Object Oriented
Concepts and
I Programming

N

Dr. Babasaheb Ambedkar Open University

HDH
Typewritten Text

HDH
Typewritten Text
2023

HDH
Typewritten Text

HDH
Typewritten Text

HDH
Typewritten Text

Object Oriented Concepts and Programming

Expert Committee

Prof. (Dr.) Nilesh K. Modi
Professor and Director, School of Computer Science, (Chairman)
Dr. Babasaheb Ambedkar Open University, Ahmedabad
Prof. (Dr.) Ajay Parikh

Professor and Head, Department of Computer Science (Member)
Guijarat Vidyapith, Ahmedabad
Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application (Member)
Ganpat University, Kherva, Mahesana

M. T. Savaliya

Associate Professor and Head

Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad
Mr. Nilesh Bokhani

Assistant Professor, School of Computer Science, (Member)
Dr. Babasaheb Ambedkar Open University, Ahmedabad
Dr. Himanshu Patel

Assistant Professor, School of Computer Science, (Member Secretary)
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member)

Course Writer

Dr. Kajal Patel Associate Professor, Vishwakarma Government Engineering
College, Ahmedabad

Dr. Kamlesh Salunke Assistant Professor, Gujarat Vidyapith, Ahmedabad

Dr. Vinod Desai Assistant Professor, Gujarat Vidyapith, Ahmedabad

Content Reviewer and Editor

Prof. (Dr.) Nilesh K. Modi Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Copyright © Dr. Babasaheb Ambedkar Open University — Ahmedabad.
ISBN -

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad While all efforts
have been made by editors to check accuracy of the content, the representation of facts, principles,
descriptions and methods are that of the respective module writers. Views expressed in the publication
are that of the authors, and do not necessarily reflect the views of Dr. Babasaheb Ambedkar Open
University. All products and services mentioned are owned by their respective copyrights holders, and
mere presentation in the publication does not mean endorsement by Dr. Babasaheb Ambedkar Open
University. Every effort has been made to acknowledge and attribute all sources of information used in
preparation of this learning material. Readers are requested to kindly notify missing attribution, if any.

MCA-201

Dr. Babasaheb 0o
Ejﬁgo”,, Ambedkar Open
forAll " University

pERlEs

Object Oriented Concepts and Programming

Block-1: Basics of Classes, Objects and Methods in

Java
UNIT-1
Basics of Java 02
UNIT-2
Class and Object 29
UNIT-3
Inheritance and Interface 64
UNIT-4
More on class and object 100

Block-2: Packages, Interfaces and Exception
Handling

UNIT-1
Package 131

UNIT-2
Collection Framework 160

UNIT-3
Introduction of Exception 185

UNIT-4
Exception classes 214

HDH
Typewritten Text
MCA-201

HDH
Typewritten Text

Block-3: Multithreaded Programming

UNIT-1

Multithreaded Programming-I 242
UNIT-2

Multithreaded Programming-I| 261
Block-4: AWT and Event Handling

UNIT-1

AWT Controls 273
UNIT-2

Event Delegation Model 303
UNIT-3

Graphics Class 320
UNIT-4

I/O Flles in Java 349

Block-1
3asics of Classes, Objects and Methods
in Java

1

Unit 1: Basics of Java

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Implementation of O.O.P conceptin java
1.4. Java Environment

1.5. Java Features and support

1.6. Sample program & Compilation
1.7. Using block of code

1.8. Lexical Issues

1.9. Java Class Library

1.10. Data type

1.11. Operators

1.12. Control Structures

1.13. Letussumup

1.14. Check your Progress

1.15. Check your Progress: Possible Answers
1.16. Further Reading

1.17. Assignments

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e Understand the structure of java program
e Implement and run a “hello world” program.
e Differentiate among various types of tokens.

e Understand the basic data types, operators,arrays, libraries etc.

1.2 INTRODUCTION

Java is an object oriented programming language. Before starting with how to
do programming using java, we will briefly discuss about the object oriented

concepts and their implementation in java.

1.3 IMPLEMENTATION OF O.O.P CONCEPT IN JAVA

Object-oriented language uses a unique programming pattern compare to
structural programming like C. Object Oriented programming supports a
programming using the concepts like class/object, Inheritance, Encapsulation,
Abstraction, and Polymorphism. The structural programming is mainly based on
data. It uses various data structures and write program to perform action on those
data. However object oriented programming language like java uses concept of
encapsulation which combines data and program code together in object. Thus here
the data and program are combined. Also using abstraction concept, class attributes
or behavior can be made hidden from the other external objects. Polymorphism
concept use to represent an object in many forms. One task can be performed in
different ways. A common use of polymorphism is use when a parent class reference

is used to refer to a child class object in a program.

An object is an entity which has several attributes and behavior. A number of
objects sharing same attributes and behavior form a Class. For example: parrot,
peacock, hen, dove are objects of class birds. They share attributes like color of
eyes, size, shape of beak, their food habit etc. and behavior like laying eggs, flying,
constructing nest etc. An object/class may also relate with other objects/classes

through parent-child relationship which is called inheritance. A child object looks

similar to its parent but with some unique specialized attributes. Hence child inherits
the properties of parents. Parents have all common attributes and behavior of the
child class. And each child class has its additional attributes and behavior. For

example:

Birds can be parent with size, weight, eating habit and living place as common
attribute. The class Water and Land can be children of Birds class with based on
where they live. Birds live in water have unique attributes than birds live on land. The
pictorial representation of this example shown in figure 1.1.

Figure-1 Attributes of Class

1.4 JAVA ENVIRONMENT

Java Runtime Environment (JRE) consists of various software tools used for
java application development. It is also called Java Runtime. It has the Java Virtual
Machine (JVM), core classes and supporting libraries. To develop a java application
we must install Java Development Kit (JDK) in our computer. It includes JRE as its
part. It was developed by Sun Microsystems which is now owned by Oracle
Corporation. You can download latest version JDK from Website of Oracle
Corporation. The list of components which are part of JRE are deployment tools,
user interface toolkits, integration and other base libraries, language and utility base

library, and Java Virtual Machine.

1.5 JAVA FEATURES AND SUPPORT

We can develop four types of applications using Java. They are desktop
applications, web applications, enterprise application and mobile applications. These
applications can be developed using four types of java platforms such as Java SE,
Java EE, and Java ME. Java Standard Edition(Java SE) is a programming platform

for java application development. It supports core concept like implementation of

OOPs, String, Exception, Inner classes, Multithreading, 1/0O Stream, Networking,

AWT, Swing, Reflection, Collection, etc. Java Enterprise Edition(Java EE) mainly

used to develop web applications and enterprise application. It consists of libraries
for servlet, JSP, JDBC, Web Service, EJB etc. Java Micro Edition(Java ME) is used

to develop mobile applications using java.

>

Features of java

Java includes various features like simple, object oriented, distributed,

complied and interpreted, robust, secure, platform independent, multithreaded,

portable and dynamic.

Simple: Java is easy to learn compared to C++. For C/C++ programmer, it
will be easier to learn java as basic syntax is almost same.

Object oriented: Java syntax supports the concept of object oriented
programming.

Distributed: we can develop distributed application using java.

Compiled and interpreted: Java first compile the program (.java file) and
generate the bytecode (.class file). This byte code is then interpreted using
java interpreter.

Robust: Java develops robust applications using strong memory
management and error handling using garbage collector and exception
handling.

Platform independent: Platform means Operating system and hardware.
Java programs run in same way with any Operating system and hardware
combination.

Secure: Java is secure because it runs inside Java Virtual Machine(JVM)
which verifies code before execution. It also handles run time errors using
exception handling mechanism.

Multithreading: This feature enables a java program to perform multiple task
simultaneously.

Portable: Due to platform independent nature of java program, it is portable.

We can shift program to any environment without any side effect.

e Dynamic: As java supports dynamic loading of classes, it is dynamic. The
classes are loaded run time when needed. Java also executes functions from

its native languages like C and C++.

1.6 SAMPLE PROGRAM & COMPILATION

For running any java program we must install java(Java SE) in our computer.
For installing java we must download latest version of java using Oracle Corporation
website (https://www.oracle.com). After installation you can find java in java/jdk
folder. In the jdk folder you have java compiler(javac) and java interpreter(java),
which are used to run java program. For writing your first java application, you can
use any text editor and write following code in file. Save this file as “MyFirst.java”. if
you are creating class in this java file the class name should be same as file
name(here MyFirst). This is not compulsory if class is not declared as public. Then

compile this java code using java compiler,
/javac MyFirst.java

This command will create MyFirst.class file, which is a bytecode. To run this program

we have to use following command,

/java MyFirst

Hello World
This will run your program and print “HelloWorld” as an output.
class MyFirst
{
public static void main(String argsl])
{
System.out.printin(“Hello World”);
}
}

C:\Usershacer>javac MyFirst.java

C:\Users\acer>java MyFirst

ello World

C:\Usersh\acer»

Figure-2 Compiling and Running First Java Program

A java program must have at-least one class. Each class has a class name. In
above example MyFirst is a class name. After compilation of MyFirst.java file, we get
MyFirst.class. We have to use this class file to run the program.

MyFirst.class

MyFirst.java java
Interpreter

JVM

javac

compiler output

Figure-3 Flow of Program

The first line in the program defines a class. After that the second line has
curly bracket which shows staring of class definition. The last line of program must
be end of the curly bracket. Within the class we have defined a main() method.
Same as C/C++, when we run program the execution starts by calling main method.
The main method is declared public, which means this method can be called by code
outside this program. The method is static, which means method can be called using
class name without using any object. Void means main function return nothing. The
main function accepts array of string(args[]) as an argument, which is use to stored

command line arguments when we run the program.

In main method we can write our program instructions. In above example we
have used System.out.printin function to print a message(Hello World) on output
screen. This function is same as cout and printf of C and C++ respectively. Here
System is a class available in java.lang package. out is an object of PrintStream
class which is declared static in System class. println is a method of PrintStream

class which accepts a string and print it.

1.7 USING BLOCK OF CODE

/* comments
section */
// documentation

Package declaration

Import statements which use to specifies the external packages used in
program

class definitions

class with main() method

The above diagram shows the block structure of the program written in java.

The first part of the program is documentation section. We can write
explanation of the program or usage of program in this section. It can start with /*
and end with */(Multiline comment). We can write number of line in between them. If
you want to write only one line(single line comment), you can use // at the beginning

of the line. For example

[* this program is for adding n elements of an array. We have to provide n numbers

as a command line arguments */
/[This program adds n numbers passing as command line argument

In second part of the block, we can declare packages. This is used only if we
want to create a class in a specific package. In java, packages are used to create a

group of classes which are related.

In third part we have to import all the packages whose classes we are using in
our program. It is like include statement of C/C++. In java library functions are
available as a part of classes inside the package. if we want to use library function,

we have to import appropriate package.

After import statements, we can define classes. For this we have to use class
key word followed by class name. we can define class within curly braces as shown

in above example. A class can have variable names and methods defined in it.

The last section is the definition of class which has main method. It is the

method from where execution of our program starts.

1.8 LEXICAL ISSUES

While compiling java program statements, the words/characters in source
code are separated as tokens. Tokens are the atomic elements of java program. The
java compiler identified the tokens as white space or saperators, identifiers,

comments, keywords, operators, literals

During compilation, the characters in Java source code are reduced to a
series of tokens. The Java compiler recognizes five kinds of tokens: identifiers,
keywords, literals, operators, and miscellaneous separators. Comments and white
space such as blanks, tabs, line feeds, and are not tokens, but they often are used to
separate tokens.

> White space

White space such as blanks, tabs, line feeds, form feed, carriage return, new

line etc are not the tokens. They are used to separate tokens.
> Identifiers

In java, identifies are the names given to variables, methods, class, interfaces
and packages. In the above mentioned sample program (figure 1), MyFirst, main,

String, args, println etc. are identifiers. Rules for identifier in java are listed below:
1) An identifier must begin with letter, underscore or ‘$’
2) Identifiers can not start with digits
3) There is no limit for length of identifiers

4) A keyword (reserved word) can not be identifier. i.e. class is invalid

identifier.
5) Identifiers are case sensitive. i.e. Name and name are different
> Literals

Literals are the representation of data. They can be numeric, boolean,
character or string data. They are actually represents the value of the variables. For

example in program statement int x=25; x is a variable and 25 is numeric literal.
Following are the example of various literals

e Numeric literals : 12, 45, 0x345, 101, 12.4, 0.980, -2

e String literals: “hello”,”hello\nworld”
e Character literals: ‘a’,;’\n’,’\t’, ‘c’
e Boolean literals: true, false

> Comments

Comments are the text in program which is not compiled. They are used in a
program for documentation. In java, comment can be written in between /* and */ or
after //. We can write number of line in between /* and */. If you want to write only
one line (single line comment), you can use // at the beginning of the line. For

example

[* this program is for adding n elements of an array. We have to provide n numbers

as a command line arguments */
/[This program adds n numbers passing as command line argument
> Keywords

Keyword are the words reserved for java compiler. They have a pre-defined
meaning in java, hence they can not be used as identifiers. The following is the list

of java keywords.

abstract Continue for new switch

assert Default goto package synchronized
boolean Do if private this

break Double implements protected throw

byte Else import public throws

case Enum instanceof return transient
catch Extends int short try

char Final interface static void

class Finally long strictfp volatile
const” Float native super while

1.9 JAVA CLASS LIBRARY

Java Class Library(JCL) is a collection of libraries that java programs can call
at run time. Java is platform independent, so it does not use any Operating System
library. Java provides a standard class library which contains the functions
commonly available in all operating systems. All JCL implementations are available
in single jar file (rt.jar). This jar file is available with JDK/JRE installation and always

located in bootstrap classpath.

JCL can be used through classes provided in following packages. One must

use import statement for using them in program.

10

java.lang : for fundamental classes and interfaces related to the language
and runtime system.

I/O and networking access: They access the file system, and networks
through the java.io, java.nio and java.net packages.

Mathematics package: java.math provides mathematical expressions and
evaluation

Collections and Utilities : java.util for Regular expressions, Concurrency,
logging and Data compression.

GUIL: The java.awt package for basic GUI components/operations which
bound to the underlying operating system. It also contains the 2D Graphics
APIl. The package (javax.swing) is built on AWT and provides a platform-
independent GUI components/operations.

Applets: java.applet are the java class stored on web server and downloaded
over a network for execution on client machine.

Introspection and reflection: The package java.lang.Class use to represent
a class, but other classes such as Method and Constructor are available in

java.lang.reflect package.

1.10 DATA TYPES

Data types can specify the sizes and values stored in any variable. Data types

can be identified value type and reference type. The value type has a value stored in

a stack. The reference type stores a reference of data and stored in heap. In java

data types are classified into two categories

Primitive data types: byte, int, short, long, float, double, boolean and char

are primitive data types in java.

Non- primitive data types: class, array, String, Vector, LinkedList etc are non

primitive data types.

11

— byie
— boolean
—0 short
—— Primitive ——)
int
Mumeric
long
— float
Datatype
Char double
—— Siring
Mon-
primitive
— Array

Figure-4 Data Types in Java

e boolean: The boolean data type can be use to store two values: true or false.
This data types are used to defined a flag. It occupies 1 bit space in memory.

e byte: itis used to store 8 bit integer value. It can store value from -128 to 127
in it.

e short: it is used to store 16 bit number. It can store value from -32768 to
32767.

e int: it occupies 32 bit area in memory. It can store a number between -
2,147,483,648 and 2,147,483,647.

e long: it occupies 64 bit memory area. It can store a number between -264 to
(264)-1.

e char: It occupies 16bit and can store 0 to 65536 representing Unicode for
different characters.

o float: itis of 32 bit and store number in 1.4x10-45 to 3.4x1038 range.

e double: it occupies 64 bit memory and can store a number in 4.9x10-324 to
1.8x10308.

Example:

In this example we have used Scanner class to read value from keyboard.
Scanner class is available in java.util package which is used to obtain input of the
primitive types like int, double etc. and Strings from input stream. It is the easiest
way to read input in a Java program. To use this class we have to keep following

points in mind.

12

1) We need to create an object of Scanner class with System.in(for

standard input stream).

2) To read integer value we have to use nextint() function. We can also
use nextLong(), nextShort(), nextByte() etc. for String input we have to

use nextLine() function of Scanner class.

The following is the program to get roll number and name of the student through

keyboard and display them as output. The program is written in MyExal.java file.

import java.util.Scanner;
class MyExal
{
public static void main(String args[])
{
int rno=null;
String name=null;
Scanner x=new Scanner(System.in);
System.out.printin(“Enter name:”);
name=x.nextLine();
System.out.printin(“Enter number:”);
rno=x.nextint();
System.out.printin(“\nRoll number:”+rno);
System.out.printin(\Name:”+name);
}
}

The output of the above program is shown in Figure-5.

Manan
Enter roll number:
12

Roll numebr:12

Mame :Manan

Figure-5 Output of Program

13

1.11 OPERATORS

They are the characters/symbols used to manipulate data. Operators can

have one or more operand on which they perform a function. The operators in java

can be classified in to following categories:

> Arithmetic Operators

Operator

Use

+

Addition of two values Ex: 20+10 gives 30

Subtraction of two values Ex: 20-10 gives 10

Multiplication of two values Ex: 20*10 gives 200

Division of two values Ex: 20/10 gives 2

%

Reminder/Modulus gives reminder of division of

two numbers Ex: 21%?2 gives 1

++

Increment operator increase value by 1 **

Decrement operator decrease value by 1 **

** if we use ++/-- before operand, the increment/decrement is performed first

Table-1 Arithmetic Operators

before using the operand and if we use ++/-- after operand, the increment/decrement

is performed first after using the operand.

For Example ,

a=4;

b=++a; //[give 5inband 5in a;

a=4,

b=a--; /lgives4inband3ina

Example:

{

import java.util.Scanner;

public class MyExa2

public static void main(String args[])

14

>

int a,b;

Scanner sc=new Scanner(System.in);
System.out.printin("Enter a:");
a=sc.nextint();
System.out.printin("Enter b:");
b=sc.nextint();

System.out.printin("Addition:"+(a+b));
System.out.printin("Subtraction:"+(a-b));
System.out.printin("Multiplication:"+(a*b));
System.out.printin("Division:"+(a/b));
System.out.printin("Reminder:"+(a%b));
System.out.printin("Increment:"+(a++));

System.out.printin("Decrement:"+(a--));

C:%oopj»java MyExa2
Enter a:

Enter b:

18

Addition:38

Figure-6 Output of Program

Assignment Operators

operator. It assigns value to its operand for Ex: a=5;

This operators are used to assign value to the operand.= is assignment

+=, -=, *=, /= and %= are the shorthand operators. They perform operation as shown

below:

15

Operator | Use Meaning

= a=5; value 5 is assigned to a
+= a+=b5; it performs a=a+5.

-= a-=5; it performs a=a-5.

= a=b; it performs a=a*5.

/= a/=5; it performs a=a/5.

%= a%=>5; it performs a=a%>5.

Table-2 Assignment Operators
> Relational Operators

They are also called comparison operators. They are used to compare two

operands and returns Boolean value.

Operator Meaning Use
== equality a==Db
I= not equal al=b
> greater than a>b
< less than a= greater than or equal to a>=b
<= less than or equal to a<=b

Table-3 Relational Operators

They are used with if...else statement to build a condition. For example (a>b)

returns true if a is greater than b else it returns false.
> Logical Operators

&&, || and ! are the logical operators. They are used to check for two

conditions simultaneously.

Operator Meaning Usage

&& logical and | (a>b && a>c) check both condition

16

I logical or (a>b || a>c) check either of one condition

! logical not I(@>b) check not of condition

Table-4 Logical Operators

> Bitwise Operators

&, |, N, << and >> are bitwise operators. They are used to perform bitwise

operations.
Operator Meaning Usage
& AND a&b
| OR alb
A EXOR a™b
<< left shift a<> right shift a>>b

Table-5 Bitwise Operators

The AND, OR and EXOR operations are shown below in truth table.

A b a&b alb a™b
0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Table-6 Truth Table

The shift operator shift the value of operand specific number of time in left(<<) or
right(>>). The left operand specifies the value to be shifted and right operand

specifies number of shift.

> Miscellaneous Operators

e instance of operator

it is used to check whether an object is of a specific class type or not.

17

For example,

String s="hello”;
if(s instance of String)

{
System.out.printin(“s is of String type”);

}

e Ternary operator

?. is used as a ternary operator. It has three operands. It is shorter

replacement of if...else statement.
Syntax: var=(expression)?valuel:valuez;

Example: c=(a>b)?a:b; It means c is largest of a or b.

1.12 CONTROL STRUCTURES

1.12.1 CONDITIONAL STATEMENTS

Conditional statements are used to run block of java code based on a
condition. The java has various ways to execute conditional statements. They are
using if, if...else, if else ladder, nested if...else, and switch...case. All can be used

same as C/C++ syntax.

> if...else and its variations
The syntax of if...else is,
if(condition)

Code block
}

else

Code block
}

We can omit the braces ({...}), if the code block has only one program

statement.

18

if...else statements of java are identical to C/C++. We can use if without else.

For example to check whether a is even we can use following statements .

if(a%2==0)

System.out.printin(a+” is even”);

We can also use if...else together. For example to check whether a is even or

odd we can use following code.

if(2a%2==0)
System.out.printin(a+” is even”);
else

System.out.printin(a+” is odd”);

If we use if...else inside if or else block, it will be nested if... else. For example

to find out largest of three numbers a, b and c the following code can be used.

if(a>b)
{
if(a>c)
System.out.printin(“a is greatest”);
else
System.out.printin(“c is greatest”);

}

else
{

If(b>c)

System.out.printin(“a is greatest”);
else

System.out.printin(“c is greatest”);
}

We can also use if...else in ladder pattern. For example from current time if

, “‘good evening”

you want a java program to wish “good morning”, “good afternoon

or “good night”, we can use following if...else ladder.

19

if(current_time>5 && current_time<12)
System.out.printin(*good morning”);

else if(current_time>12 && current_time<5)
System.out.printin(“good afternoon”);

else if(current_time>5 && current_time<8)
System.out.printin(“good evening”);

else

System.out.printin(“good night”);

switch...case can be used to execute different code block for different value of

input. For example if based on input value of arithmetic operator we want to perform

the operation, we may use following code in java. In switch...case, each case should

end with break statement. And default case is match if input is not match with any

case.

switch(opr)

{

case ‘+:
System.out.printin(a+b);
break;

case ‘-’
System.out.printin(a-b);
break;

case *:
System.out.printin(a*b);
break;

case /’:
System.out.printin(a/b);
break;

case ‘%’
System.out.printin(a%b);
break;

default:

System.out.printin(“Invalid operation”);}

20

Examples

A program to which reads two integers and perform the arithmetic operation on them

based on user’s choice.

import java.util.Scanner;
public class Ex_if

{

public static void main(String args[])

{
int ch=0;
Scanner sc=new Scanner(System.in);
System.out.printin("Enter a:");
int a=sc.nextint();
System.out.printin("Enter b:");
int b=sc.nextInt();

System.out.printin("1. add");
System.out.printin("2. subtract™);
System.out.printin("3. multiply");
System.out.printin("4. divide");
System.out.printin("Enter your choice:");
ch=sc.nextInt();
if(ch!=5)
{
switch(ch)
{
case 1: System.out.printin(a+b); break;
case 2: System.out.printin(a-b); break;
case 3: System.out.printin(a*b); break;
case 4: System.out.printin(a/b); break;
default: System.out.printin("Invalid choice");

}

C:\ajava\oopj>javac Ex_if.java

C:\ajava\oopj>java Ex_if

. subtract

. multiply
i1, divide
iEnter your choice:
2
11

21

Figure-7 Output of Program

1.12.2 LOOPING

In a program when we want to execute a code block more than once, we
need to putitin aloop. In java loop can be a for loop, while loop and do...while loop.
The syntax of these loop are same as C/C++. The Java 5 introduce foreach loop. It
Is used to access the array or collection elements.

> For

The for loop executes a statement or block of statements repeatedly until a
condition is matched. For loops are normally used to execute the code block for

more than one number of times. The syntax of for loop is given below.

for (initialization; test; increment)

{
}

statements;

We can omit the braces if for loop has only one statement. As you can see in

the syntax for loop has three parts in bracket.

e initialization is used to initialize the counter used in loop to keep track on
number of iteration. -for example, int i=0 OR i=0.

e test must be the condition which must be true to enter in the loop. If the
condition is false the loop terminates. Test is used to control the iteration
count. For example i<10 terminates the loop when i is greater or equal to 10.

e increment is used to change value of variable used in initialization

For example the below for loop prints “Hello” 10 times with value of i each

time. The output will print HelloO, Hello1,.....Hello9.
for(int i=0;i<10;i++)
System.out.printin(“Hello”+i);
> while and do...while

while and do...while loops are also used to repeatedly execute a block of

Java code until a condition is true. The syntax of these loops are same as C/C++.

The only difference between while and do...while loop is the timing of

checking the condition. The while loop checks the condition before entering the loop.

22

If condition is true it enters. The do...while loop first enter into the loop and check

condition at the end.
They syntax of these loops are

while(test)

{

Statements;

}
do

{
Statements;
}while(test);

The example in above section can be implemented using while and do...while

as below.
int i=0;
while(i<10)
{

System.out.printin(“Hello”+i);
i++;

}

OR

int i=0;
do
{

System.out.printin(“Hello”+i);
i++;

}

while(i<10);

> for-each

This loop is not available in C/C++. The Java 5 introduce foreach loop. It is
used to access the array or collection elements. The purpose of this loop is to make

our program code bug free and more readable. The syntax of this loop is :

for(data_type variable : array | collection)

23

Statements;

}

For example, the following code will print content of array arr. The for-each
loop will execute 3 time. First time i will be 18, second time i will be 23 and then 45.

int[] arr={18,23,45};
for(int i:arr)
{

System.out.printin(i);

}

Example of loop:
A program to find factorial of a number.
Note: factorial of 5 is 1*2*3*4*5

import java.util. Scanner;
public class Ex_loop

{

public static void main(String args[])
{
long fact=1;
Scanner sc=new Scanner(System.in);
System.out.printin("Enter n:");
int n=sc.nextiInt();
/lusing for loop
for(int i=1;i<=n;i++)
fact*=i;
System.out.printin("for:Factorial of "+n+" is :"+fact);
/lusing while loop
fact=1;
inti=1;
while(i<=5)
{
fact*=i;
i++;
}

System.out.printin("while:Factorial of "+n+" is :"+fact);

24

§C: \ajava\oopj>javac Ex loop.java

§C: \ajavaloopj>java Ex_loop

fEnter n:
B
ifor:Factorial of 5 is :120

fwhile:Factorial of 5 is :120

Figure-8 Output of Program
> Use of continue and break in loops

In any loop, we can use break to terminate the loop and continue to skip

existing iteration and start new iteration of the loop.
We can further understand the break and continue using example.

for(inti=0; i< 5;i++)
{
if(i<3)
System.out.printin(“Hello” + i);
else
break;

}

In above loop the Hello will be printed for i = 0, 1 and 2. The loop terminates

as soon as (i >= 3) because we used break in else part. Here loop will be executed

three times only.
The use of continue explained in following code block.

for(inti=0; i< 5;i++)
{

if (1==3)

continue;

else

System.out.printin(“Hello” + i);

}

In above example, the loop will be executed 5 times. However hello will be
print only four times. Because when i==3 we use continue that means all the

statements in a loop after continue will not be executed and next iteration is stared

after increasing i.

> Labeled loops

25

Loop can also have a loop inside it. This is called nesting of loop. When we
are using nest loop the inside loop is called inner loop and outside loop is called
outer loop. When we use break in inner loop the inner loop will be terminated. But if
we want to terminate outer loop by using break statement in inner loop, we have to

used the concept of labeled loop and continue/break with label.
For example

i=0;
while(i < 3)
{i=0;
while(j < 3)
{
if(j==2)
break;
j++;
}
i++;
}
In above example, the inner while loop will be break when jis 2. Inner loop will
execute twice. Now if we want to break outer loop when in inner loop j is 2, we

should use following code

i =0;
outer: while(i< 3)
{ j=0;
while(j < 3)
{
if(j==2)
break outer;
jt+;
_ }
i++;
}

Here we have labeled outer loop with label outer: and with break w have to used

label of outer loop.

Similarly continue can also be used with labeled loop.
Example:

public class Exa2

{

public static void main(String args[])

{

first: for (inti = 0;1i < 3; i++)

26

{
for (intj=0; j< 3; j++)
{ifi==1)
continue first;
System.out.print("[i="+i+",j="+j+"]");

}

System.out.printin();
second: for (inti =0;i< 3; i++)

{
for (intj=0; j< 3; j++)
{ifi==1)

break second;
System.out.print("[i="+i+",j="+j+"");

IC:\ajava\oopj>javac Exa2.java

fC:\ajava\oopj>java Exa2
[i=95j=®] [1=0,]=1] [i
[1i=2,j-2

Figure-9 Output of Program

1.13 LET US SUM UP

Java compiler and interpreter using javac.exe and java.exe

Java virtual machine: runs a byte code

Features of java: simple, object oriented, distributed, complied and interpreted,
robust, secure, platform independent, multithreaded, portable and dynamic

Running sample java program: program file has .java extension and class name
should equal to file name.

Java program structure: various block of java programs

Java tokens: whitespaces, keywords, literals, identifiers/variables etc

Java class libraries: readily available class file which can be imported in program
Data types: byte, short, int, long, float, double, char, and boolean

Operators: arithmetic, assignment, logical, relational, and miscellaneous operators

Conditional statement: if...else, if...else ladder, nested if...else, switch...case

27

Loops: for loop, while loop do...while loop and for-each loop

Array: one dimensional and multi dimensional arrays

1.14CHECK YOUR PROGRESS

> True-False with reason.

Keyword can be identifier.
. =Iis assignment operator.

. ++ will increment operators.

. Conditional operator can be used using if...else.
. javac is compile and java is interpreter.

1.
2
3
4. For loop can not be terminated until condition is false.
5
6
7. While loop is entry control loop.

8

. ?: can be replaced with if...else.

» Which of the following is valid identifier?

1. abc 4. al2 7. XYZ
2. Xyx 5. a 23 8. 1plus
3. $abc 6. int 1

» MatchA and B.

A B
1)Variable a)‘hello”
2)int literal b)abc
3)String c)23
4)Boolean literal d)for
5)Keyword e)false

1.15 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

» True-False with reason.

1. Keyword can be identifier.

2. =is assignment operator.

. ++ will increment value of a variable.

. For loop can not be terminated until condition is false.

. javac is compiler and java is interpreter.

3
4
5. Conditional operator can be used using if...else.
6
7. While loop is entry control loop.

8

. ?: can be replaced with if...else.

» Which of the following is valid identifier?

9. abc 12.al12 15.XYZ
10. Xyx 13.a_23 16.1plus
11.%abc 14.int_1

Answer: abc, Xyz, al2, a_23, int_1 and XYZ are valid identifiers.

> Match A and B.

A B

1)Variable a)‘hello”

2)int literal b)abc

3)String)23

4)Boolean literal d)for

5)Keyword e)false
Answer:

1)-b, 2)-c,3)-a, 4 —-e,5—-d

1.16 FURTHER READING

1. “Java 2: The Complete Reference” by Herbert Schildt,
Publications.

2. “Effective Java” by Joshua Bloch, Pearson Education.

McGraw Hill

1.17 ASSIGNMENTS

» Write java program for following:
1) Print largest of two numbers.
2) Print largest of three numbers.

3) Check number is even or odd.

4) Print first five even numbers.

5) Print a number in reverse.

6) Add n numbers.

7) Print first 10 prime numbers.

8) Find factorial of a number n.

9) Print Fibonacci series upto n elements.
10)Print sum of first 10 odd numbers.

28

Unit 2: Class and Object

Unit Structure

2.1Learning Objectives

2.2

Arrays

2.3class, object & method

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

2.22

Defining class

Adding variables

Adding methods

Creating objects
Constructor

this keyword

Garbage collection
finalize() method
Accessing class members
Methods overloading
Static members

Nesting of methods
Vectors

Wrapper classes

Let us sum up

Check your Progress
Check your Progress: Possible Answers
Further Reading

Assignments

2

29

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e Understand the basics of array and its usage

e Understand and use the class and object

e Function of Garbage collector

e Use method overloading, nested function and static members of class

e Explain the usage of wrapper classes.

2.2 ARRAYS

2.2.1 ONE DIMENSIONAL ARRAY

An array is a container in which we can store multiple values of a single type.

For example, we can create an array that can that stores 10 values of int type.
The syntax for array declaration is:

datatype[] arrayname;
here datatype can be any primitive data type and arrayname can be an identifier.
For example

doublel[] s;
it means s is an array which stores double type values.

We cannot use array after declaration. We have to allocate memory to the

array.
The syntax for memory allocation of array is:
doublel[] s;
s=new double[10];
it means s can hold 10 values which are of double type.
We can also declare and allocate memory of an array simulataneously.

double[] s=new double[10];

30

The first element of array can be s[0]. The other elements are s[1], s[2],
....s[9].

We can also initialize the array while declaration. For example,
int[] age = {12, 4, 5, 2, 5};

For accessing an array we have to use integer index starting from 0 to n-1 (n
is length of array). In java, array length can be accessed using arrayname.length, as
the length is property of array in java.

For example

int[] age = {12, 4, 5, 2, 5};
For(int i=0; i<age.length; i++)

{
System.out.printin(ageli]);

}
2.2.2 MULTIDIMENSIONAL ARRAY

Multidimensional array is an array of an array. We can create multidimentional

array in java. For example.
int[][]x = new int[2][3];

This array x can store 2 rows of integer values and each row has three

integers in it. This is a two dimensional array and it can store 2*3=6 integers in it.
We can also create three dimensional in java.

int [J[I[] x= new int [2][3][4];
it represents 3 dimension and can store 2*3*4 integers in it.

Unlike C/C++, multidimensional arrays in java can have different number of

integer in each row.
For example
int[][] a ={
{1, 2, 3},
{4,5, 6, 9},
{7}, }

31

In this array a, first row has 3 values, second row has four values and third

row has only one value stored in it.

For accessing elements of multidimensional array multiple loops can be used.

For example:

class MultidimensionalArray {
public static void main(String|[] args) {
int[][] a ={
{1, -2, 3},
{-4, -5, 6, 9},
{7},
¥
for (int[] innerArray: a) {
for(int data: innerArray) {
System.out.printin(data);

Array Example 1

A program to sort 5 integers in ascending order.

public class Ex_aryl

{

public static void main(String args[])

{
int[]] a={23,45,67,8,3};
System.out.print("Before Sorting :");
for(int i=0;i<a.length;i++)

System.out.print(" "+a[i]);

for(int i=0;i<a.length;i++)

for(int j=i+1; j<a.length; j++)

32

{
if(afi>alil)
{

int t=ali];
alil=al[jl;
afj=t;

}

}

System.out.print("\nAfter Sorting :");
for(int i=0;i<a.length;i++)

System.out.print(" "+a[i]);

C:\ajavaloopj>javac Ex_aryl.java

C:\ajavaloopj>java Ex_aryl

Before Sorting : 23 45 67 8 3
After Sorting : 3 8 23 45 67

Figure-10 Output of Program

Array Example 2

A program to add two 3x3 matrix

public class Ex_ary2

{

public static void main(String argsl])

{

int[] a={{1,1,1},{2,2,2}.{3,3,3}};
int[][] b={{4,4,4},{5,5,5},{6,6,6}};
int[][] c=new int[3][3];

for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
clilil=ali]fl+blilLl;

33

System.out.print("Result matrix:\n");
for(int i=0;i<3;i++)

{

for(int j=0;j<3;j++)
System.out.print(c[i][j]+" ");
System.out.print("\n");

}

C:\ajavaloopj>javac Ex_ary2.java

C:\ajavaloopj>java Ex_ary2

Figure-11 Output of Program

2.3 CLASS, OBJECT & METHOD

An object is an entity which has several attributes and behavior. A number of
objects sharing same attributes and behavior form a Class. For example: parrot,
peacock, hen, dove are objects of class birds. They have attributes like colour,
eating habit, shape of beak etc and behavior like fly, build nest, lay eggs etc. in java
we can create a class using class keyword and declare various variables in it for its
attributes and create a function for its behavior. In java for creating a class, the class
keyword is used. The attributes of the class can be defined as member variable of

the class and behaviour of class can be methods of class in java.

2.4 DEFINING CLASS

In java, class can be defined using class keyword follow by class name as
shown in example. The definition of class is written within braces. The class name
should start with capital letter. If class name has multiple words first letter of each

word should be capital. For example: Student, Bird, StringBuffer etc.

34

class Student

{
}

2.5 ADDING VARIABLES

We can add variables in class by declaring them within class. for each
attribute of class we can create variable in it. For example class Student can have
attributes like rollNumber, name, course etc. The variable name in class should be in
lower case. If variable name has more than one word each word should start with
capital letter except first word. For example rolINumber. The student class can be

created as follows
class Student
int rollNumber;

String name;
String course;

}
2.6 ADDING METHODS

We can define methods in class. The syntax is return type then name of
method followed by arguments in bracket (). The function definition is written within
braces. For example in Student class we can create two functions getData for

assigning values to its variable and printData to print is variables.

class Student
{
int rollNumber;
String name;
1String course;
void getData(int r, Srting n, String c¢)

rolINumber=r;
name=n;
course=c;

}
Void printData()

System.out.printin(rollINumber+

}

+name+” “+course);

35

2.7 CREATING OBJECTS

instantiation of class. the new keyword is used for creating object of class.

For example,

ClassName x = new ClassName ();

In this example ClassName is the name of class created in your program.

Example

class Student

{

int rolINember;

String name;

String course;

void getData(int r, String n, String c)

{
rollNumber =r;
name = n;
course = c;

}

void printData()

{
System.out.printin(rollINumber);
System.out.printin(name);
System.out.printin(course);

}

}

class Exa_Cls

{

Public static void main(String args[])

{
Student s1 = new Student(); //object sl is created
S1.getData(1,”manan”,”civil”);
sl.printData();

}

After defining class, we can use it by creating its object. This is also called

36

C:\ajavaloopj>javac Exa Cls.java

C:\ajava\oopj>java Exa Cls

Figure-12 Output of Program

2.8 CONSTRUCTOR

In java, we can define Constrictors in a class. Constructor is a function which
has same name as class name. This function will be called when we create object
using new keyword. The constructors are mainly used to initialize the
attributes/variables of the class. Constructor can be default constructor or
parameterized constructor. In default constructor, nothing is passed as an argument.
However in parameterized constructor the parameter values must be passed as

arguments of constructor function.
For example:

class Student
{
int rollINember;
String name;
String course;
Student() /ldefault constructor

{

rolINumber=0;

name=""

course="";

}

Student(int r, String n, String c) //Iparameterized constructor
{

rollINumber=r;

name=n;

course=c;

void printData()
{

System.out.printin(roliINumber);
System.out.printin(name);
System.out.printin(course);

}

37

}

class Exa_Cls

{
Public static void main(String argsl])
{
Student s1 = new Student(1,’manan”,”civil”);
sl.printData();
}
}

C:\ajavaloopj>javac Exa Cls.java

C:\ajava\oopj>java Exa Cls
il
manan
civil

Figure-13 Output of Program

2.9 THIS KEYWORD

this is reference variable of java which points to the current object. It can also

be used to point instance of the current class as shown in following example.

class abc

{
int a,b,c;
abc(){a=0;b=0;c=0;}
abc(int a,int b, int ¢)

{
this.a = a;
this.b = b;
this.c =c;
}
}
class MyExa
{
public static void main(String argsl])
{
abc x = new abc(1,2,3);
}
}

In above example, in class abc, this.a, this.b and this.c are referring the

variable of class abc and a,b and c are the parameters of constructor.

38

2.10 GARBAGE COLLECTION

In C, when we allocate memory at runtime using malloc() function, at the end
of program we have to free them using free() function. Similarly in C++, when we

create memory for any object/variable using new, we should free them using delete.

In java when we are creating memory for reference variable/object,
programmer don’t care about destroying them. There is a special component in JVM
called garbage collector which will take care of deletion of all memory occupied by
java programs. It frees the heap memory occupied by reference variables which are

not in use. Java has an automatic garbage collection.

2.11 FINALIZE() METHOD

The finalize() is a method of java.lan.Object class which is called by garbage
collector for the which is identified to be destroyed. It is because there are no
reference to that object in program. In a class we can override (redefine) the finalize

method to perform the cleanup of system resources.

2.12 ACCESSING CLASS MEMBERS

To access the member variables and methods of the class, we should create
the object of the class using new keyword. And using the object name and
variable/method name separated by . we can access the member variable the

example is shown in section 2.7 and 2.6.

2.13 METHODS OVERLOADING

Method overloading is the feature of object oriented programming. It is used
to implement polymorphism. In java in a same class we can define more than one
method with same but different signature, this concept is called method overloading.

In method overloading same method can be used in different manners. For

example in class Add, we can define 3 addition methods shown below,

class Add

39

int addition(int a,int b){ return (a+b); }
float addition(float a,float b) { return (a+b); }
String addition(String a, String b) { return a+b; }

}

public class Sum

{
public static void main(String args[])
{
Sum s1 = new Sum();
System.out.printin(s1.addition(10,20));
System.out.printin(s1.addition(10.56,20.78));
System.out.printin(s1.addition(“abc”,”def”));

}

C:\ajavaloopj>javac Sum.java

C:\ajava\oopj>java Sum

30
31.340000000000003
abcdef

Figure-14 Output of Program

2.14 STATIC MEMBERS

2.14.1 STATIC MEMBER VARIABLES

The variables declared in class can be categorized into two: Class variable

and instance variable.

Instance variables are the variable of class which can be access using
object/instance of the class. The variable we have used in example of section are the
instance variable. For each object the instance variables are separately created in

memory.

Class variable are the variables which are shared by all objects of the class.
These variables are created in memory once for the class and shared by all objects
of the class. The class variables can be accessed using class name then . and the
static variable name. No need to create object of class to access the class variable.

For creating class variable static keyword is used before its declaration.

40

Example: In the following example static int n can be used to count number of object

created.

class Student

{
staticint n = 0;
int roliINumber = 0;
String name ="";
String course ="";
Student()//default constructor

{

rolINumber = 0;
name =",
course ="
Student.n++;

}

Student(int r, String n, String c) /lparameterized constructor

{

rolINumber =r;
name = n;
course =c;
Student.n++;

void printData()

System.out.printin(rollNumber);
System.out.printin(name);
System.out.printin(course);

}
}

class Exa_Cls

{

public static void main(String args[])

{

Student s1 = new Student(1,"manan”,"civil");
Student s2 = new Student();

System.out.printin("number of objects:"+Student.n);

}
}

41

C:\ajavaloopj>javac Exa Cls.java

C:\ajavaloopij>java Exa Cls
number of objects:2

Figure-15 Output of Program

2.14.2 STATIC MEMBER FUNCTION

We can also declare a static method in a class as a member function. For
calling static method we need to use class name instead of object name. Hence we
can call the static function without creating object of the class. Also only a static
method can be called inside the static function of the class.

Examplel
class A
{
static int sum(int a, int b)
{
intc=a+ b;
return c;
}
}
public class ExStaticl
{
public static void main(String args[])
{
System.out.printin(“ sum : “ + A.sum(10,30));
}
}
C:\ajava\oopj>java ExStaticl
sum : 40
Figure-16 Output of Program
Example 2
class A
{
static void sum(int a, int b)
{
intc=a+b;
printA(c); /I printA must be static if it is called inside static function sum.
}

static void printA(int x)

42

}

{

System.out.printin(“ sum : “ + x);

}

public class ExStatic2

{

public static void main(String argsl])

{
A.sum(10,30);

}

C:\ajava\oopj>java ExStatic2

sum : 40

Figure-17 Output of Program

2.15 NESTING OF METHODS

When a method of class calling the other method of the same class is called nesting

of methods. The following example uses nesting of method.

import java.util.Scanner;

class Circle

{
int radius;
void getRadius()
{

Scanner sc=new Scanner(System.in);
Radius = sc.nextInt();

double area()

{
getRadius();

return(3.14*radius*radius);

}

public class Exa

{

public static void main(String argsl])

{

Circle c1 = new Circle();
System.out.println (cl.area());

}

43

;C:\ajava\oopj>javac Exa.java

EC:\ajava\oopj>java Exa
U
1153.86

Figure-18 Output of Program

2.16 VECTORS

Vector class is available in java.util package. In java array can not be shrink or

expand once it is created. Vector is a dynamic array in java which can be shrink or

grow as per the requirement. The followings are some of the constructors of Vector

class.
[

10.

Vector() it creates a vector with capacity 10.

Vector(int size) it creates a vector with capacity specified by size.

Methods of Vector class

boolean add(Object obj): it appends obj at the end of the Vector. It returns
true if the obj is successfully added.

void add(int index, Object obj): it inserts an obj at location specified by
index.

boolean addAll(Collection c): it is used to add a Vector c in calling Vector. It
returns true if the Vector c is successfully added.

void addAll(int index, Collection c): it inserts a Vector c at location specified
by index.

void clear(): it removes all elements in Vector.

Object clone(): it creates a clone of this Vector.

boolean contains(Object obj): it checks whether the obj exists in Vector or
not.

void ensureCapacity(int minCapacity): it increases the capacity of vector
ensuring that minCapacity elements can be stored in Vector.

Object get(int index): it returns object stored at index position in Vector

int indexOf(Object obj): it search the first occurrence of the obj and returns

its position in Vector.

44

11. boolean isEmpty(): checks if the Vector has elements in it.

12. Int lastindexOf(Object obj): it search the last occurrence of the obj and
returns its position in Vector.

13. boolean remove(Object obj): it removes the first occurrence of obj in
Vector.

14. boolean equals(Object obj): it compares Vector with other Vector

15. Obiject firstElement(): it returns first element in the Vector.

16. Object lastElement(): it returns last element in the Vector.

17. Void trimToSize(): it trim the capacity of Vector to its size.

18. String toString(): it returns String form of Vector.

19. Object[] toArray(): it converts a Vector into array of Objects.

20. int size(): it returns number of elements stored in Vector.

21. int capacity(): it returns the capacity of vector.

22. void setSize (int nSize): it set the size of the Vector.

23. void setElementAt(Object obj, int index): it replace an object at index

position with obj

Example:
import java.util.Vector;
public class Exal

{

public static void main(String args[])

{

Vector vl=new Vector(20);

vl.add("A");

vl.add("C");

vl.add(1,"B");

System.out.printin("size: " + v1.size());
System.out.printin("capacity " + v1.capacity());

Vector v2=(Vector)vl.clone();

System.out.printin(" Vector v1 " + v1);

System.out.printin(" Vector v2 " + v2);

vl.addAll(v2);

System.out.printin(" Vector v1l.addAll(v2): " + v1);
System.out.printin(" Is B in v1:"+ v1.contains("B"));
System.out.printin(" element at 2 : " + v1.get(2));
System.out.printin(" POsition of A : " + v1.indexOf("A"));
System.out.printin(" Check for empty v1: " + v1.isEmpty());
System.out.printin(" Last index of A: " + v1.lastindexOf("A"));
vl.remove("C");

System.out.printin(" After removing Cin vl :" + vl);
System.out.printin("Compare vl and v2 : " + vl.equals(v2));

45

System.out.printin(" Fisrt element of v1 : " + v1.firstElement());
System.out.printin(" Last element of v1 : " + vl.lastElement());
System.out.printin(" v1 to String : " + v1.toString());

}

3
apacity 20
ector vl [A, B, (]
ector v2 [A, B, (]
ector vl.addAl1l(v2): [A, B, C, A, B, (C]
Is B in vl:true
element at 2 : C
POsition of A : ©

heck for empty vl1l: false
Last index of A: 3

After removing C in vl : [A, B, A, B, (C]
ompare vl and v2 : false

Fisrt element of vl : A

Last element of vl : C

vl to String : [A, B, A, B, (]

Figure-19 Output of Program

2.17 WRAPPER CLASSES

Wrapper classes are the classes whose objects wrap the primitive data types.
To treak primitive data type as a Class and Object, java provide a wrapper class for
each primitive data types. The following is the list of wrapper classes and their

corresponding primitive data types.

Primitive Data type | Wrapper Class
boolean Boolean

byte Byte

short Short

int Integer

long Long

float Float

double Double

char Character

Table-7 list of wrapper classes and their corresponding primitive data types

46

Advantages of wrapper class:

1). They convert a primitive data type into object when we need to pass them as
reference argument to the function. By default the primitive data types are

passed as value into the function.

Vector, we need to convert them into objects.

2). The Vector can store objects only. If we want to store primitive data values in

Autoboxing is an important concept related to wrapper classes. Autoboxing is

an automatic conversion of primitive data types into object of its wrapper class. The

reverse process of autoboxing is called unboxing.
conversion of object of wrapper class into its corresponding primitive data type.

For example
1) inta =>5;
Integer aa = a; //lautoboxing
2) Vector vl = new Vector();
vl.add(24); /lautoboxing 24 into Integer object
vl.add(89);
int n=v1.firstElemen(); //unboxing
Example
class Exa3
{

public static void main(String argsl])

{
//[Autoboxing
byte a = 10;

Byte aobj = new Byte(a);

int b = 289;
Integer bobj = new Integer(b);

float ¢ = 508.5f;
Float cobj = new Float(c);

double d = 90.3;
Double dobj = new Double(d);

char e='x’;
Character eobj=¢;

System.out.printin("Autoboxing");
System.out.printin(aobj);
System.out.printin(bobj);

Unboxing is automatical

47

System.out.printin(cobj);
System.out.printin(dobj);
System.out.printin(eobj);

//Unboxing

byte v = aobj;
int w = bobj;
float x = cobj;
double y = dobj;
char z = eobj;

System.out.printin("Unboxing");
System.out.printin(v);
System.out.printin(w);
System.out.printin(x);
System.out.printin(y);
System.out.printin(z);

}
}
:EajaUaHDDpj}jauag
Dpj}java Exad
Unboxing
18
Figure-20 Output of Program

> Methods of wrapper classes

The following are some of the methods of wrapper class.

e valueOf(String s)
All wrapper class except Character class have this function. It is a
static function hence called using class name. This function coverts a String
representation of any primitive value into its corresponding wrapper class

object.

Example:

48

Integer a=Integer.valueOf(“100”);
Byte b=Byte.valueOf(“8”);
Double c=Double.valueOf(“10.80");

valueOf(String s, int radix):

This is a static function of Byte, Short, Inetger and Long wrapper class.
This function converts a string into corresponding wrapper class object.
However the String stores the value represented in radix form. Radix 2 is for
binary, 8 is for octal, 16 is for hexadecimal and so on.
For example

Integer a=Integer.valueOf(“101”,2);//store 7 in a because 101 is binary of 7.

valueOf(primitive_data_type x):
All wrapper classes have this static function which converts a primitive

data value into its corresponding wrapper class object.

For example
Integer a = Integer.valueOf(100);
Double b = Double.valueOf(34.6);

Example

public class ExWrapl

{

public static void main(String args[])

{

/I example of valueOf

System.out.printin(" valueOf converts String into Wrapper class object");
Integer a=Integer.valueOf("100");

Byte b=Byte.valueOf("8");

Double c=Double.valueOf(*10.80");

System.out.printin("Integer: " + a);

System.out.printin("Byte: " + b);

System.out.printin("Double: " + ¢);

System.out.printin(" valueOf converts String with differnt base into Wrapper
class object");

Integer al=Integer.valueOf("1110",2);

System.out.printin("Integer: " + al);

System.out.printin(" valueOf converts primitive data type into Wrapper class
object");

49

Integer a2 = Integer.valueOf(100);

Double b2 = Double.valueOf(34.6);
System.out.printin("Integer: " + a2);
System.out.printin("Integer: " + b2);

}

C:\ajava\oopj>java ExWrapl
valueOf converts String into Wrapper class object
Integer: 100

: 10.8

converts String with differnt base into Wrapper class object
: 14
valueOf converts primitive data type into Wrapper class object
Integer: 100
Integer: 34.6

Figure-21 Output of Program

> Primitive data type conversion functions

public byte byteValue(), public short shortValue(), public int intValue(), public

long longValue(), public float floatValue(), public float doubleValue() are the non
static functions. They need object of Wrapper class to call. The numeric wrapper
classes like Byte, Short, Integer, Long, Float, and Double has these all methods
defined in them. These methods are used to return corresponding primitive data type
value.
For example,

Integer x = new Integer(189);

int y = x.intValue();

byte z = x.byteValue();

float a = x.floatValue();

Example:

public class ExWrap2
{

public static void main(String argsl])

{

System.out.printin(" xxxValue functions converts one numeric datatype into
other");
Integer x = new Integer(122);

50

int y = x.intValue();

byte z = x.byteValue();

float a = x.floatValue();
System.out.printin(" int :" +y);
System.out.printin(" byte :" + z);
System.out.printin(" float :" + a);

}

C:\ajavaloopj>java ExWrap2
xxxValue functions converts one numeric datatype into other
int :122

byte :122
float :122.0

Figure-22 Output of Program

> String to primitive data type conversion functions

public static int parselnt(String s), public static byte parseByte(String s), public
static short parseShort(String s), public static long parseLong(String s), public static
float parseFloat(String s), public static double parseDoublet(String s), public static
boolean parseBoolean(String s)

All the wrapper class except Character class has parse function. This function
is used to convert a String argument into corresponding primitive data type value.

For example:

int x = Integer.parselnt(“123”);
double y = Double.parseDouble(“123.56%);

boolean z = Boolean.parseBoolean(“false”);

The parse function has one more version which is,

public static int parselnt(String s, int radix) for Integer class.

Similarly the wrapper classes Byte, Short and Long have this function. It

converts a String s, which represents a number with base radix into primitive data

types.

For example,

int x=Integer.parselnt(“1111”,2); //this converts a binary 1111 into integer.

51

This function can be used to convert string representation of binary (radix 2),

octal(radix 8) or hexadecimal (radix 16) number into decimal value.

Example:

public class ExWrap3
{

public static void main(String argsl])

{

System.out.printin(" parse XXX functions converts String to primitive data type");

int X = Integer.parselnt("123");
double y = Double.parseDouble("123.56");
boolean z = Boolean.parseBoolean("false");

System.out.printin(" int :" + X);
System.out.printin(" double :" +y);
System.out.printin(" boolean :" + z);

System.out.printin(" parseXXX functions converts a String representation of a
number with base radix into primitive data types.");

int x1=Integer.parselnt("1111",2);

System.out.printin(" decimal of 1111 is int :" + x1);

}

C:\ajava\oopj>java ExWrap3

parseXXX functions converts String to primitive data type
int :123

double :123.56

boolean :false

parseXXX functions converts a String representation of a number with base ra
dix into primitive data types.

decimal of 1111 is int :15

Figure-23 Output of Program

> public String toString()

every wrapper class has this function. It is used to convert a wrapper class
object into String.
For example,
Double d=new Double(123.88);
String s=d.toString(); //stores “123.88” into s

> public static String toString(primitive p)

52

every wrapper class has this function. It is used to convert a primitive data
type value into String.
For example,

String s=Double.toString(123.89);

Example:

public class ExWrap4
{

public static void main(String args[])

{

System.out.println("non static toString functions converts wrapper object to String ");

Double d = new Double(123.88);
String s = d.toString();

System.out.printin(" String : " + S);

System.out.printin(" static toString functions converts primitive data type into String
ll);
String x1 = Double.toString(123.89);
System.out.printin(" String :" + x1);

}
}

C:\ajavaloopj>java ExWrap4
non static toString functions converts wrapper object to String

String : 123.88
static toString functions converts primitive data type into String
String :123.89

Figure-24 Output of Program

2.18 LET US SUM UP

Array: one dimensional and multi dimensional arrays

class: a non primitive data type which encapsulates variables and function in it.
object: an instance of class or variable of type class. The new keyword is used to
create object.

member variable: list of variables defined in class

member function: methods/functions defined within class

constructor: Itis a function of a class having same name as class name. It is called

to initialized object when it is created.

53

Garbage collection: it automatically frees the unnecessary memory area of the
program.

finalize(): this method will be called by garbage collector before destroying the
object.

method overloading:In a class we can write more than one method with same
name and different signature.

static variables:They are also the class variable. All objects of a class share the
static variables defined in the class. They can be accessed using class name.

static methods:They are the method of class which calls static method inside it.
They can also be called using class name.

vector:It is a dynamic array which can be grow and shrink run time as per
requirement. It is in java.util package.

wrapper classes:For each primitive data type there is a class in java which is called
wrapper class. The wrapper class wraps the primitive data value as an object and

can have various data conversion functions.

2.19 CHECK YOUR PROGRESS

» True-False with reason:

. Class and object are same.
. Static member function can be called without object.
We can enhance capacity of Vector at rum time.

. Constructor function can have any name.

. We can not call static function inside non static function.
. Instance variables are shared by all objects of the class

1
2
3
4
5. We can write only one constructor function for a class.
6
7
8. A[1] refer to the first element of the array

9

. Array can be initialized.

10.We can implement matrix using single dimensional array.

» Answer the followings:

1. List all wrapper class.

2. How can we create an object of wrapper class?

54

How can we create an array of 10 integers?

How can we create an object of a class?

Give example of method overloading.

How can we convert a string “102” into a number?
How can we find size of a vector object?

Compare class variable and instance variable

© 0o N o g bk~ w

Compare Vector and array.

10.Compare class and object.

» ldentify the class and its attributes and methods from following problem

statement.

1. In school software, they are storing information of each students and staff.
2. In library software, they are allowing issue and return of the book by library
members.

3. We want to design software for restaurant bill generation.

» Multiple choice questions:
1) What is output of the following code,

class Test {
inti;
}
class Main {
public static void main(String args[]) {
Testt = new Test();

System.out.printin(t.i);

}
}
(a) garbage value (b) O
(c) compilation error (d) run time error

2) What is output of the following code,

class Test {
inti;

}

55

class Main {
public static void main(String args[]) {
Test t;
System.out.printin(t.i);

}
}
(a) garbage value (b)O
(c) compilation error (d) run time error

3) The default value of a static integer variable of a class in Java is?
(@0 (b) 1

(c) Garbage value (d) Null (e) -1

4) What will be printed as the output of the following program?

public class testincr

{

public static void main(String argsl])

{

inti=0;

| =i++ + 1,

System.out.printin(“l =" +i);

}

}

(@1=0 (b)I=1
(€)1=2 d)yI=3

(e) Compile-time Error.

5) What is the stored in the object obj in following lines of code?
box obj;
a) Memory address of allocated memory of object
b) NULL
c) Any arbitrary pointer
d) Garbage

56

6) Which of these keywords is used to make a class?
a) class b) struct
C) int d) none of the mentioned

7) Which of these operators is used to allocate memory for an object?
a) malloc b) alloc
C) new d) give

8) What is the output of this program?

class box
{
int width;
int height;
int length;
}
class mainclass
{
public static void main(String args|[])
{
box obj = new box();
System.out.printin(obj);
}
}
a)o0
b) 1

¢) Runtime error

d) classname@hashcode in hexadecimal form

9) Which keyword is used by the method to refer to the object that invoked it?

a) import b) catch
c) abstract d) this
10) Which of the following is a method having same name as that of its class?
a) finalize b) delete
C) class d) constructor

57

11) Which operator is used by Java run time implementations to free the
memory of an object when it is no longer needed?
a) delete b) free
C) new d) none of the mentioned

12) Which function is used to perform some action when the object is to be

destroyed?
a) finalize() b) delete()
¢) main() d) none of the mentioned

13) What is the output of this program?
class box
{
int width;
int height;
int length;
int volume;
box()
{
width = 5;
height = 5;
length = 6;
}

void volume()

{

volume = width*height*length;

}

class constructor_output

{

public static void main(String args|[])

{

box obj = new box();
obj.volume();

System.out.printin(obj.volume);

58

}
a) 100 b) 150
c) 200 d) 250

14) Which of the following statements are incorrect?

a) default constructor is called at the time of object declaration

b) Constructor can be parameterized

c) finalize() method is called when a object goes out of scope and is no
longer needed

d) finalize() method must be declared protected

2.20 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

> True-False with reason:

o

SAREE S S A

False. Objects are the instance of class.

True.

True.

False. Constructor function must have name as class name.

False. We can write multiple constructor for a class with different argument
in each.

False. We can call static function inside non static function.

7. False. Class variables/static variables are shared by all objects of the

8.
9.

class
False. A[O] refer to the first element of the array

True.

10.False. We can implement matrix using two dimensional array

» Answer the followings:

1.

2.

Wrapper Classes:

Boolean, Byte, Short, Integer, Long, Float, Double, Character
To create an object of wrapper class:

Boolean a=true;

Boolean x=a;

59

3. To create an array of 10 integers :
int[] a=new int[10];
4. To create an object of a class:
Class_Name obj= new Class_Name();
5. Example of method overloading:
class Ex_Add
{
static int add(int a,int b){return a+b;}
static int add(int a,int b,int c){return a+b+c;}

}
class ExOverloading
{
public static void main(String[] args)
{
System.out.printin(Adder.add(11,11));
System.out.printin(Adder.add(11,11,11));
}
}

6. To convert a string “102” into a number:
int a= Integer.parselnt(“102”);

7. The size() method of Vector class in Java is used to get the size of the
Vector.

8. Class variable v/s Instance variable

Class variable Instance variable
They are static member They are non static member
variables of class variables of class
They are shared among all They are separately created
object of class for each object
To access class variable To access instance variable
class name is used. object name is used.

9. Vector v/s array.

60

Vector

Array

Vector is resizable array

The length of an Array is

fixed.

Vector is synchronized

Array is not synchronized.

Vector can store any type of

objects

Array can store same type of

objects

Vector is slow to access.

Array supports efficient
random access to the

members

10.Class v/s object.

Class

Object

It is a blueprint/structure of

object.

It is an instance of class

Class is a group of similar

entities

Object is a real world entity

Class is declared once

Object is created many times

as per requirement.

Class doesn't allocated

memory when it is created.

Object allocates memory

when it is created.

» ldentify the class and its attributes and methods from following problem

statement.

1. In school software, they are storing information of each students and staff.

Class name : Student

Attributes : enrollment number, name, course, address, phone number,

semester

Methods: enroll_course(int enr_no, String crs), print_data(), get_data()

61

Class name : Staff

Attributes : Employ ID, name, designation, address, phone number,

gualification

Methods: enroll_course(int enr_no, String crs), print_data(), get_data()

2. Inlibrary software, they are allowing issue and return of the book by library

members.

Pl ¢))

2«

Class name: Member

Attributes : Library ID, name, address, phone number

Methods: add_member(), searchMember(), printAllMembers(),
deleteMember()

Class name: Book

Attributes : bookID, title, author, publisher, price, qty

Methods: addBook(), searchBook(), printAliBooks(), deleteBook()
Class name: Book_transaction

Attributes: booklID, Library ID, date_issue, date_return, fine.
Methods : booklssue(), bookReturn()

3. We want to design software for restaurant bill generation.

-~ ® o 0o T p

Customer : custld, custName, custAddr, custPhone
Methods : addCust(), searchCust(), deleteCust()
Item: itemID, itemName, itemCategory, itemPrice
Methods : addltem(), searchltem(), deleteltem()

Bill : billiD, custID, itemID, qty, billDate, billAmount
Methods : billGeneration(), billPayment(), printBill()

» Multiple choice questions.

Db
2)c
3)a
4Hb

5) b 9)d
6) a 10) d
7)c 11) d
8) d 12) b

62

13)

2.21 FURTHER READING

1.

2.

“‘Java 2: The Complete Reference” by Herbert Schildt, McGraw Hill
Publications.

“Effective Java” by Joshua Bloch, Pearson Education.

2.22 ASSIGNMENTS

» Write java program for following:

1)

2)

3)
4)

5)

6)

7
8)

Unit 3: Inheritance and Interface

Create a class name meter which represents a distance in meter and
centimeter. Also create class name kilometer which represents distance in km
and meter. In both class write a function which converts one class to other.
Create a class name Doctor with properties and methods. The properties can
be name, phone number, qualification, specialization etc. The methods
include getting information of doctor and printing them.

Sort numbers in descending order.

Create a menu driven program for matrix operations like add, subtract, and
multiply.

Find maximum and minimum from the n numbers.

Create a class student with necessary properties, methods and constructor.
Overload a function name search in this class which allows us to search
student based on roll number, name and city.

To print transpose of matrix.

To implement pop and push operation of stack using array.

3

Unit Structure

63

3.1Learning Objectives

3.2

3.3

Inheritance

Subclass

3.4 Subclass constructor

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

Hierarchical inheritance
Overriding methods
Final variables

Final methods

Final classes

Abstract Class

Multiple inheritance
The Object Class

Let us sum up

Check your Progress
Check your Progress: Possible Answers
Further Reading
Assignments

Case Study

64

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e Understand the inheritance and its types

e Implementation of various types of inheritance in java.

e Use of final keyword with variables, function and class.

e Use of abstract class and abstract function to implement polymorphism.

e Use of function overriding and its implementation

e Understand Object class and its functions.

3.2 INHERITANCE

Using inheritance a class can inherit attributes and methods of the other

class. It is like a child inherits the features of parents. It helps us to reuse an already

available class, which is called reusability, an important feature of Object oriented

programming.

The class which inherits the properties and method of existing class is called

subclass or child class and the existing class is called super class or parent class.

The inheritance can be of various types. They are single inheritance, multiple

inheritance, multilevel inheritance, hierarchical inheritance and hybrid inheritance.

CLASS A

y

CLASS B

Single inheritance multiple inheritance hierarchical inheritance

CLASS A

RN

CLASS B

CLASS D

Hybrid inheritance

CLASS A

CLASS C

Figure-25 Pictorially view of type of inheritance

CLASS C

CLASS B

RN

CLASS A

CLASS B

CLASS A

y

CLASS B

y

CLASS C

Multilevel inheritance

CLASS C

65

e Single inheritance : Class B is inherited from Class A.

e Multiple inheritance : Class C is inherited from both Class A and Class B.

e Hierarchical inheritance: Class B and Class C are inherited from a single
Class A.

e Multilevel inheritance: Class B inherited from Class A and Class C is
inherited from Class B. here class C has properties and methods of Class A
also through Class B.

e Hybrid inheritance: it is combination of two inheritance that are hierarchical
and multiple inheritance

In java we can implement single inheritance, hierarchical inheritance and
multilevel inheritance using class.For implementation of multiple and hybrid

inheritance in java interfaces are used.

3.3 SUB CLASS

In java for implementing inheritance extends keyword is used. The syntax is

as below,

class X

{
}

class Y extends X

{
}

Here X is a super class or parent class and Y is a sub class or child class. Class Y

inherits class X.
Example,

class A
L
int a;
A(){a=0;}
A(intx){a=x;}
void printA() { S