an application to
react appropriately to something the user might be doing. For instance, a game
might automatically pause and save state information when the phone rings
so that the user can safely answer the call. An application can register to listen
for changes in the call state by making a call to the listen() method of
TelephonyManager.

telManager.listen (new PhoneStatelListener () {
public void onCallStateChanged(

int state, String incomingNumber) {

String newState = getCallStateString(state);

if (state == TelephonyManager.CALL STATE RINGING) {
Log.1i("telephony", newState +

" number = " + incomingNumber) ;

} else {

Log.1i("telephony", newState);

}

}

}, PhoneStatelistener.LISTEN CALL STATE);

216

The listener is called, in this case, whenever the phone starts ringing,
the user makes a call, the user answers a call, or a call is disconnected. The
listener is also called right after it is assigned so an application can get the
initial state.

Another useful state of the phone is determining the state of the service.
This information can tell an application if the phone has coverage at all, if
it can only make emergency calls, or if the radio for phone calls is turned
off as it might be when in airplane mode. To do this, an application can add
the PhoneStateListener. LISTEN SERVICE STATE flag to the listener described
earlier and implement the onServiceStateChanged method, which receives an
instance of the ServiceState object. Alternatively, an application can check the
state by constructing a ServiceState object and querying it directly, as shown
here :

int serviceStatus = serviceState.getState();
String serviceStateString = null;

switch (serviceStatus) {

case ServiceState.STATE EMERGENCY ONLY:
serviceStateString = "Emergency calls only";
break;

case ServiceState.STATE IN SERVICE:
serviceStateString = "Normal service";
break;

case ServiceState.STATE OUT OF SERVICE:
serviceStateString = "No service available";
break;

case ServiceState.STATE POWER OFF:
serviceStateString = "Telephony radio is off";
break;

}

Log.1i("telephony", serviceStateString);

In addition, a status such as whether the handset is roaming can be
determined by a call to the getRoaming() method. A friendly and frugal
application can use this method to warn the user before performing any costly
roaming operations such as data transfers within the application.

Requesting Service Information

In addition to call and service state information, your application can
retrieve other information about the device. This information is less useful for
the typical application but can diagnose problems or provide specialized services
available only from certain provider networks.

The following code retrieves several pieces of service information :
String opName = telManager.getNetworkOperatorName () ;
Log.i("telephony", "operator name = " + opName) ;

String phoneNumber = telManager.getLinelNumber ();

Using Android Web APIs
& Telephony APIs

217

Mobile Application Log.1i("telephony", "phone number = " + phoneNumber) ;
Devel t
(Us::z ?I:Z::id) String providerName = telManager.getSimOperatorName () ;
Log.1i("telephony", "provider name =" + providerName) ;

The network operator name is the descriptive name of the current provider
that the handset connects to. This is typically the current tower operator. The
SIM operator name is typically the name of the provider that the user is
subscribed to for service. The phone number for this application programming
interface (API) is defined as the MSISDN, typically the directory number of
a GSM handset (that is, the number someone would dial to reach that particular
phone).

Monitoring Signal Strength and Data Connection Speed

Sometimes an application might want to alter its behavior based upon
the signal strength or service type of the device. For example, a high—bandwidth
application might alter stream quality or buffer size based on whether the device
has a low—speed connection (such as IXRTT or EDGE) or a high—speed
connection (such as EVDO or HSDPA).

TelephonyManager can be used to determine such information.

If your application needs to react to changes in telephony state, you can
use the listen() method of TelephonyManager and implement a PhoneStateListener
to receive changes in service, data connectivity, call state, signal strength, and
other phone state information.

Working with Phone Numbers

Applications that deal with telephony, or even just contacts, frequently
have to deal with the input, verification, and usage of phone numbers. The
Android SDK includes a set of helpful utility functions that simplify handling
of phone number strings. Applications can have phone numbers formatted based
on the current locale setting. For example, the following code uses the
formatNumber() method :

String formattedNumber =
PhoneNumberUtils. formatNumber ("9995551212") ;
Log.1i("telephony", formattedNumber)

The resulting output to the log would be the string 999-555-1212 in
my locale. Phone numbers can also be compared using a call to the
PhoneNumberUtils.compare() method. An application can also check to see if
a given phone number is an emergency phone number by calling
PhoneNumberUtils.isEmergencyNumber(), which enables your application to
warn users before they call an emergency number. This method is useful when
the source of the phone number data might be questionable.

The formatNumber() method can also take an Editable as a parameter
to format a number in place. The useful feature here is that you can assign
the PhoneNumberFormattingTextWatcher object to watch a TextView (or EditText
for user input) and format phone numbers as they are entered. The following
code demonstrates the ease of configuring an EditText to format phone numbers
that are entered :

218

EditText numberEntry = (EditText) Using Android Web APIs
. . . & Telephony APIs

findViewById (R.id.number entry);

numberkEntry.addTextChangedListener (

new PhoneNumberFormattingTextWatcher()):;

While the user is typing in a valid phone number, the number is formatted
in a way suitable for the current locale. Just the numbers for 19995551212
were entered on the EditText shown in Figure 13.4.

w ol 40 64z u

L1

Figure 13.4 : Screen showing formatting results after entering only digits.

13.5 Using SMS :

SMS usage has become ubiquitous in the last several years. Integrating
messaging services, even if only outbound, to an application can provide
familiar social functionality to the user. SMS functionality is provided to
applications through the android.telephony package.

Gaining Permission to Send and Receive SMS Messages

SMS functionality requires two different permissions, depending on if
the application sends or receives messages. The following XML, to be placed
with AndroidManifest.xml, shows the permissions needed for both actions :

<uses-permission
android:name="android.permission.SEND SMS" />
<uses-permission
android:name="android.permission.RECEIVE SMS" />
Sending an SMS

To send an SMS, an application first needs to get an instance of the
SmsManager. Unlike other system services, this is achieved by calling the static
method getDefault() of SmsManager :

final SmsManager sms = SmsManager.getDefault();

Now that the application has the SmsManager, sending SMS is as simple
as a single call :

219

Mobile Application sms.sendTextMessage (
(U]Z::zl?r:z::itd) "9995551212", null, "Hello!", null, null);
The application does not know if the actual sending of the SMS was
successful without providing a PendingIntent to receive the broadcast of this
information. The following code demonstrates configuring a PendingIntent to
listen for the status of the SMS :

Intent msgSent = new Intent ("ACTION MSG SENT");
final PendingIntent pendingMsgSent =
PendingIntent.getBroadcast (this, 0, msgSent, 0);
registerReceiver (new BroadcastReceiver () {
public void onReceive (Context context, Intent intent) {
int result = getResultCode();

if (result != Activity.RESULT OK) {
Log.e("telephony",

"SMS send failed code = " + result);
pendingMsgReceipt.cancel () ;

} else {

messageEntry.setText ("") ;

}

}

}, new IntentFilter ("ACTION MSG SENT"));

The Pendinglntent pendingMsgSent can be used with the call to the
sendTextMessage(). The code for the message-received receipt is similar but
is called when the sending handset receives acknowledgment from the network
that the destination handset received the message.

If we put all this together with the preceding phone number formatting
EditText, a new entry field for the message, and a button,we can create a simple
form for sending an SMS message. The code for the button handling looks
like the following :

Button sendSMS = (Button) findViewById(R.id.send sms);
sendSMS.setOnClickListener (new View.OnClickListener () {
public void onClick (View wv) {

String destination =
numberEntry.getText () .toString() ;

String message =

messagekEntry.getText () .toString() ;
sms.sendTextMessage (destination, null, message,
pendingMsgSent, pendingMsgReceipt):;
registerReceiver(...);

}

}

220

After this code is hooked in, the result should look something like Figure =~ Using Android Web APIs
13.5. Within this application, we used the emulator "phone number" trick (its & Telephony APIs
port number). This is a great way to test sending SMS messages without using
hardware or without incurring charges by the handset operator.

o M1l & 2:064m July 26, 2010 " o Ml & 207 Am
Android Cleat
&2 Message

Message sent from the Simple
Telephony app

st brom the Simiple Telephany app 204 AM

Figure 13.5 : Two emulators, one sending an SMS from
an application and one receiving an SMS.

A great way to extend this would be to set the sent receiver to modify
a graphic on the screen until the sent notification is received. Further, you
could use another graphic to indicate when the recipient has received the
message. Alternatively, you could use ProgressBar widgets track the progress
to the user.

Receiving an SMS

Applications can also receive SMS messages. To do so, your application
must register a BroadcastReceiver to listen for the Intent action associated with
receiving an SMS. An application listening to SMS in this way doesn't prevent
the message from getting to other applications.

Expanding on the previous example, the following code shows how any
incoming text message can be placed within a TextView on the screen :

final TextView receivedMessage =
(TextView) findViewById (
R.id.received message);
rcvIncoming = new BroadcastReceiver () {
public void onReceive (Context context, Intent intent) {
Log.1i("telephony", "SMS received");
Bundle data = intent.getExtras();
if (data !'= null) {
Object pdus|[] =
221

Mobile Application

222

Development
(Using Android)

(Object[]) data.get ("pdus");
String message = "New message:\n";
String sender = null;

for (Object pdu : pdus) {
SmsMessage part = SmsMessage.
createFromPdu ((byte[])pdu) ;
message += part.
getDisplayMessageBody () ;

if (sender == null) {

sender = part.
getDisplayOriginatingAddress() ;
}

}

receivedMessage.setText (
message + "\nFrom: "+sender);
numberEntry.setText (sender) ;

}

}

i

registerReceiver (rcvIincoming, new IntentFilter (
"android.provider.Telephony.SMS RECEIVED"));

This block of code is placed within the onCreate() method of the Activity.
First, the message Bundle is retrieved. In it, an array of Objects holds several
byte arrays that contain PDU data—the data format that is customarily used
by wireless messaging protocols.

Luckily, the Android SDK can decode these with a call to the static
SmsMessage.createFromPdu() utility method. From here, we can retrieve the
body of the SMS message by calling getDisplayMessageBody().

The message that comes in might be longer than the limitations for an
SMS. If it is, it will have been broken up in to a multipart message on the
sending side. To handle this,we loop through each of the received Object parts
and take the corresponding body from each, while only taking the sender address
from the first.

Next, the code updates the text string in the 7extView to show the user
the received message. The sender address is also updated so that the recipient
can respond with less typing.

Finally, we register the BroadcastReceiver with the system. The IntentFilter
used here, android.provider. Telephony.SMS RECEIVED, is a well-known but
undocumented IntentFilter used for this. As such, we have to use the string
literal for it.

13.6 Making and Receiving Phone Calls :

It might come as a surprise to the younger generation (they usually just
text), but phones are often still used for making and receiving phone calls.
Any application can be made to initiate calls and answer incoming calls;
however, these abilities should be used judiciously so as not to unnecessarily
disrupt the calling functionality of the user's device.

Making Phone Calls

You've seen how to find out if the handset is ringing. Now let's look
at how to enable your application to make phone calls as well.

Building on the previous example, which sent and received SMS messages,
we now walk through similar functionality that adds a call button to the screen
to call the phone number instead of messaging it.

The Android SDK enables phone numbers to be passed to the dialer in
two different ways. The first way is to launch the dialer with a phone number
already entered. The user then needs to press the Send button to actually initiate
the call. This method does not require any specific permissions. The second
way is to actually place the call. This method requires the
android.permission.CALL PHONE permission to be added to the application's
AndroidManifest.xml file.

Let's look at an example of how to enable an application to take input
in the form of a phone number and launch the Phone dialer after the user
presses a button, as shown in Figure 13.6.

Figure 3.6 : The user can enter a phone number in the EditText control
and press the Call button to initiate a phone call from within the application.

We extract the phone number the user entered in the EditText field (or
the most recently received SMS when continuing with the previous example).

The following code demonstrates how to launch the dialer after the user
presses the Call button :

Using Android Web APIs
& Telephony APIs

223

224

Mobile Application
Development
(Using Android)

Button call = (Button) findviewById(R.id.call button);
call.setOnClickListener (new View.OnClickListener () {
public void onClick (View v) {

Uri number = Uri.parse("tel:" +
numberEntry.getText () .toString ()) ;

Intent dial = new Intent(

Intent .ACTION DIAL, number);

startActivity(dial);

}

b);

First, the phone number is requested from the EditText and tel: is
prepended to it, making it a valid Uri for the Intent. Then, a new Intent is created
with Intent. ACTION_DIAL to launch in to the dialer with the number dialed
in already. You can also use Intent. ACTION VIEW, which functions the same.
Replacing it with Intent. ACTION_CALL, however, immediately calls the number
entered.This is generally not recommended; otherwise, calls might be made
by mistake. Finally, the startActivity() method is called to launch the dialer,
as shown in Figure 13.7

3554

Press Menu for call options,

Figure 13.7 : One emulator calling the other after the
Call button is pressed within the application.

<4

Receiving Phone Calls

Much like applications can receive and process incoming SMS messages,
an application can register to answer incoming phone calls. To enable this within
an application, you must implement a broadcast receiver to process intents with
the action Intent. ACTION ANSWER. Remember, too, that if you're not interested
in the call itself, but information about the incoming call, you might want to
consider using the CallLog.Calls content provider (android.provider.CallLog)
instead. You can use the CallLog.calls class to determine recent call information,
such as

. Who called

. When they called

. Whether it was an incoming or outgoing call
. Whether or not anyone answered

. The duration of the call

a Check Your Progress :

1. _ control uses the WebKit rendering engine to draw HTML
content on the screen.
(A) The WebView (B) WebKit
(C) Web (D) View

2. — class enables the application to listen for certain WebView
events.
(A) WebKit (B) WebViewClient
(C) The WebView (D) View

3. What is specialized for the sorts of items that will be drawn outside
the region in which the web content is drawn ?
(A) WebViewClient (B) The WebView
(C) WebChromeClient (D) WebKit

4. Which object is used to retrieve the state of the phone and some

information about the phone service itself ?

(A) ConnectionManager (B) SmsManager
(C) ContentManager (D) TelephonyManager
5. To send an SMS, an application first needs to get an instance of the
(A) SmsManager (B) ConnectionManager
(C) TelephonyManager (D) ConnectionManager

13.7 Let Us Sum Up :

In this unit, we discussed regarding to learn how to use Web API in
Android Application, to learn how to Design Layout with a WebView Control,
to understand how to apply WebKit API , to learn and create Flash Application
Using Android, to lean about Telephony API in Android Application, to understand
and create mobile application with calling a number and to understand and
create mobile application to send the message on number

13.8 Answers for Check Your Progress :
1. (O) 2. (A) 3. (O) 4. (D) 5. (A)
13.9 Glossary :
SDK : Software Development Kit
AVD : Android Virtual Device
DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

AW o=

Using Android Web APIs
& Telephony APIs

225

Mobile Application

226

Development
(Using Android)

13.10 Assignment :
What is the use of Web API in android ?

Explain basic classes and methods available in Web API.
How to call and send a SMS to particular number ?
Explain Android WebView control in details.

How to load content in WebView Control ?

Sk w b=

Explain basic classes and methods available in Telephony API.

13.11 Activities :

1. Identify the real-life application which use the web browser to access
the internet.

2. Identify the real-life application which use to call and send SMS to a
specified given number for call and SMS.

13.12 Case Study :

Create the real-life application which use the web browser to access the
internet.

Create the real-life application which use to call and send SMS to a
specified given number for call and SMS.

13.13 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

SELLING YOUR ANDROID
APPLICATION

14.0 Learning Objectives

14.1 Introduction

14.2 Choosing the Right Distribution Model
14.3 Packaging Your Application for Publication

14.3.1 Preparing Your Code to Package
14.3.2 Packing and Signing Your Application
14.4 Distributing Your Applications
14.4.1 Selling Your Application on the Android Market
14.4.2 Signing Up for a Developer Account on the Android Market
14.5 Let Us Sum Up
14.6 Answers for Check Your Progress
14.7 Glossary
14.8 Assignment
14.9 Activities
14.10 Case Study
14.11 Further Readings

14.0 Learning Objectives :

. To learn how to choose right distribution model
. To learn how to package Android application for Publication

. To understand how to distribute the Android Application

14.1 Introduction :

After you've developed an application, the next logical step is to publish
it so that other people can enjoy it. You might even want to make some money.
There are a variety of distribution opportunities available to Android application
developers. Many developers choose to sell their applications through mobile
marketplaces such as Google's Android Market. Others develop their own
distribution mechanisms—for example, they might sell their applications from
a website. Regardless, developers should consider which distribution options
they plan to use during the application design and development process, as
some distribution choices might require code changes or impose restrictions
on content.

14.2 Choosing the Right Distribution Model :

The application distribution methods you choose to employ depend on
your goals and target users. Some questions you should ask yourself are n
Is your application ready for prime time or are you considering a beta period
to iron out the kinks ?

227

Mobile Application . Are you trying to reach the broadest audience, or have you developed

Development a vertical market application ? Determine who your users are, which

(Using Android) devices they are using, and their preferred methods for seeking out and
downloading applications.

. How will you price your application ? Is it freeware or shareware ? Are
the payment models (single payment versus subscription model versus
ad—driven revenue) you require available on the distribution mechanisms
you want to leverage?

. Where do you plan to distribute ? Verify that any application markets
you plan to use are capable of distributing within those countries or
regions.

. Are you willing to share a portion of your profits ? Distribution mechanisms
such as the Android Market take a percentage of each sale in exchange
for hosting your application for distribution and collecting application
revenue on your behalf.

. Do you require complete control over the distribution process or are you
willing to work within the boundaries and requirements imposed by third—
party marketplaces? This might require compliance with further license
agreements and terms.

. If you plan to distribute yourself, how will you do so ? You might need
to develop more services to manage users, deploy applications and collect
payments. If so, how will you protect user data ? What trade laws must
you comply with ?

. Have you considered creating a free trial version of your application?
If the distribution system under consideration has a return policy, consider
the ramifications. You need to ensure that your application has safeguards
to minimize the number of users that buy your app, use it, and return
it for a full refund. For example, a game might include safeguards such
as a free trial version and a full-scale version with more game levels
than could possibly be completed within the refundable time period.

Now let's look at the steps you need to take to package and publish
your application.

14.3 Packaging Your Application for Publication :

There are several steps developers must take when preparing an Android
application for publication and distribution. Your application must also meet
several important requirements imposed by the marketplaces. The following
steps are required for publishing an application :

1. Prepare and perform a release candidate build of the application.

2. Verify that all requirements for marketplace are met, such as configuring
the Android manifest file properly. For example, make sure the application
name and version information is correct and the debuggable attribute is
set to false.

Package and digitally sign the application.
4. Test the packaged application release thoroughly.
5. Publish the application.

228

The preceding steps are required but not sufficient to guarantee a successful
deployment.

Developers should also
1. Thoroughly test the application on all target handsets.
2. Turn off debugging, including Log statements and any other logging.

3. Verify permissions, making sure to add ones for services used and remove
any that aren't used, regardless of whether they are enforced by the
handsets.

4. Test the final, signed version with all debugging and logging turned off.

Now, let's explore each of these steps in more detail, in the order they
might be performed.

14.3.1 Preparing Your Code to Package :

An application that has undergone a thorough testing cycle might need
changes made to it before it is ready for a production release. These changes
convert it from a debuggable, preproduction application into a release-ready
application.

Setting the Application Name and Icon

An Android application has default settings for the icon and label. The
icon appears in the application Launcher and can appear in various other
locations, including marketplaces. As such, an application is required to have
an icon. You should supply alternate icon drawable resources for various screen
resolutions. The label, or application name, is also displayed in similar locations
and defaults to the package name. You should choose a user—friendly name.

Versioning the Application

Next, proper versioning is required, especially if updates could occur
in the future. The version name is up to the developer. The version code, though,
is used internally by the Android system to determine if an application is an
update. You should increment the version code for each new update of an
application. The exact value doesn't matter, but it must be greater than the
previous version code. Versioning within the Android manifest file is discussed
in previous chapter.

Verifying the Target Platforms

Make sure your application sets the <uses—sdk> tag in the Android
manifest file correctly. This tag is used to specify the minimum and target
platform versions that the application can run on. This is perhaps the most
important setting after the application name and version information.

Configuring the Android Manifest for Market Filtering

If you plan to publish through the Android Market, you should read up
on how this distribution system uses certain tags within the Android manifest
file to filter applications available to users. Many of these tags, such as
<supports—screens>, <uses—configuration>, <uses—feature>, <uses—library>,
<uses—permission>, and <uses—sdk>, were discussed in previous chapter. Set
each of these settings carefully, as you don't want to accidentally put too many
restrictions on your application. Make sure you test your application thoroughly
after configuring these Android manifest file settings. For more information

Selling Your Android

Application

229

Mobile Application on how Android Market filters work, see http://developer.android.com/guide/
Development appendix/ market—filters.html.
(Using Android)
Preparing Your Application Package for the Android Market
The Android Market has strict requirements on application packages.
When you upload your application to the Android Market website, the package
is verified and any problems are communicated to you. Most often, problems
occur when you have not properly configured your Android manifest file.

The Android Market uses the android:versionName attribute of the
<manifest> tag within the Android manifest file to display version information
to users. It also uses the android:versionCode attribute internally to handle
application upgrades. The android:icon and android:label attributes must also
be present because both are used by the Android Market to display the
application name to the user with a visual icon.

Disabling Debugging and Logging

Next, you should turn off debugging and logging. Disabling debugging
involves removing the android:debuggable attribute from the <application> tag
of the AndroidManifest.xml file or setting it to false. You can turn off the
logging code within Java in a variety of different ways, from just commenting
it out to using a build system that can do this automatically.

Verifying Application Permissions

Finally, the permissions used by the application should be reviewed.
Include all permissions that the application requires, and remove any that are
not used. Users appreciate this.

14.3.2 Packing and Signing Your Application :

Now that the application is ready for publication, the file package—the
.apk file—needs to be prepared for release. The package manager of an Android
device will not install a package that has not been digitally signed. Throughout
the development process, the Android tools have accomplished this through
signing with a debug key. The debug key cannot be used for publishing an
application to the wider world. Instead, you need to use a true key to digitally
sign the application. You can use the private key to digitally sign the release
package files of your Android application, as well as any upgrades. This ensures
that the application (as a complete entity) is coming from you, the developer,
and not some other source (imposters!).

The Android Market requires that your application's digital signature
validity period end after October 22, 2033. This date might seem like a long
way off and, for mobile, it certainly is. However, because an application must
use the same key for upgrading and applications that want to work closely
together with special privileges and trust relationships must also be signed with
the same key, the key could be chained forward through many applications.
Thus, Google is mandating that the key be valid for the foreseeable future
so application updates and upgrades are performed smoothly for users. Although
self-signing is typical of Android applications, and a certificate authority is
not required, creating a suitable key and securing it properly is critical. The
digital signature for Android applications can impact certain functionality. The
expiry of the signature is verified at installation time, but after it's installed,
an application continues to function even if the signature has expired.

230

You can export and sign your Android package file from within Eclipse

using the Android Development plug—in, or you can use the command-line
tools. You can export and sign your Android package file from within Eclipse
by taking the following steps :

L.

10.

In Eclipse, right—click the appropriate application project and choose the
Export option.

Under the Export menu, expand the Android section and choose Export
Android Application.
Click the Next button.

Select the project to export (the one you right—clicked before is the
default).

On the keystore selection screen, choose the Create New Keystore option
and enter a file location (where you want to store the key) as well as
a password for managing the keystore. (If you already have a keystore,
choose browse to pick your keystore file, and then enter the correct
password.)

Click the Next button.

On the Key Creation screen, enter the details of the key, as shown in
Figure 14.1.

|.ﬂ- Fapor Ancr—at Afpieiey

iy Cromtion Ci

Figure 14.1 : Exporting and signing
an Android application in Eclipse.

Click the Next button.

On the Destination and Key/Certificate Checks screen, enter a destination
for the application package file.

Click the Finish button.

You have now created a fully signed and certified application package

file. The application package is ready for publication.

Testing the Release Version of Your Application Package

Now that you have configured your application for production, you should

perform a full final testing cycle paying special attention to subtle changes
to the installation process. An important part of this process is to verify that

Selling Your Android

Application

231

Mobile Application you have disabled all debugging features and logging has no negative impact
Development on the functionality and performance of the application.
(Using Android)
Certifying Your Android Application
If you're familiar with other mobile platforms, you might be familiar with
the many strict certification programs found on platforms, such as the TRUE
BREW or Symbian Signed programs. These programs exist to enforce a lower
bound on the quality of an application.

As of this writing, Android does not have any certification or testing
requirements. It is an open market with only a few content guidelines and rules
to follow. This does not mean, however, that certification won't be required
at some point or that certain distribution means won't require certification.

Typically, certification programs require rigorous and thorough testing,
certain usability conventions must be met, and various other constraints that
might be good common practice or operator—specific rules are enforced. The
best way to prepare for any certification program is to incorporate its requirements
into the design of your specific project.

Following best practices for Android development and developing efficient,
usable, dynamic, and robust applications always pay off in the end—whether
your application requires certification.

14.4 Distributing Your Applications :

Now that you've prepared your application for publication, it's time to
get your application out to users—for fun and profit. Unlike other mobile
platforms, most Android distribution mechanisms support free applications and
price plans.

14.4.1 Selling Your Application on the Android Market :

The Android Market is the primary mechanism for distributing Android
applications at this time. This is where your typical user purchases and downloads
applications. As of this writing, it's available to most, but not all, Android
devices. As such, we show you how to check your package for preparedness,
sign up for a developer account, and submit your application for sale on the
Android Market.

14.4.2 Signing Up for a Developer Account on the Android Market :

To publish applications through the Android Market, you must register
as a developer. This accomplishes two things. It verifies who you are to Google
and signs you up for a Google Checkout account, which is used for billing
of Android applications.

To sign up for an Android Market developer account, you need to follow
these steps :

1. Go to the Android Market sign—up website at http://market.android.com/
publish/ signup, as shown in Figure 14.2.

2. Sign in with the Google Account you want to use. (At this time, you
cannot change the associated Google Account, but you can change the
contact email addresses for applications independently.)

3. Enter your developer information, including your name, email address,
and website, as shown in Figure 14.3.

232

4. Confirm your registration payment (as of this writing, $25 USD). Note Selling Your Android
that Google Checkout is used for registration payment processing. Application

5. Signing up and paying to be an Android Developer also creates a
mandatory Google Checkout Merchant account for which you also need
to provide information. This account is used for payment processing
purposes.

6. Agree to link your credit card and account registration to the Android
Market Developer Distribution Agreement. The basic agreement (U.S.
version) is available for review at http://www.android.com/us/developer—
distribution—agreement.html.

Always print out the actual agreement you sign as part of the registration
process, in case it changes in the future.

BENREEN— _o —el

Figure 14.2 : The Android Market publisher sign—up page.

—

A

Figure 14.3 : The Android Market publisher profile page.

When you successfully complete these steps, you are presented with the
home screen of the Android Market, which also confirms that the Google
Checkout Merchant account was created.

233

Mobile Application Uploading Your Application to the Android Market
Development

(Using Android) Now that you have an account registered for publishing applications

through Android Market and a signed application package, you are ready to
upload it for publication. From the main page of the Android Market website
(http://market.android.com/publish), sign in with your developer account
information. After you are logged in, you see a webpage with your developer
account information, as shown in Figure 14.4.

e VTR

FRIVATE Bt

Figure 14.4 : Android Market developer application listings.

From this page, you can configure developer account settings, see your
payment transaction history, and manage your published applications. In order
to publish a new application, press the Upload Application button on this page.A
form is presented for uploading the application package (see Figure 14.5).

Let's look at some of the important fields you must enter on this form :
. The application package file (.apk)
. Promotional screenshots and graphics for the market listing
. The application title and description in several languages
. Application type and category

c A " 4

1] Paavity pTe L

=u

234 Figure 14.5 : Android Market application upload form.

. Application price—Free or Paid (this cannot be changed later)

. Copy protection information—Choosing this option might help prevent the
application from being copied from the device and distributed without
your knowledge or permission. This option is likely to change in the
near future, as Google adds a new licensing service.

. Locations to distribute to—Choose the countries where the application
should be published.

. Support contact information—This option defaults to the information you
provided for the developer account. You can change it on an app—by—
app basis, though, which allows for great support flexibility when you're
publishing multiple applications.

. Consent—You must click the checkboxes to agree to the terms of the
current (at the time you click) Android Content Guidelines, as well as
the export laws of the United States, regardless of your location or
nationality.

Publishing Your Application on the Android Market

Finally, you are ready to press the Publish button. Your application
appears in the Android Market almost immediately. After publication, you can
see statistics including ratings, reviews, downloads, and active installs in the
Your Android Market Listings section of the main page on your developer
account. These statistics aren't updated as frequently as the publish action is,
and you can't see review details directly from the listing. Clicking on the
application listing enables you to edit the various fields.

Understanding the Android Market Application Return Policy

Although it is a matter of no small controversy, the Android Market has
a 24-hour refund policy on applications. That is to say, a user can use an
application for 24 hours and then return it for a full refund. As a developer,
this means that sales aren't final until after the first 24 hours. However, this
only applies to the first download and first return. If a particular user has already
returned your application and wants to "try it again," he or she must make
a final purchase—and can't return it a second time. Although this limits abuse,
you should still be aware that if your application has limited reuse appeal or
if all its value can come from just a few hours (or less) of use, you might
find that you have a return rate that's too high and need to pursue other methods
of monetization.

Upgrading Your Application on the Android Market

You can upgrade existing applications from the Market from the developer
account page. Simply upload a new version of the same application using the
Android manifest file tag, android:versionCode. When you publish it, users
receive an Update Available notification, prompting them to download the
upgrade.

Removing Your Application from the Android Market

You can also use the unpublish action to remove the application from
the Market from the developer account. The unpublish action is also immediate,
but the application entry on the Market application might be cached on handsets
that have viewed or downloaded the application.

Selling Your Android

Application

235

Mobile Application Using Other Developer Account Benefits
Development

(Using Android) In addition to managing your applications on the Android Market, an

additional benefit to have a registered Android developer account is the ability
to purchase development versions of Android handsets. These handsets are
useful for general development and testing but might not be suitable for final
testing on actual target handsets because some functionality might be limited,
and the firmware version might be different than that found on consumer
handsets.

Selling Your Application on Your Own Server

You can distribute Android applications directly from a website or server.
This method is most appropriate for vertical market applications, content
companies developing mobile marketplaces, and big brand websites wanting
to drive users to their branded Android applications. It can also be a good
way to get beta feedback from end users.

Although self—distribution is perhaps the easiest method of application
distribution, it might also be the hardest to market, protect, and make money.
The only requirement for self—distribution is to have a place to host the
application package file.

The downside of self—distribution is that end users must configure their
devices to allow packages from unknown sources. This setting is found under
the Applications section of the device Settings application, as shown in Figure
14.6. This option is not available on all consumer devices in the market. Most
notably, Android devices on U.S. carrier AT&T can only install applications
from the Android Market—no third—party sources are allowed.

Manage applications

agm and remows inatuling appications

Running services

rerily rumbng Servie

Development

221 gpbipny for appiicabion Sovolopingnt

Figure 14.6 : Settings application showing required check box for
downloading from unknown sources.

After that, the final step the user must make is to enter the URL of
the application package in to the web browser on the handset and download
the file (or click on a link to it). When downloaded, the standard Android
install process occurs, asking the user to confirm the permissions and, optionally,
confirm an update or replacement of an existing application if a version is
already installed.

236

0 Check Your Progress :

1. The Android Market uses the __ attribute of the <manifest> tag
within the Android manifest file to display version information to users.
(A) android:versionName (B) android:versionCode
(C) android:version (D) android:dibuggable

2. Which attribute is used to enable and disable the debugging option ?
(A) android:versionName (B) android:versionCode
(C) android:version (D) android:dibuggable

3. Give the name of the attribute which used to set while we upgrade the

android application in manifest file.

(A) android:versionName (B) android:versionCode
(C) android:version (D) android:dibuggable
4. On which of the following, developers can test the application, during

developing the android applications ?
(A) Third—party emulators

(B) Emulator included in Android SDK
(C) Physical android phone

(D) All of the above

5. As an android programmer, which version of Android should we use as
a minimum development target ?

(A) Version 1.2 or version 1.3 (B) Version 1.0 or version 1.1

(C) Version 1.6 or version 2.0 (D) Version 2.3 or version 3.0

14.5 Let Us Sum Up :

In this unit, we discussed regarding to learn how to choose right distribution
model, to learn how to package Android application for Publication and to
understand how to distribute the Android Application

14.6 Answers for Check Your Progress :
1. (A) 2. (D) 3. (B) 4. (D) 5. (O)
14.7 Glossary :
SDK : Software Development Kit
AVD : Android Virtual Device

DDMS : Dalvik Debug Monitor Server
ADB : Android Debug Bridge

B » -

14.8 Assignment :

L. Which steps are required for publishing an Android application ?
2. List out the steps to Package Your Application for Publication.

3. Explain in details the steps require to Upload Your Application to the
Android Market.

4. What is the role of AndroidManifest.xml file in Android Application ?

5. Discuss how to remove your application from Android Market.

Selling Your Android
Application

237

Mobile Application 14.9 Activities :
Development
(Using Android) 1. Try the application to package, publish and upload in Android Market

for selling.

14.10 Case Study :

Package, upload and publish the developed application in Android Market
to sell the application.

14.11 Further Reading :

Lauren Darcey and Shane Conder, "Android Wireless Application
Development", Pearson Education, 2nd ed. (2011).

238

BLOCK SUMMARY :

In this block we learnt regarding to understand the common API available
in Android, to implement Database Connection Application using SQLite
Database, to understand the network and web connection using implementation
of Network and Web APIs, to create the Android Application for Calling &
Message sending using Android Telephony API and to understand how to deploy
Android and sell the Android Application

239

Mobile Application

240

Development
(Using Android)

BLOCK ASSIGNMENT :

L.

W

o ® N n ok

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.
21.

Explain how to Create, Update, and Delete Database Records in SQLite
with example.

What is Cursor? Explain the use of Cursor in SQLite Database.

Explain the use of ContentValues to insert the record and Which four
arguments are taken by update() ?

What is SQLite ?

How to create SQLite database ?

How to create tables in SQLite database ?

What is Android networking ?

What are network libraries in Android ?

What is networking on phone ?

Explain in details Android Networking API with its supported methods.
What is the use of Web API in android ?

Explain basic classes and methods available in Web API.

How to call and send a SMS to particular number ?

Explain Android WebView control in details.

How to load content in WebView Control ?

Explain basic classes and methods available in Telephony API
Which steps are required for publishing an Android application ?
List out the steps to Package Your Application for Publication.

Explain in details the steps require to Upload Your Application to the
Android Market.

What is the role of AndroidManifest.xml file in Android Application ?

Discuss how to remove your application from Android Market.

W

Y ©® N ok

11.
12.
13.

14.
15.

Short Questions :

What is SQLite ?

How to create SQLite database ?

How to create tables in SQLite database ?

What is Android networking ?

What is networking on phone ?

How to load content in WebView Control ?

How to call and send a SMS to particular number ?

List out the steps to Package Your Application for Publication

Long Questions :

Explain how to Create, Update, and Delete Database Records in SQLite
with example.

What is Cursor ? Explain the use of Cursor in SQLite Database.

Explain the use of ContentValues to insert the record and Which four
arguments are taken by update() ?

Explain in details Android Networking API with its supported methods.
What is the use of Web API in android ?

Explain basic classes and methods available in Web API.

How to call and send a SMS to particular number ?

Explain basic classes and methods available in Web API.

Explain Android WebView control in details.

Explain basic classes and methods available in Telephony API
Which steps are required for publishing an Android application ?
List out the steps to Package Your Application for Publication.

Explain in details the steps require to Upload Your Application to the
Android Market.

What is the role of AndroidManifest.xml file in Android Application ?

Discuss how to remove your application from Android Market.

241

Mobile Application EX Enrolment No. : | |

Development
(Using Android) 1. How many hours did you need for studying the units ?
Unit No. 11 12 13 14
No. of Hrs.

2. Please give your reactions to the following items based on your reading
of the block :

Items Excellent Very Good Good Poor Give specific
example if any

Presentation Quality D D D I:'

Language and Style

lllustration used
(Diagram, tables etc)

Conceptual Clarity

Check your progress
Quest

O Ood 0o
O Ood oOao
O Oood oo
O Ood 0o

Feed back to CYP
Question

3. Any other Comments

242

@ BAOU
% Education
2 for All

DR.BABASAHEB AMBEDKAR

OPEN UNIVERSITY

‘Jyotirmay' Parisar,
Sarkhej-Gandhinagar Highway, Chharodi, Ahmedabad-382 481.

Website : www.baou.edu.in

	Page 1
	Title
	Block-1
	Unit-1
	Block-2
	Unit-2
	Block-3
	Unit-3
	Block-4
	Unit-4
	Page 2

