Object Oriented
Technology

i

Dr. Babasaheb Ambedkar Open University

Object Oriented Technology

Course Writer
Mrs. Shital Patel
Dr. Ajay Patel

Dr. Mantavy Gajjar

Content Reviewer and Editor

Prof. (Dr.) Narayan Joshi

Language Editing

Prof. (Dr.) XxXxxxx

June 2019
© Dr. Babasaheb Ambedkar Open University

[SBN-XXX-XX-XXX-XXXX-X
All rights reserved. No part of this work may be reproduced in any form by mimeograph or
any other means, without written permission from the Dr. Babasaheb Ambedkar Open

University.

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad

Forward (Vice-Chancellor Message)

BAOU Dr. Babasaheb MCA-303

taucation AMbedkar Open

Mo A University

pERlEs

Object Oriented Technology

Block-1: Java Swings

UNIT-1
Fundamental of Swing 02
UNIT-2
Swing Components and Event handling 19
UNIT-3
Swing Menu Component 59
UNIT-4
Swing Tree and Table Component 70

Block-2: JDBC(JavaDatabaseConnectivity)

UNIT-1
JDBC Introduction 81

UNIT-2
JDBC Queries 88

UNIT-3
Exception Handling in JDBC 94

UNIT-4
JDBC Driver 98

Block-3: JavaNetworkProgramming

UNIT-1
Networking Basics & Socket Programming 118
UNIT-2
Introduction of RMI 126
UNIT-3

RMI Implementation and Client-Server Programming132

Block-4: Servlet and JSP

UNIT-1
Introduction of Servlet 140

UNIT-2
Servlet with JDBC 172

UNIT-3
Basics of Java Server Pages 202

UNIT-4
JDBC with JSP 244

Block-1
.NET Java Swings

1

Unit 1: Fundamental of Swing

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Fundamental of Swing

1.4. Key features of Swing

1.5. Components & Containers

1.6. Swing Packages & Applications
1.7. Painting Fundamentals

1.8. Letussumup

1.9. Check your Progress

1.10. Check your Progress: Possible Answers
1.11. Further Reading

1.12. Assignments

1.13. Activities

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e Differentiate about AWT and Swing.
e Introduce various GUI Components of swing.
e Know features of Swing.

e Different packages use in Swing.

1.2 INTRODUCTION

Now a day, most programmers use Swing for creating user interfaces. Java Swing is
a part of Java Foundation Classes (JFC) which was designed for enabling large-
scale enterprise development of Java applications. Java Swing is a set of APIs that
provides graphical user interface (GUI) for Java programs. Java Swing is also known

as Java GUI widget toolkit.

Java Swing or Swing was developed based on earlier APIs called Abstract Windows
Toolkit (AWT). Swing provides richer and more sophisticated GUI components than
AWT.Swing is a set of Classes that provides more powerful and flexible GUI
components than does the AWT. Swing provides the look and feel of the modern
Java GUI.

1.3 FUNDAMENTAL OF SWING

Swing API is a set of extensible GUI Components to ease the developer's life to
create JAVA based Front End/GUI Applications. It is build on top of AWT API and
acts as a replacement of AWT API, since it has almost every control corresponding
to AWT controls. Swing component follows a Model-View-Controller architecture to

fulfill the following criteria.

e Asingle API is to be sufficient to support multiple look and feel.

e API is to be model driven so that the highest level API is not required to have
data.

e APl is to use the Java Bean model so that Builder Tools and IDE can provide

better services to the developers for use.

Swing Architecture
Swing is platform independent and enhanced MVC (Model —View — Controller)

framework for Java application.

¢ Model represents component's data.

e View represents determines how the component is displayed on the screen.

e Controller represents how the component reacts to the user.

e Swing component has Model as a separate element, while the View and
Controller part are clubbed in the User Interface elements. Because of which,

Swing has a pluggable look-and-feel architecture.

Component

B s

Controller

Ul Delegate

Figure-1.1 Java Swing MVC — Model Delegate

For example, when the user clicks a check box, the controller reacts
bychanging themodel to reflect the user’'s choice (checked or unchecked).
This then results in the view being updated.

Difference between AWT and Swing

There are many differences between java awt and swing that are given below.

No Java AWT Java Swing

1. AWT components are platform- Java swing components are platform-

dependent. independent.

2. AWT components are heavyweight. | Swing components are lightweight.

3. AWT doesn't support pluggable Swing supports pluggable look and feel.
look and feel.

4, AWT provides less components Swing provides more
than Swing. powerfulcomponents such as tables,

lists, scrollpanes, colorchooser,
tabbedpane etc.

5. AWT doesn't follows MVC(Model Swing follows MVC.

View Controller).

Table-1 Difference between AWT and Swing

1.4 KEY FEATURES OF SWING

e Light Weight:Swing components are lightweight. This means that they are
written totally in Java and do not map directly to platform-specific
peers.Because lightweight components are rendered using graphics
primitives, they can be transparent, which enablesnonrectangular shapes.
Thus, lightweight components are more efficient and more flexible. So each
component of swing will work in a consistent manner across all platforms.

e Rich Controls: Swing provides a rich set of advanced controls like Tree,
TabbedPane, slider, colorpicker, and table controls.

e Highly Customizable: Swing controls can be customized in a very easy way
as visual appearance is independent of internal representation.

e Pluggable look-and-feel: SWING based GUI Application look and feel can

be changed at run-time, based on available values.

1.5COMPONENTS& CONTAINERS

In Java, a component is the basic user interface object and is found in all Java
applications. Components include JLists, JButtons, JLabel, JMenu etc.

To use components, you need to place them in a container.

A container is a component that holds and manages other components. Containers
display components using a layout manager. Simply say a container holds a group

ofcomponents.
Components

Swing components are inherit from the javax.swing. JComponent class, which is the
root of the Swing component hierarchy.JComponent, in turn, inherits from the
Container class in the Abstract Windowing Toolkit (AWT). So Swing is based on

classes inherited from AWT.

All of Swing’'s components are represented by classes defined within the

packagejavax. swing.

The following table-2 shows the class names for Swing components.

JButton JCheckBox JCheckBoxMenultem JColorChooser
JComboBox JDesktopPane | JEditorPane JFileChooser
JFormattedTextField | JLabel JList JMenu
JMenuBar JMenultem JPasswordField JPopupMenu
JProgressBar JRadioButton | JRadioButtonMenultem | JScrollBar
JSeparator JSlider JSpinner JSplitPane
JTabbedPane JTable JTextArea JTextField
JTextPane JTogglebutton | JToolBar JToolTip

JTree JViewport

Table-2 Swing components List

The hierarchy of java swing API is given below Figure-1.2.

Object
'y
Component JLabel
&
Jlist
Container JComponent Walila
A
JIComboBox
Window Panel JSlider
> £
IMenu
Applet
AbstractButton
Frame Dialog
JButton

Figure-1.2 Hierarchy of Java Swing API.

Containers

Swing defines two

types of containers. In top-level containers: JFrame,

JApplet,JWindow, and JDialog. These containers do not inherit JComponent. They

all are inherit the AWT classes Component and Container.

A top-level container must be place at the top of in hierarchy.A top-level container is

not contained within any other container.The one most commonly used container for

applications is JFrame and for applets is JApplet.

The second type of containers maintained by Swing are lightweight containers.

Lightweightcontainers do inherit JComponent. An example of a lightweight container

is JPanel. Lightweight containers are regularly used to organize andmanage groups

of related components because a lightweight container can be containedwithin

another container. So, you can use lightweight containers such as JPanel.

The following table-3 shows the names for Swing container.

JApplet

JDialog

JDesktopPane

JFrame

JEditorPane

JLayeredPane

JWindow

Table-3 Swing containers List

Swing provides the following useful top-level containers, all of which inherit from

JComponent:

i

|

i

i

JWindow

JFrame

| JDialog

Jhpplet

JComponent

Figure-1.3 Top-level Containers of Swing

All Swing components need to be contained inside a JWindow or JFrame.

The Top-Level Container Panes

Each top-level container defines a set of panes. Following figure show top-level

container panes.

—LE T IEa

Root pane

Layered pane

Content pane

Glass pane

Figure-1.4 Top-level Containers of panes

Root pane

The root pane is an intermediate container that manages the layered pane, content
pane, and glass pane. You use a root pane to paint over multiple components or to

catch input events.
Layered pane

The layered pane contains the content pane and the optional menu bar.The layered
pane provides six functional layers in which you place the components you add to it.

Content pane

The content pane holds all the visible components of the root pane, except the menu

bar. It covers the visible section of the JFrame or JWindow and you use it to add

components to the display area. Java automatically creates a content pane when
you create a JFrame or JWindow but you can create your own content pane, which

has to be opaque.
Glass pane

The glass pane is invisible by default but you can make it visible. When it is visible, it
covers the components of the content pane and can paint over an existing area

containing one or more components.

1.6 SWING PACKAGES & APPLICATIONS

Swing Packages

Swing is a very large subsystem and makes use of many packages. These are the

packages used by Swing.

javax.swing javax.swing.border javax.swing.colorchooser
javax.swing.event javax.swing.filechooser javax.swing.plaf
javax.swing.plaf.basic | javax.swing.plaf.metal javax.swing.plaf.multi
javax.swing.plaf.synth | javax.swing.table javax.swing.text

javax.swing.text.html | javax.swing.text.html.parser | javax.swing.text.rtf

javax.swing.tree javax.swing.undo

The main package is javax.swing. when user make any swing program then they
must be imported javax.swing package. This package contains basic Swing

components, such as buttons, labels, list, and check boxes.
Swing Applications

Swing programs differ from both the console-based programs and the AWT-based
programs. Swing use a different set of components and adifferent container
hierarchy than does the AWT.The best way to understand the structure of a Swing

program is to work through a simple example.

the following program showa simple Swing application.

In this program,it

demonstrates several key features of Swing. It uses two Swing components:JFrame

and JLabel. JFrame is the top-level container that is commonly used for

Swingapplications. JLabel is the Swing component that creates a label, which is use

for displays information.

/I A simple Swing application.
import javax.swing.*;
public class SwingDemo

{
SwingDemo()

{
Il Create a new JFrame
JFrame jf=new JFrame("A Simple Swing Program");
/I Give the frame an initial size.

jf.setSize(400,300);

/I Terminate the program when the user closes the application.

jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Il Create a text-based label.

JLabel Ib=new JLabel("Hi");
/I Add the label to the content pane.

jf.add(Ib);
/l Display the frame.

jf.setVisible(true);

}
public static void main(String args[]) {

SwingDemo sd=new Swing_Demo();

b}

10

Swing programs are compiled and run in the same way as other Java applications.

So,to compile this program, you can use this command line:
javac SwingDemo.java

To run the program, use this command line:

java SwingDemo

Output of this program shown in Figure-1.5.

|| A Simple Swing Program "W s/ of=le S

Hi ...

Figure-1.5 Output of SwingDemo program

In this program declares SwingDemo class and a constructor for that class.
creating a JFrame,using this line of code:

JFrame jf=new JFrame("A Simple Swing Program");

jf object show a rectangular window complete with a titlebar; close, minimize,

maximize, and restore buttons;
the window is sized using this statement:

jf.setSize(400,300);

11

The setSize() method which is setsthe dimensions of the window, which are

specified in pixels. Its general form is shown here:
void setSize(int width, int height)
In this example, the width of the window is set to 400 and the height is set to 300.

when a top-level window is closed, the window is removed from the screen. For that

callsetDefaultCloseOperation(), as the program does:
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After calling this method, closing the window causes the entire application to

terminate.
Thegeneral form of setDefaultCloseOperation() is shown here:
void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is closed.
There are many other options in addition to JFrame.EXIT_ON_CLOSE.

They are shown here:

JFrame.DISPOSE_ON_CLOSE : hides and disposes of the JFrame when the user
closes it. Disposing a JFrame releases any resources used by it.

JFrame.HIDE_ON_CLOSE : hides a JFrame when the user closes it. This is the

default behavior. The JFrame is invisible but the program is still running.

JFrame.DO_NOTHING_ON_CLOSE : exits the application. This option will exit the

application.
Next,
jf.setVisible(true);

The setVisible() methodis inherited from the AWT Component class.If its argument
istrue, then window will be displayed. Otherwise, it will be hidden. By default, a

JFrame isinvisible, so setVisible(true) must be called.

12

1.7 PAINTING FUNDAMENTALS

Components of swing are very powerful. Swing components are directly display into
frame and panel. Swing will not allow to draw directly to the surface of component.
Using AWT class component have a method like paint(), that is used to draw output
directly on the surface of a component and the methods are like drawLine(),

drawRect, etc.

JComponent inherits Componentclass, all Swing’s lightweight components inheritthe
paint() method. However, you will not override it to paint directly to the surface of
acomponent. The reason is that Swing uses a bit more sophisticated approach to
painting thatinvolves three distinct methods: paintComponent(), paintBorder(), and
paintChildren().These methods paint the indicated part of a component and divide

the painting process in its three distinct logical actions.

To paint to the surface of a Swing component, you will create a subclass of the
componentand then override its paintComponent() method. This is the method that
paints the interiorof the component. You will not normally override the other two
painting methods such as paintBorder() and paintChildren().

The paintComponent()method is shown here:

protected void paintComponent(Graphics g)

The parameter g is the graphics context to which output is written.

In the following program, we make a subclass of JPanel and override one method,
paintComponent().

import java.awt.*;

import javax. swing.*;

public class swingpaintdemo extends JPanel

{

public void paintComponent(Graphics Q)

{

g.setColor(Color.orange);

13

g.drawLine(10,50,50,20);
g.setColor(Color.red);

g.fillOval(getWidth()/4, getHeight()/4, getWidth()/2, getHeight()/2);

public static void main(String argsl])
{
Il Create a new JFrame container.
JFrame jf =new JFrame("Use PaintComponent() Method ");
/Il Give the frame an initial size.
jf.setSize(350,300);
jf.setVisible(true);

/I Add the panel to the content pane. Because the default// border layout is used, //
the panel will automatically besized to fit the center region.

swingpaintdemo sw=new swingpaintdemo();
jf.add(sw);
}
}

Output of this program shown in Figure-1.6.

| £&| Use PaintComponent(Method Lglélgi

Figure-1.6 Output of paintComponent() program

14

In this program swingpaintdemo class extends JPanel. JPanel is oneof Swing’'s

lightweight containers, which means that it is a component that can be added tothe

content pane of a JFrame. To handle painting, swingpaintdemo overrides the

paintComponent()method. This enables swingpaintdemo to write directly to the

surface of the component whenpainting takes place. The size of the panel is not

specified because the program uses thedefault border layout and the panel is added

to the center. This results in the panel beingsized to fill the center. If you change the

size of the window, the size of the panel will beadjusted accordingly.

1.8LET US SUM UP

A swing is a set of classes that provides more powerful and flexible
components that is possible with the AWT. It is defined within the package
javax.swing.

As compared to AWT components, swing components are known as
lightweight components.

The JApplet class is an extended version of java.applet. Applet that adds
support for the JFC/Swing component architecture.

The javax.swing package provides classes for java swing APl such as
JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu,
JColorChooser etc.

Swing provides graphical user interface components to develop Java
applications.

The size of a frame is defined by its width and height in pixels and we can set
them using setSize(int width, int height) method.

The content pane from JFrame holds the Swing components of a JFrame.
The pack() method of the JFrame examines all the components on the
JFrame and decides their preferred size and sets the size of the JFrame just

enough to display all the components.

15

1.9CHECK YOUR PROGRESS

1. Where are the following four methods commonly used?

1) public void add(Component c)

2) public void setSize(int width,int height)
3) public void setLayout(LayoutManager m)
4) public void setVisible(boolean)

a. Graphics class b. Component c¢.BothA&B d. None of the
class above

2. Which is the container that doesn't contain title bar and MenuBars but it can

have other components like button, textfield etc?

a. Window b. Frame c. Panel d. Container

These two ways are used to create a Frame
By creating the object of Frame class (association)
By extending Frame class (inheritance)

a. True b. False

3. Give the Full of AWT?

4. The Java Foundation Classes (JFC) is a set of GUI components which simplify

the development of desktop applications.

a. True b. False

5. The following specifies the advantages of
It is lightweight.
It support pluggable look and feel.

It follow MVC (Model view controller) Architecture.

a. Swing b. AWT c. Bothaand b d.None of above

6. The swing related classes are contained in

a. javax.swing b. javax.awt c. javax.Swing d.None of above

1.10CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. b.Component class

2. c. Panel

3. a.true

4. Abstract Windowing Toolkit
5. a.true

6

. a. Swing

1.11 FURTHER READING

Many courses require students to read some extra material in addition to theirunits.
Sometimes a text requires 'readings' which must be obtained by alllearners. Such
texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'.
On other occasions, students are expected toread widely from a variety of books, but
the readings are entirely optional.

These books are referred to as 'recommended texts' or background reading.The
distinction is important, as books are usually difficult to obtain and theavailability and
price of essential books must be checked before they arespecified as compulsory. A

course that has no recommended textbooks isknown as a self-contained course.
Following are some examples:

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU
Handbook5. New Delhi: Indira Gandhi National Open University.

17

Thompson, Bruce (2003). Introduction to open learning and instructional design for

openlearning. Vancouver: Commonwealth of Learning (COL).

1.12ASSIGNMENTS

1. What is difference between AWT and Swing?
2. method use to visible JFrame.

3. Give name of constant which are used in setDefaultCloseOperation() method.
4. What is a container class?

5. What are the key feature of swing class?

6. List out Swing class.

7. Write a two ways to create a frame.

1.13ACTIVITIES

1. Create JFrame with 300 X 300 size, and display “Good Moring “message on

JFrame.

2. Create Application for drawing Line, Rectangle , Circle and also fill all shapes.

18

Unit 2: Swing Components and
Event Handling

Unit Structure

2.1Learning Objectives

2.2Introduction

2.3Working with JFrame

2.4 JApplet and JPanel

2.5JTextField, JPasswordField, JButton
2.6JCheckBox, JRadioButton

2.7 JList, JScrollPane, JComboBox
2.8Event handling

2.9Let us sum up

2.10 Check your Progress

2.11 Check your Progress: Possible Answers
2.12 Further Reading

2.13 Assignments

2.14 Activities

19

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e To understand the Java event-handling model.

e To understand the relationship of a JFrame and theobjects it contains.

e Working with containers control — JFrame, JApple and JPanel

e Working with basic control- JButton, JLabel,JTextField, JPasswordField.

e Working with selection control - JCheckBox, JRadioButton, , JList,and
JComboBox.

e Working with JScrollPane control.

2.2 INTRODUCTION

The previous chapter contains several of the core concepts relating to Swing. This
Chapter presenting overview of several swing components.Swing components are
derived from the JComponent class. The only exceptions are the four top-level
containers: JFrame, JApplet, JWindow, and JDialog. JComponent inherits AWT
classes Container and Component.JComponent inherits AWT classes Container and
Component.All the Swing components are represented by classes in the javax.swing
package.All the component classes start with J:JLabel, JButton, JScrollbar,etc. The

Swing componentsprovide rich functionality and allow a high level of customization.

2.3 WORKING WITH JFRAME

The javax.swing.JFrame class is a type of container which inherits
thejava.awt.Frame class. JFrame works like the main window where components

like JLabels, JButtons, JTextfields are added to create a GUI.

JFrame class has many constructors used to create a JFrame.Following is the

description.

e JFrame(): creates a frame which is invisible.
o JFrame(GraphicsConfiguration gc): creates a frame with a blank title and
graphics configuration of screen device.

e JFrame(String title): creates a JFrame with a title.

20

e JFrame(String title, GraphicsConfiguration gc): creates a JFrame with specific

Graphics configuration and specified title.
Here is a simplest example just to create a JFrame with set title.
import javax.swing.*;

public class JFrameDemo

{
public static void main(String args])
{
JFrame jf=new JFrame("My Programe");
jf.setSize(300,100);
jf.setVisible(true);
jf.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}
}

The output of program display in Figure 2.1

4| My Programe

Figure 2.1: Output of JFrame with Title.

2.4 JApplet and JPanel

2.4.1 The JApplet class

Swing-based appletsare similar to AWT-based applets, but with an

important

difference: A Swing applet extendsJApplet rather than Applet. JApplet is derived

from Applet.JApplet is atop-level container.

Swing applets use the same four lifecycle methods which is in AWT: init(),start(),

stop(), and destroy(). So, you need override only those methods that areneeded by

21

your applet. Painting is accomplished differently in Swing than it is in the AWT,and a

Swing applet will not normally override the paint() method.

Following program is a simplet example to create a JApplet with JLabel.

import java.awt.FlowLayout;

import javax.swing.*;

/[This HTML can be used to create Applet with 300 x 300 size.
/I<applet code="JappletDemo.class" width="300" height="300"></applet>

public class JappletDemo extends JApplet
{
JLabel [;
// Initialize the applet using init().
public void init()
{
Il Set the applet to use flow layout.
setLayout(new FlowLayout());
Il Create a text-based label.
|=new JLabel("Demo Program for JApplet");
/I Add the label to the content pane.
add(D);

The output of program display in Figure 2.2

22

"

| £| Applet Viewer: swing_demeappletDem...Elélﬂ
Applet

Demo Program for JApplet

Applet started.

Figure 2.2: Output of JApplet with JLabel.

2.4.2 The JPanel Class

The JPanel is a simplest container class. It provides space in which an application
can attach any other component. It inherits the JComponents class.

Constructors

JPanel() : It is used to create a new JPanel with a double buffer and a flow layout.

JPanel(boolean isDoubleBuffered) : It is used to create a new JPanel with
FlowLayout and the specified buffering

strategy.

JPanel(LayoutManager layout) : It is used to create a new JPanel with the specified

layout manager.
Following program is a simplet example to create a JPanel.
import java.awt.*;
import javax.swing.*;
public class PanelExample

{

PanelExample()

23

{

JFrame f= new JFrame("Panel Example™);
JPanel panel=new JPanel();
panel.setBounds(40,80,200,200);
panel.setBackground(Color.gray);
JButton bl=new JButton("Button 1");
b1l.setBounds(50,100,80,30);
bl.setBackground(Color.yellow);
JButton b2=new JButton("Button 2");
b2.setBounds(100,100,80,30);
b2.setBackground(Color.green);
panel.add(bl);

panel.add(b2);
f.add(panel);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}

public static void main(String args[])

{

PanelExample p=new PanelExample();

}
}

Output show in Figure:2.3

e ——————— —

Figure 2.3 : Output of JPanel class

2.5JTextField, JPasswordField, JButton

2.5.1 JTextField
JTextfField is a lightweight component that allows the ending of a single line of text.
The class has JTextComponent as its base class which in turn inherits JComponents

class.

Constructor of JTextField are shown below.

JTextField() : Creates a new TextField.

JTextField(String text) : Creates a new TextField initialized with the specified text.
JTextField(String text, int columns) : Creates a new TextField initialized with the
specified text and columns.

JTextField(int columns) : Creates a new empty TextField with the specified number

of columns.

25

The Methods of JTextField class are given in the below table 2.1.

Method Name

Description

void setEdittable(Boolean b)

Sets the specified Boolean to indicate whether or
not this text field should be editable.

Boolean isEditable()

Return the Boolean indicating whether this text

field is editable or not.

String getText()

Return the text contained in this text field.

void setText(String t)

Sets the text of this text field to the specified text.

Table 2.1: Methods of JTextField class.

Program of JTextField is shown below.

import javax.swing.*;
class TextFieldExample

{

public static void main(String argsl])

{

JFrame f= new JFrame("TextField Example");

JTextField t1,t2;
tl1=new JTextField();

t1.setBounds(50,100, 200,30);

tl.setText(" Hello™);

t2=new JTextField("Welcome to Javatpoint.”);

t2.setBounds(50,150, 200,30);

f.add(tl);

f.add(t2);
f.setSize(400,400);
f.setLayout(null);
f.setVisible(true);

}
}

Output of program is shown in Figure-2.4.

26

_
| TextField Example " o L= S |

hello

Welcome to Javatpoint.

Figure 2.4 : Output of JTextField class

2.5.2 JPasswordField

JPasswordField class is a text component specialized for password entry. It allows

the editing of a single line of text. It inherits JTextField class.

Constructor of JPasswordField are shown below.

JPasswordField(): Constructs a new JPasswordField, with a default document, null

starting text string, and O column width.

JPasswordField(int columns) : Constructs a new empty JPasswordField with the
specified number of columns.

JPasswordField(String text) : Constructs a new JPasswordField initialized with the
specified text.

JPasswordField(String text, int columns) : Construct a new JPasswordField

initialized with the specified text and columns.

27

The Methods of JPasswordField class are given in the below table 2.2.

Method Name Description

char getEchoChar() Returns the character to be used for echoing.
void setEchoChar(char c) Sets the echo character for this JPasswordField.
String getText() Return the text contained in this text field.

void setText(String t) Sets the text of this text field to the specified text.
String getPassword() returns the text contained in JPasswordField.

Table 2.2: Methods of JPasswwordField class.

Program of JPasswordField is shown below Figure-2.5.

M] Pasenord hick) mE!E = gl'l

FI-II

Password:

_
Figure 2.5 : Output of JTextField class

2.5.3 JButton

The JButton class provides the functionality of a push button. JButton allows an icon,

a string, or both to beassociated with the push button.

Constructors
JButton() : It creates a button with no text and icon.

JButton(String s) : It creates a button with the specified text.

JButton(lcon i) : It creates a button with the specified icon object.

28

JButton(String s, Icon icon) : It creates a button with the specified text and icon

object.

The Methods of JButton class are given in the below table 2.3.

Method Name Description

void setText(String s) It is used to set specified text on button

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setlcon(lcon b) It is used to set the specified Icon on the
button.

Icon getlicon() It is used to get the Icon of the button.

void It is used to add the action listener to this

addActionListener(ActionListener a) | object.

Table 2.3: Methods of JButton class.

When the button is pressed, an ActionEvent is generated. The ActionEvent
objectpassed to the actionPerformed() method which is registered by
ActionListener, you can obtainthe action command string associated with the button.
By default, this is the string displayedinside the button. However, you can set the
action command by calling setActionCommand()on the button. You can obtain the
action command by calling getActionCommand() on theevent object.

/I Program to create three button and when button press according frame

background color will change.
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
public class ButtonDemo extends JFrame implements ActionListener
{
JLabel I11;

JButton b1,b2,b3;

29

ButtonDemo()
{
setLayout(new FlowLayout());
setSize(400,700);
setTitle("Java program Buttons Clicked");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

I1=new JLabel("What is happening");

add(l1);

bl=new JButton("Red");
add(bl);

b2=new JButton("Green");
add(b2);

b3=new JButton("Blue");

add(b3);

bl.addActionListener(this);
b2.addActionListener(this);

b3.addActionListener(this);

}

public void actionPerformed(ActionEvent e)

{
if(e.getSource()== bl)

30

getContentPane().setBackground(Color.red);

I1.setText("Set Color Red");

}

else if(e.getSource()== b2)

{

getContentPane().setBackground(Color.green);

[1.setText("Set Color Green");

}

else if(e.getSource()== b3)
{

getContentPane().setBackground(Color.blue);

[1.setText("Set Color Blue");

}

public static void main(String args[])

{

ButtonDemo bd =new ButtonDemo();

}

Output of the program is shown in Figure 2.6.

31

£:n Java programB ttons Chic

Figure 2.6 : Output of JButton class

2.6. JCheckBox, JRadioButton

2.6.1 JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on
(true) or off (false). Clicking on a CheckBox changes its state from "on" to "off" or

from "off" to "on ".

An ItemEvent is generated when user selects or deselect a check box. If multiple
checkbox put in your program then wwhich checkbox is selected , to obtain a
reference by calling getltem() method of ItemEvent class. The ItemEvent object

passed to the itemStateChanged() method which is registered by ItemListener.

Constructors
JJCheckBox() : Creates an initially unselected check box button with no text, no
icon.

JChechBox(String s) : Creates an initially unselected check box with text.

32

JCheckBox(String text, boolean selected) : Creates a check box with text and

specifies whether or not it is initially selected.

The Methods of JCheckBox class are given in the below table 2.4.

Method Name Description

protected String paramString() | It returns a string representation of this JCheckBox.

AccessibleContext It is used to get the AccessibleContext associated
getAccessibleContext() with this JCheckBox.

Table 2.4: Methods of JCheckBox class.

/I Program to create JCheckBox
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
public class CheckboxExample extends JFrame implements ItemListener
{
JCheckBox c1,c2;
JLabel I11;
JPanel p1;
CheckboxExample()
{
/I Frame setting
setLayout(new FlowLayout());
setSize(400,700);
setTitle("Java program for JCheckBox");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

33

/I create checkbox
cl=new JCheckBox("Apple");

c2=new JCheckBox("Orange");

/I create JLabel

I1=new JLabel();

Il create JPanel

pl=new JPanel();
pl.add(cl);

pl.add(c2);

pl.add(l1);

add(pl);
cl.addlitemListener(this);
c2. additemListener(this);

pl=new JPanel();

}

public void itemStateChanged(ltemEvent e)
{
if (e.getSource() == cl)
{
if (e.getStateChange() == 1)
{
I1.setForeground(Color.red);

I1.setText(cl.getText() + "is selected");

else

|1.setForeground(Color.red);

I1.setText(cl.getText()+ "is not selected");

}

else

if (e.getStateChange() == 1)
I1.setText(c2.getText()+ "is selected");
else

I1.setText(c2.getText()+ "is not selected");

public static void main(String argsl])

{

CheckboxExample cb=new CheckboxExample();

}
}

Output of the program is shown in Figure 2.7.

35

4| Java program for JChec

[v] Apple []| Orange Appleis selected

Qlﬂlﬂil

Figure 2.7 : Output of JCheckBox class

2.6.2 JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose one

option from multiple options. Radio buttons must beconfigured into a group. Only one

of the buttons in the group can be selected at any time.For example, if a user

presses a radio button that is in a group, any previously selectedbutton in that group

is automatically deselected.

Constructors

JRadioButton() : Creates an unselected radio button with no text.

JRadioButton(String s) : Creates an unselected radio button with specified text.

JRadioButton(String s, boolean selected) :Creates a radio button with the specified

text and selected status.

The Methods of JRadioButton class are given in the below table 2.5.

Method Name

Description

void setText(String s)

It is used to set specified text on button.

String getText()

It is used to return the text of the button.

void setEnabled(boolean b)

It is used to enable or disable the button.

void setlcon(lcon b)

It is used to set the specified Icon on the

button.

Icon getlcon()

It is used to get the Icon of the button.

36

void It is used to add the action listener to this

addActionListener(ActionListener a) | object.

Table 2.5: Methods of JRadioButton class.

/I Program to create JRadioButton
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class JRadioButtonDemo extends JFrame implements ActionListener
{
JRadioButton r1,r2,r3;

JLabel I11;

JRadioButtonDemo()

{
/I Frame setting
setLayout(new FlowLayout());
setSize(400,400);
setTitle("Java program for JRadioButton");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

Il Create a RadioButton

ril=new JRadioButton("A");
add(rl);
r2=new JRadioButton("B");

add(r2);

37

}

r3=new JRadioButton("C");

add(r3);

ButtonGroup bg =new ButtonGroup();
bg.add(rl);

bg.add(r2);

bg.add(r3);

I1=new JLabel("select one");

add(11);

rl.addActionListener(this);
r2.addActionListener(this);

r3.addActionListener(this);

public void actionPerformed(ActionEvent e)

{

}

I1.setText("you select” +e.getActionCommand());

public static void main(String argsl])

{

JRadioButtonDemo rd=new JRadioButtonDemo();

38

Output of the program is shown in Figure 2.8.

£, Java program faor

A @B C youselectB

Figure 2.8 : Output of JRadioButton class

2.7. JList, JScrollPane, JComboBox

2.7.1 JList

JList is use for select one or more itemsfrom a list.JList class represents a list of text

items.

Constructor

JList() :Creates a JList with an empty, read-only, model.

JList(ary[] listData) : Creates a JList that displays the elements in the specified
array.

JList(ListModel<ary> dataModel) : Creates a JList that displays elements from the

specified, non-null, model.

39

The Methods of JList class are given in the below table 2.6.

Method Name Description

Void It is used to add a listener to the list, to
addListSelectionListener(ListSelectionLis | be notified each time a change to the

tener listener) selection occurs.

int getSelectedIndex() It is used to return the smallest selected
cell index.

ListModel getModel() It is used to return the data model that
holds a list of items displayed by the JList
component.

void setListData(Obiject[] listData) It is used to create a read-only ListModel

from an array of objects.

Table 2.6: Methods of JList class.

A JList generates a ListSelectionEvent when the user select item from list.This event
is also generated when the user deselects an item. It is handled by
implementingListSelectionListener.

This listener specifies only one method, called valueChanged().
/I Program to create Jist.
import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;
public class JListDemo extends JFrame implements ListSelectionListener
{
JList list;

JLabel I11;

40

String s[] = { "Apple", "Banana", "Orange", "Graps"};
JListDemo()
{
/[Frame setting
setLayout(new FlowLayout());
setSize(400,400);
setTitle("Java program for JRadioButton™);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

/Icreate List
list=new JList(s);

add(list);

I1=new JLabel("You select");

add(I1);

/I Set the list selection mode to single selection.
list.setSelectionMode(ListSelectionModel. SINGLE_SELECTION);

list.addListSelectionListener(this);

}

public void valueChanged(ListSelectionEvent e)

{

int idx =list.getSelectedindex();

/l Display selection, if item was selected.

41

if(idx !'=-1)
I1.setText("Current selection: " + s[idx]);
else

I1.setText("Choose a Item");

public static void main(String argsy])

{

JListDemo jd= new JListDemo();

The Output of the program is shown in Figure- 2.9.

| £:| Java program for JList— EEEEE——)

Apple
Banana

Current selection: Orange

Graps

e ——————————

Figure 2.9 Output of JList Class

42

2.7.2 JScrollPane

A JscrollPane is used to make scrollable view of a component. When screen size is
limited, we use a scroll pane to display a large component or a component whose
size can change dynamically. If component size is larger than viewable area then

automatically horizontal or Vertical scroll bar are set.
Constructors
JScrollPane() : It creates a scroll pane.

JScrollPane(Component) : It create a scroll pane on specified Component when

you want to present.
JScrollPane(int, int) : sets the scroll pane's with two int parameters, when present,
set the vertical and horizontal scroll bar respectively.
JScrollPane(Component, int, int) : Set scroll pane vertical or horizontal scroll bar on
component .
I/l Program of JScroll pane
import javax.swing.*;
import java.awt.*;
public class JScrollPaneDemo extends JFrame
{
JList list;
JScrollPane js;
String s[] = { "Apple", "Banana", "Orange", "Grapes","Watermelon","Peach",
"Pear","Cherr","Strawberry”,"Nectarine","Blueberry”,"Pomegranate" };
JScrollPaneDemo()
{
/I Frame setting
setLayout(new FlowLayout());

setSize(400,400);

43

setTitle("Java program for JScrollpane™);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

llcreate List
list=new JList(s);
add(list);
/I Add the list to a scroll pane.
js=new JScrollPane(list);
add(js);

}

public static void main(String argsl])

{

JScrollPaneDemo js=new JScrollPaneDemo();

}
}

/I Output of JScrollPane is shown in Figure 2.10.

Ap;.ﬂe i

Banana

Orange

Grapes
Watermelon | |
Peach H
Pear

Cherr -

Figure 2.10 Output of JScroll Pane Class

44

2.7.3 JComboBox

JCombo box is a combination of a text field and a drop-down list . A combo box
displays one entry and also display adrop-down list that allows a user to select a

different item.

Constructors

JComboBox() : Creates a JComboBox with a default data model.

JComboBox(Object[] items) : Creates a JComboBox that contains the elements in
the specified array.

JComboBox(Vector<?> items) : Creates a JComboBox that contains the elements in

the specified Vector.

The Methods of JComboBox class are given in the below table 2.7.

Method Name Description

void addltem(Object anObject) It is used to add an item to the item list.

void removeltem(Object anObject) It is used to delete an item to the item list.

void removeAllltems() It is used to remove all the items from the
list.

void setEditable(boolean b) It is used to determine whether the

JComboBox is editable.

void addActionListener(ActionListener a) | It is used to add the ActionListener.

void additemListener(ltemListener i) It is used to add the ItemListener.

Table 2.7: Methods of JComboBox class.

/[Program to demonstrate the Combo Box and its items like india, japan and
Canada. When user select country accordingly flag will display on icon base Label.

All Flag images are stored into folder on which your program will save.

45

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

public class JComoBoxDemo extends JFrame implements ActionListener

{

JLabel I11;

Imagelcon india,japan,canada,;

JComboBox jcb;

String flags[] = { "india", "japan", "canada"};

JComoBoxDemo()

{

/[Frame setting

setLayout(new FlowLayout());

setSize(400,400);

setTitle("Java program for JComboBox");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

/I Instantiate a combo box and add it to the content pane.

jcb = new JComboBox(flags);

add(jcb);

/I Create a label and add it to the content pane.
I1= new JLabel(new Imagelcon("india.qgif"));
add(l1);

jcb.addActionListener(this);

46

public void actionPerformed(ActionEvent e)

{

String s = (String) jcb.getSelecteditem();

|1.setlcon(new Imagelcon(s + ".gif"));

}

public static void main(String argsl])

{

JComoBoxDemo jb=new JComoBoxDemo();

Output of JComboBox is shown in Figure 2.11.

—_—_mn———

Figure 2.11 Output of JComboBox Class

47

2.8. EVENT HANDLING

Java Swing, like any other Ul library, is an event-driven framework. When a user
interactswith a GUI program (such as by clicking a button or pressing a key,Entering
a character in Textbox, Clicking or Dragging a mouse,) a Java Swing

programreceives an event that can initiate an appropriate reaction.

Event handling is at the core of successful swing programming. Events are
supported by the java.awt.event package.

The modern approach to handling events is based on the delegation event model.

Components of Event Handling

Event handling has three main components,

Events : An event is a change in state of an object.
Events Source : Event source is an object that generates an event.

Listeners : A listener is an object that listens to the event. A listener gets notified

when an event occurs.

How Events are handled ?

A source generates an Event and send it to one or more listeners registered with the
source. Once event is received by the listener, they process the event and then

return.

In the delegation event model, listeners must register with a source in order to

receive an event notification.
public void addTypeListener(TypeListener el)
/I For Example : addActionListener(this);

This provides an important benefit: notifications are sent only to listeners that want to

receive them.

Main Event Class with Description:-

Class Description

48

ActionEvent Generated when a button is pressed, a list item is double
clicked, or a menu item is selected.

ltemEvent Generated when a check box or list item is clicked; also
occurs when a choice selection is made or a checkable menu
item is selected or deselected.

AdjustmentEvent Generated when a scroll bar is manipulated.

TextEvent Generated when the value of a text area or text field is
changed.

ComponentEvent Generated when a component is hidden, moved, resized, or
becomes visible.

InputEvent Abstract super class for all component input event classes

KeyEvent Generated when input is received from the keyboard

MouseEvent Generated when the mouse is dragged, moved, clicked,
pressed, or released; also generated when the mouse-enters
or exits a component.

FocusEvent Generated when a component gains or loses keyboard focus.

ContainerEvent

Generated when a component is added to or removed from a

container.

WindowEvent

Generated when a window is activated, closed, deactivated,

deiconified, iconified, opened, or quit.

Table 2.8 Event Class

Event Listener Interfaces: -

The delegation event model has two parts: sources and listeners.

Listeners are created by implementing one or more of the interfaces defined by the

java.awt.event package.

When an event occurs, the event source invokes the appropriate method defined by

the listener and provides an event object as its argument.

49

Event Listener Interfaces are in below Table 2.9.

Interface Description
ActionListener Defines one method to receive action events.
AdjustmentListener Defines one method to receive adjustment events.

ComponentListener

Defines four methods to recognize when a component is

hidden, moved, resized, or shown.

ContainerListener

Defines two methods to recognize when a component is

added to or removed from a container.

FocusListener

Defines two methods to recognize when a component gains

or loses keyboard focus.

ltemListener

Defines one method to recognize when the state of an item

changes.

KeyListener

Defines three methods to recognize when a key is pressed,

released, or typed.

MouseListener

Defines five methods to recognize when the mouse is
clicked, enters a component, exits a component, is pressed,

or is released.

MouseMotionListener

Defines two methods to recognize when the mouse is

dragged or moved.

TextListener

Defines one method to recognize when a text value changes.

WindowListener

Defines seven methods to recognize when a window is
activated, closed, deactivated, deiconified, iconified, opened,

or quit.

Table 2.9 Event Listener Interface

The ActionListener Interface: -

This interface defines the actionPerformed() method that is invoked when an action

event occurs.

50

The general forms of these method is

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface: -

This interface defines the adjustmentValueChanged() method that is invoked when

anadjustment event occurs.
The general forms of these method is

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface: -

This interface defines four methods that are invoked when a component is resized,

moved, shown, or hidden.

The general forms of these methods are
void componentResized(ComponentEvent ce)
void componentMoved(ComponentEvent ce)
void componentShown(ComponentEvent ce)

void componentHidden(ComponentEvent ce)

The ContainerListener Interface: -
This interface contains two methods.
When a component is added to a container, componentAdded() is invoked.
When a component is removed from a container, componentRemoved() is invoked
The general forms of these methods are
void componentAdded(ContainerEvent ce)

void componentRemoved(ContainerEvent ce)

51

The FocusListener Interface: -
This interface defines two methods
When a component obtains keyboard focus, focusGained() is invoked.

void focusGained(FocusEvent fe)

When a component loses keyboard focus, focusLost() is called.

void focusLost(FocusEvent fe)

The ItemListener Interface: -

This interface defines the itemStateChanged() method that is invoked when the

state of an item changes.
The general forms of these method is
void itemStateChanged(ltemEvent ie)
The KeyListener Interface: -
This interface defines three methods.

The keyPressed() and keyReleased() methods are invoked when a key is pressed
and released, respectively. The keyTyped() method is invoked when a character

has been entered.

For example, if a user presses and releases the A key, three events are generated in

sequence: key pressed, typed, and released.
The general forms of these methods are
void keyPressed(KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)
The MouseListener Interface: -
This interface defines five methods.

If the mouse is pressed and released at the same point, mouseClicked() is invoked.

52

When the mouse enters a component, the mouseEntered() method is called.
When it leaves, mouseExited() is called.

The mousePressed() and mouseReleased() methods are invoked when the mouse

is pressed and released, respectively.
The general forms of these methods are:
void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)
The MouseMotionListener Interface: -
This interface defines two methods.
The mouseDragged() method is called multiple times as the mouse is dragged.
The mouseMoved() method is called multiple times as the mouse is moved.
The general forms of these methods are
void mouseDragged(MouseEvent me)

void mouseMoved(MouseEvent me)

The TextListener Interface: -

This interface defines the textChanged() method that is invoked when a change

occurs in a text area or text field.
The general forms of these method is
void textChanged(TextEvent te)
The WindowListener Interface: -
This interface defines seven methods.

The windowActivated() and windowDeactivated() methods are invoked when a

window is activated or deactivated, respectively.

53

If a window is iconified, the windowlconified() method is called. When a window is

deiconified, the windowDeiconified() method is called.

When a window is opened or closed, the windowOpened() or windowClosed()

methods are called, respectively.

The windowClosing() method is called when a window is being closed.

The general forms of these methods are

void windowActivated(WindowEvent we)
void windowClosed(WindowEvent we)

void windowClosing(WindowEvent we)
void windowDeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowlconified(WindowEvent we)

void windowOpened(WindowEvent we)

29LET US SUM UP

JApplet class is an extended version of java.applet.

If you add more than one radio button to a container, you must add them to a
button group. To do that, you add JRadioButton objects to a ButtonGroup
object.

The user can click on a JCheckBox to check or uncheck a box. Then, the
code for the listener can change the processing that's done based on the
setting for the check box.

JCheckBox need to use a listener, you can use either the ActionListener or
the ItemListener.

JTextField is a lightweight component that allows the editing of a single line of
text.

AJPanel objects are containers to other GUI components can be attached. It

is pain rectangular area.

54

e JFrame class has a title, display in the title bar at the top of the window.
JFrame contains one or more menu.

e A JCheckBox is a graphical component that can be in either “on” (true) or “off”
(false) state. When user clicking on a JCheckBox change its state from “on” to
“off”, or from “off” to “on”.

e A JList component present the user with a scrolling list of text items. The list
can be set up so that the user can choose either one item or multiple items.

e A JTextField object is a text component that allows for the editing of a single

line of text.

2.10CHECK YOUR PROGRESS

1. Which object can be constructed to show any number of choices in the visible

window?

a. JCheckBox b. JList c. JLabel d. All of the abov

2. Which of these events is generated when a button is pressed?

a. WindowEvent b. KeyEvent c. ActionEvent d. ItemEvent

3. Which of these packages contains all the classes and methods required for

event handling in java?

a. java.applet b. java.awt C. java.event D.java.awt.event

4. Which method executes only once ?

a. start() b. init() c. paint() D.stop()

55

5. Which class is used for this Processing Method processActionEvent()?

a.Button,
List,Menultem

b. Button,

Checkbox,Choice

C.Scrollbar,

Component

D.None of the

above

6. Which method can set or change the text in a Label?.

a. setText()

b.getText()

c.Bothaandb

d.None of above

7. The swing related classes are contained in

a. javax.swing

b. javax.awt

C. javax.Swing

d.None of above

8. The ActionListener interface is not used for handling action events.

a. True

b. False

9. The Following steps are required to perform

Implement the Listener interface and overrides its methods

Register the component with the Listener

a. Exception

Handling

b.String
Handling

c. Event Handling

d.None of the

above

10.Which is the container that doesn't contain title bar and MenuBars but it can

have other components like button, textfield etc?

a.Window

b. JFrame

c. JPanel

d.Container

56

11.Class JFrame directly extends class Container.
a. True b. False

12.JApplets can contain menus.
a. True b. False

13. A dedicated drawing area can be declared as a subclass of
14.JTextFields directly extend class

2.11CHECK YOUR PROGRESS: POSSIBLE ANSWERS

As per self-assessment questions asked in Self-Assessment exercises.

b.JList

c. ActionEvent

d. java.awt.event

b. init()

a. Button,List,Menultem
a. setText()

a. javax.swing

b

. False

© © N o g s~ w D P

c. Event Handling

10.c. JPanel

11. B. False Reason:JFrame inherits directly from Frame.
12. A.True

13. JPanel

14. JTextComponent

2.12 FURTHER READING

Many courses require students to read some extra material in addition to theirunits.
Sometimes a text requires 'readings' which must be obtained by alllearners. Such

texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'.

57

On other occasions, students are expected toread widely from a variety of books, but

the readings are entirely optional.

These books are referred to as 'recommended texts' or background reading.The
distinction is important, as books are usually difficult to obtain and theavailability and
price of essential books must be checked before they arespecified as compulsory. A

course that has no recommended textbooks isknown as a self-contained course.
Following are some examples:

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU
Handbook5. New Delhi: Indira Gandhi National Open University.

Thompson, Bruce (2003). Introduction to open learning and instructional design for
openlearning. Vancouver: Commonwealth of Learning (COL).

2.13ASSIGNMENTS

1. What is difference between JFrame and JApplet?

2. Write a methods of JButton class ,JList class , JCheckBox class.

3. What is the use of ButtonGroup class?

4. Discuss delegation event model in details.

5. Method setEditable is a JTextComponent method. (Ture/False)

6. JPanel objects are containers to which other GUI components can be

attached. (True/False)

2.14ACTIVITIES

1. Create application to take two values from textbox and do operation like
addition, subtraction, multiplication and division. (take three Textbox and
four Button)

2. Write a program to take two label for username and password and two
textfield and submit that details and display welcome message on Label.

3. Write a program to take two List. When user select item from one list it

moves from second list and remove in the first list.

58

Unit 3: Swing Menu Component

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 JMenu, JMenuBar, JMenultem

3.4 JPopupMenu

3.5 Letussum up

3.6 Check your Progress

3.7 Check your Progress: Possible Answers
3.8 Further Reading

3.9 Assignments

3.10 Activities

3

59

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e To understand how to put JMenu on the JFrame.
e Working with IMenu, JMenuBar and JMenultem.

e How to use JPopupMenu and also work with JPopupMenu.

3.2 INTRODUCTION

The previous chapter containsseveral components of Swing such as JTextField,
JPasswordField, JButton, JCheckBox, JRadioButton, JList, JScrollPane,
JComboBox. This Chapter presenting overview of swing JMenu Component. A menu
bar can be linked to a top-level window. A menu bar shows a list ofMenu selection
on the first level. Each selection is associated with a drop-down menu. This concept
is implemented in AWT by the following classes: MenuBar, Menu and Menultem.

3.3 JMenu, JMenuBar, JMenultem

A Menu is a list of choices. A Menubar displays a list of top-level menu objects. In
java, for implementing menu, a number of classes are use like JMenu, JMenuBar

and JMenultem.

A JMenuBar contains a number of object of JMenu and each of JMenu contains a

number of object of JMenultem.

To create a menu bar, first create an object of JMenuBar. This class only defines
thedefault constructor. Next, create object of JMenu that will define the

selectionsdisplayedon the bar.
Following are the constructors for JIMenu:

e JMenu() : Create a new menu with an empty label.
e JMenu(String str) : Create a new menu with the specified label.
e JMenu(String str, boolean off) : Create a menu with the specified label and

menu can be torn off.

After a JMenu object has been created then JMenultem object can be added to
JMenu.

60

Following are the constructors for JMenultem :

e JMenultem() : Create a new JMenultem with empty label and no shortcut

keyboard key.

e JMenultem(String str) : Create a new JMenultem with specified label and no

shortcut keyboard key.

e JMenultem(String str, MenuShortcut s) : Create a new JMenultem with

specified label and specified shortcut keyboard key.

To put JMenu object on the JMenuBar, so first create JMenuBar object. JMenuBar

can be created with its default constructor like:

e JMenuBar()

A JMenuBar is attached with the JFrame window using setMenuBar() method.

The Methods of JMenu class are given in the below table 3.1.

Method Name

Description

void setEnabled(Boolean b) Sets whether or not this menu item can be

chosen, it can be enabled or disabled.

boolean isEditable()

Check whether this menu item is enabled.

String getLabel()

Get the label for this menu item to specified
label.

void setLabel(String str)

Sets the label for this menu item to the specified

label.

Table 3.1: Methods of JMenu class.

/[Program to create JMenu is show below.

import javax.swing.*;
import java.awt.*;

import java.awt.event.*;

public class IMenuDemo extends JFrame implements ActionListener

{
JLabel I11;

61

JMenuBar mb;
JMenu m;
JMenultem m1,m2,m3,m4,
JMenuDemo()
{
setLayout(null);
setSize(400,400);
setTitle("Java program for Menu Bar");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);
/[IMenubar created
mb=new JMenuBar();
m=new JMenu("File");
ml=new JMenultem("New");
m2=new JMenultem("Open");
m3=new JMenultem("Save");

m4=new JMenultem("Quit");

m.add(m1);
m.add(m2);

m.add(m3);

m.addSeparator();

m.add(m4);

/IIMenu add into IMenuBar

62

mb.add(m);

/l IMenuBar attached to JFrame window
setJMenuBar(mb);
m1l.addActionListener(this);
m2.addActionListener(this);

m3.addActionListener(this);

m4.addActionListener(this);

I1=new JLabel("You select");

add(l1);

public void actionPerformed(ActionEvent e)
{
if(e.getSource()==m1)
I1.setText("New menu selected");
else if(e.getSource()==m2)
I1.setText("Open menu selected");
else if(e.getSource()==m3)
I1.setText("Save menu selected");
else if(e.getSource()==m4)

[1.setText("Quit menu selected");

}

public static void main(String argsl])

{

63

JMenuDemo md=new JMenuDemo();

}
}
The Output of the program shown in Figure: 3.1
| £ Java program for Menu_@l@lﬂ 1

File |
New You select
Open
Save
Quit

Figure-3.1 Output of JMenu.

3.4 JPopupMenu

A JPopupMenu is a menu which can be dynamically popped up at a specified
position within a component. It is implemented by using JPopupMenu. The
JPopupMenu is different than other components because JPopupMenu is not
components and they are not usually visible. The JPopupMenu is call up by user
when user performing some platform-dependent action with the mouse. For
Example, User clicking with right mouse button, or clicking the mouse while holding
down the control key.

The object of pop-up menu is belonging to the JPopupMenu class. A newly created
JPopupMenu is empty. Items can be added to the JPopupMenu with its add(String
str) method. User want to add separator line by using addSeparator()method.

64

Following are the constructors for JMenultem

e JPopupMenu() : Constructs a JPopupMenu without an "invoker".

e JPopupMenu(String label) : Constructs a JPopupMenu with the specified title.
The JPopupMenu generate an ActionEvent when user selects items from the menu.
Mouse event have to be listened from the component. A MouseEvent object has a
boolean value method, isPopupTrigger() can call when the user is trying to popup a
menu. The JPopupMenu is popup either mousePressed or mouseReleased method.
For example, the mousePressed method might look like below code.

public void mousePressed(MouseEvent me)

{
If(me.isPopupTrigger())
{
int x=me.getX();
Int y=me.getY();
pmenu.show(this,X,y);
}
}

[* Program of JPopupMenu is display on JFrame and JPopupMenu contains item like
red, green and blue */

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class JPopupMenuDemo extends JFrame implementsMouseListener

{
JPopupMenu pm;

JMenultem m1,m2,m3;

JPopupMenuDemo()
{

setLayout(new FlowLayout());
setSize(400,400);

setTitle("Java program for JPopupMenu™);

65

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

/ICreate JPopup menu class
pm=new JPopupMenu();
ml=new JMenultem("Red");
m2=new JMenultem("Green");

m3=new JMenultem("Blue");

pm.add(ml);
pm.add(m2);
pm.add(m3);

add(pm);

addMouselListener(this);

public static void main(String argsl])

{

JPopupMenuDemo jpm=new JPopupMenuDemo();

public void mouseClicked(MouseEvente) { }
public void mouseEntered(MouseEvente) { }
public void mouseExited(MouseEvente) {}

public void mousePressed(MouseEvent e)

{
if(e.isPopupTrigger())
{
int x=e.getX();
int y=e.getY();

66

pm.show(this, X, y);

public void mouseReleased(MouseEvent e)

if(e.isPopupTrigger())
{
int x=e.getX();
int y=e.getY();
pm.show(this, X, y);

}

The Output of the program shown in Figure: 3.2

[oo oy o o |

Red
Green
Blue

Figure-3.2 Output of JPopupMenu.

3.5LET US SUM UP

e A JMenu is a list of choice. A JMenuBar display a list of top-level menu

choice.

67

e When user want to use JMenu it must be create a JFrame.

e Each JMenultem is an instance of JMenultem class attached to the JMenu.

e Shortcut keys to JMenu items can be added using the MenuShortcut class.
The MenuShortcut class represents a keyboard accelerator for JMenultem.
JMenu shortcuts are created using virtual keycodes.

e JPopupMenu is a menu which can be dynamically popped up at a specified
position within a component. It is implemented in java by class JPopupMenu.

3.6CHECK YOUR PROGRESS

1. A JMenultem that is a JMenu is called

2. Method attaches a JIMenuBar to a JFrame.

3. Menus require a JMenuBar object so they can be attached to a JFrame.
a. True b. False
4. Each JMenultem is an instance of

a. MenuShortcut b. JPopupMenu c. JMenultem D.None of the
class class above

3.7CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. submenu

2. setJMenuBar
3. a.true
4

. C. JMenultem

3.8 FURTHER READING

Many courses require students to read some extra material in addition to theirunits.
Sometimes a text requires 'readings’ which must be obtained by alllearners. Such

texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'.

68

On other occasions, students are expected toread widely from a variety of books, but

the readings are entirely optional.

These books are referred to as 'recommended texts' or background reading.The
distinction is important, as books are usually difficult to obtain and theavailability and
price of essential books must be checked before they arespecified as compulsory. A

course that has no recommended textbooks isknown as a self-contained course.
Following are some examples:

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU
Handbook5. New Delhi: Indira Gandhi National Open University.

Thompson, Bruce (2003). Introduction to open learning and instructional design for
openlearning. Vancouver: Commonwealth of Learning (COL).

3.9ASSIGNMENTS

1. JMenuBar is attached to the JFrame window using method.

2. A separator line can be added with the method.

3. Write a short note on JMenu.
4. Discuss about JPopupMenu class with example.

3.10ACTIVITIES

1. Create application to make two JMenu one for color and second for shape,
color menu contains JMenultem like red,green and blue. When user click on
JMenultem appropriate background color will change and Second JMenu is
shape and its JMenultem llike Rectangle , circle and oval,when user click on
JMenultem appropriate shape will draw on JFrame.

2. Create a JPopupMenu class, select its item and appropriate background

color is change .

69

Unit 4: Swing Tree and Table
Component

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3JTree

4.4 JTable

4.5 Letussum up

4.6 Check your Progress

4.7 Check your Progress: Possible Answers
4.8 Further Reading

4.9 Assignments

4.10 Activities

A

70

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e To understand how to make JTable .
e To put data in row and column using JTable.

e Working with JTree.

4.2 INTRODUCTION

This Chapter presenting overview of swing JTree and JTable Component. The JTree
class is used to display the tree structured data or hierarchical data. JTree is a
complex component.JTableUl component enables you to present data in a grid
withrows and columns.JTable wasdesigned according to the Model-View-Controller
(MVC) design pattern.

4.3 JTree

JTree is a Swing component with which we can display hierarchical data. JTree is
quite a complex component. A JTree has a 'root node' which is the top-most parent
for all nodes in the tree. A node is an item in a tree. A node can have many children
nodes. These children nodes themselves can have further children nodes. If a node
doesn't have any children node, it is called a leaf node.The leaf node is displayed
with a different visual indicator.it simply provides a view of the data.

A JTree object does not actually contain the data.it simply provides a view of the
data. JTree displays its data vertically. Each row displayed by the tree contains

exactly one item of data and that is called node.
Following are the constructors for JTree:

e JTree() : Creates a JTree with a sample model.

o JTree(Object[] value) : Creates a JTree with every element of the specified
array as the child of a new root node.

e JTree(TreeNode root) : Creates a JTree with the specified TreeNode as its

root, which displays the root node.

71

JTree depend on two models: TreeExpansionEvent, TreeModel and
TreeSelectionModel. A JTree generates avariety of events: TreeSelectionEvent, and
TreeModelEvent. TreeExpansionEvent events occur when a nodeis expanded or
collapsed. A TreeSelectionEvent is generated when the user selects ordeselects a
node within the tree. A TreeModelEvent is fired when the data or structure of thetree

changes.

The listeners for these events are TreeExpansionListener, TreeSelectionListener,
and TreeModelListener, respectively.

The steps to follow to use a tree:

1. Create an instance of JTree.

2. Create a JScrollPane and specify the tree as the object to be scrolled.

3. Add the tree to the scroll pane.

4. Add the scroll pane to the content pane.

A DefaultMutableTreeNode object is created for the topnode of the tree hierarchy.

To add further tree nodes are then created by calling add() method to the tree.

/[Program to create JTree is show below.
import javax.swing.*;
import java.awt.*;
import javax.swing.event.TreeSelectionEvent;
import javax.swing.event.TreeSelectionListener;
import javax.swing.tree.DefaultMutableTreeNode;
public class JTreeDemo extends JFrame implements TreeSelectionListener
{
JTree tree;

JLabel I11;

72

JTreeDemo()
{
/I Frame setting
setLayout(new FlowLayout());
setSize(400,400);
setTitle("Java program for JTree");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

setVisible(true);

/I Create top node of tree.

DefaultMutableTreeNode root=new DefaultMutableTreeNode("Tree Demo");
/I Create subtree of "A".

DefaultMutableTreeNode al=new DefaultMutableTreeNode("A");

root.add(al);

DefaultMutableTreeNode a2=new DefaultMutableTreeNode("Al1");

al.add(a2);

DefaultMutableTreeNode a3=new DefaultMutableTreeNode("A2");

al.add(a3);

/I Create subtree of "B".
DefaultMutableTreeNode bl1=new DefaultMutableTreeNode("B");

root.add(bl);

DefaultMutableTreeNode b2=new DefaultMutableTreeNode("B1");

73

bl.add(b2):

DefaultMutableTreeNode b3=new DefaultMutableTreeNode("'B2");

bl.add(b3);

Il Create the tree.
tree =new JTree(root);

/I Add the tree to a scroll pane.
JScrollPane js=new JScrollPane(tree);

add(js);

I1=new JLabel("You select");
add(l11);
tree.addTreeSelectionListener(this);

}

public void valueChanged(TreeSelectionEvent e)

{

I1.setText("You select :"+e.getPath());

}

public static void main(String argsl])

{

JTreeDemo jt=new JTreeDemo();

74

The Output of the program shown in Figure: 4.1

£ Java program for JTree _

=] Tree Demo
e CIA
(IR
[y Az
¢ 1.
[y Bl
CyB2

You select :[Tree Demo, B, B1]

Figure-4.1 Output of JTree.

4.4 JTable

The Swing class JTable is a powerful Ul component created for displaying tabular
data like aspreadsheet. The data is represented as rows and columns.

Following are the constructors for JTable:
JTable() : Creates a JTable with empty cells.
JTable(int rows, int cols) : Create a JTable with rows and cols of empty cells.

JTable(Obiject[][] rows, Object[] columns) Creates a table with the
specified data.

JTable have a three models. The first is the table model, which is defined by
theTableModel interface. This model defines those things related to displaying data
in atwo-dimensional format. The second is the table column model, which is
represented byTableColumnModel. JTable is defined in terms of columns, and it is
TableColumnModel thatspecifies the characteristics of a column. The third model

determines how items are selected, and it is specified by theListSelectionModel,

A JTable can generate several different events such as ListSelectionEvent and

TableModelEvent. A ListSelectionEvent is generatedwhen the user selects

75

something in the table. By default, JTable allows you to select one ormore complete

rows. A TableModelEvent is generated when that table’sdata changes in some way.

The steps to follow to use a JTable:
1. Create an instance of JTable.
2. Create a JScrollPane object, specifying the table as the object to scroll.
3. Add the table to the scroll pane.

4. Add the scroll pane to the content pane.

/I Program to create table using JTable
import javax.swing.*;

import java.awt.*;

import javax.swing.event.TableModelEvent;

import javax.swing.event.TableModelListener;

public class JTableDemo extends JFrame

{

JTableDemo()
{
/I Frame setting
setLayout(new FlowLayout());
setSize(700,400);
setTitle("Java program for JTable");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

/I Initialize column headings.

String[] colhead={"NO","NAME"};

/[Initialize data.

Object[][] rowdata={
{"101","Priya"},

76

{"102","Riya" },
{"103","Maan"},
{"104","Yashvi"},
{"105","Aarvi"}
I3
/Il Create the table.
JTable table = new JTable(rowdata, colhead);
/I Add the table to a scroll pane.
JScrollPane jsp = new JScrollPane(table);
/I Add the scroll pane to the content pane.
add(jsp);

}

public static void main(String argsl])

{
JTableDemo jtd=new JTableDemo();

}

The Output of the program shown in Figure: 4.2

MO MNAKME
101 Priya
102 Riva
[103 Maan
104 Yashvi
[108 Aanvi

Figure-4.2 Output of JTable.

45LET US SUM UP

e JTree is a Swing component that represent hierarchical data.

A JTree provides a view of the data.

User can expand individual subtree.

JTable represent data in rows and columns.

JTable was designed according to the Model-View-Controller (MVC) design
pattern, according to which components responsible for presentation (or the
view) are separated from components that store data (or the model) for that

presentation.

4.6CHECK YOUR PROGRESS

1.

2.

3.

4.

component isrepresenting a hierarchical view of data.

JTree is packaged

method receives the TreeSelectionEvent.

component is displays rows and columns of data.

4./CHECK YOUR PROGRESS: POSSIBLE ANSWERS

w0 N

JTree
Javax.swing
valueChanged()
JTable

4.8 FURTHER READING

Many courses require students to read some extra material in addition to theirunits.

Sometimes a text requires 'readings' which must be obtained by alllearners. Such

texts are usually referred to as 'essential texts'. Someinstitutions call them 'set texts'.

On other occasions, students are expected toread widely from a variety of books, but

the readings are entirely optional.

78

These books are referred to as 'recommended texts' or background reading.The
distinction is important, as books are usually difficult to obtain and theavailability and
price of essential books must be checked before they arespecified as compulsory. A

course that has no recommended textbooks isknown as a self-contained course.

Following are some examples:

Koul, B. N. and Ghaudhary, Sohanvir (1989). Self-instructional course units - IGNOU
Handbook5. New Delhi: Indira Gandhi National Open University.

Thompson, Bruce (2003). Introduction to open learning and instructional design for

openlearning. Vancouver: Commonwealth of Learning (COL).

4.9ASSIGNMENTS

. List out event of JTree class.
. Which model are used in JTree class.

. Write a step to create JTree.

1
2
3
4. Which model are used in JTable class.
5. List out the events of JTable class.

6

. Write a step to create JTable.

4.10ACTIVITIES

1. Write a program to create JTree with two subtrees like vegetable and fruit

and add more children in vegetable and fruit tree.

79

Block-2
JDBC (Java Database

Connectivity)

80

Unit 1: JDBC Introduction

Unit Structure

1.1

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

Learning Objectives

Introduction

JDBC Basics

Configuring ODBC Data Source

Let us sum up

Check your Progress

Check your Progress: Possible Answers
Further Reading

Assignments

Activities

81

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e JDBC connectivity so student can perform CRUD operations in java.
e JDBC Drivers, Statements and ResultSet for data movement.

e The importance of JDBC to access database with Java application

e Architecture of JDBC

1.2 INTRODUCTION

The role of JDBC is very important. It enables Java applications and applets to
connect to and access database. Lets take a look into the idea behind this.Different
applications have to talk different databases, some standard way is required for this
communication. In JDBC, the Java classes are available to provide access to any
ANSI SQL-2 compliant database. This block covers the introduction and basics of
JDBC. The next sections cover the JDBC driver and practical approaches for

Database access.

1.3 JDBC BASICS

The JDBC (Java Database Connectivity) APl defines interfaces and classes for
writing database applications in Java by making database connections. Using JDBC
you can send SQL, PL/SQL statements to almost any relational database. JDBC is a
Java API for executing SQL statements and supports basic SQL functionality. It
provides RDBMS access by allowing you to embed SQL inside Java code. Because
Java can run on a thin client, applets embedded in Web pages can contain
downloadable JDBC code to enable remote database access. You will learn how to
create a table, insert values into it, query the table, retrieve results, and update the
table with the help of a JDBC Program example.

82

Although JDBC was designed specifically to provide a Java interface to relational
databases, you may find that you need to write Java code to access non-relational

databases as well.

JDBC Architecture

o O W

Database

Figure 1: JDBC Architecture

The above diagram represents JDBC architecture. The Java application which is
intended to perform database operation needs to call JDBC library. JDBC library
comprises Java packages java.sql.* and javax.sgl.* . Both these packages contain
interfaces, classes, abstract classes and method to establish and maintain
connection with database. Apart from these various methods to manage database
transactions are available. JDBC loads a driver which talks to the database. Java
application calls the JDBC library. JDBC loads a driver which talks to the database.
We can change database engines without changing database code.

1.4Configuring ODBC Data Source

Click Start > Settings > Control Panel on the Windows menu. The Control Panel

window appears.

Control Panel

File Edit “iew Favorites Tools Help jq';‘“
- - — —— >
&) Back & l‘, ' Search || Folders = [x
address |[} Control Panel ~ | Go
& = D (5 s S =
Accessibility Acdd Add ar Administr...) Advertised Advertised et
Cptions Hardware FRemaowv... Tools Frograms Praogra...
; é - T
A antso ClearCase Date and Cell Display Folder
Zonnect Time Foderm-o... Dptions >0

Double-click Administrative Tools on the Control Panel window. The

Administrative Tools window appears.

83

*: Administrative Tools
File Edit “iew Favorites Tools Help

@Eack T & l?} jl Search || Folders

Address |4 administrative Toaols

» N @ B

Component Computer Event Local Microsoft
Services Managem..., . YiEwer Secur...

T

Microsoft Microsoft Microsoft Performa... Services
.MET Fra... .MET Fra... .MET Fra...

Double-click Data Sources (ODBC) on the Administrative Tools window. The ODBC

Data Source Administrator window appears.

£'0ODBC Data Source Administrator

System D ata Sources:

M ame | Diriver | Add...

An ODBC Syatem data source stores information about how to connect ta
the indicated data prowvider. & System data zource iz vizible to all uzerz
on thiz machine, including NT zervices.

] | Cancel Help

The Create New Data Source window appears.

Click the System DSN tab and click the Add button.

84

Create New Data Source E|

Select a driver for which pou want to set up a data
SOLMCE.

M ame | b A
Diriver da Microzoft para arquivos testo [*txt] 4
Diriver do Microzoft Access [*.mdb] q
Diriver do Microzoft dB aze [*.dbf)
Diriver do Microzoft Excel]” lz)
Diriver do Microzoft Paradow [*.db |
Diriver para o Microsoft Wizual FoxPro
Microzoft Acceszz Driver [*.mdb)
Microzoft Access-Treiber [”.mdb]%
Microzoft dB aze Driver [*.dbf]

L e

QT U O O I AR A N

W

I Finizh | Cancel |

Scroll down the list until you find the driver associated with the database for which
you want to create a data source, and then click Finish. The ODBC Setup dialog

box appears.

ODBC Microsoft Access Setup

Diata Source Name: ||
Dezcription; |
Cancel
Databaze
Databaze: Help
Select... | Create... | Bepair... Compact... |
Advanced...

Syztem Databasze

+ MNaong

" [Database:

Optianzs >

I

Note that the information on this dialog box, including the dialog box title, varies
based on the database driver you selected in the previous step. Here, we selected a
Microsoft Access database driver, so the information displayed in the dialog box is

specific to that database.

85

Enter a name in the Data Source Name field (for this example give the name
JdbcBasic). Click the Select button in the Database group box. The Select

Database dialog box appears.

Select Database _ ; |

X

D atabaze Mame Directories:
by
Cancel
= hh,
Help
[Bead Only
[Exclusive
Ligt Filez of Type: Dirives:

|

Arocess Databaszes [”.rrﬂ | B K '\'\.ntdata'\curp'\uﬂ Metwark...

Navigate until you find the database you want to use as the data source and click
OK. You are returned to the ODBC Setup dialog box. Click OK on the ODBC Setup

dialog box.

1.5LET US SUM UP

This chapter focus on data base connectivity using JDBC introductory. Using this,
student can learn the concept of JDBC and creating steps for ODBC object for DB

connectivity.

1.6 CHECK YOUR PROGRESS

What are the steps involved in establishing a connection?
How can you load the drivers?

What Class.forName will do while loading drivers?

LN

How can you make the connection?

86

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. This involves two steps (1)loading the driver and (2) making the connection.

2. Loading the driver or drivers you want to use is very simple and involves just
one line of code. If, for example, you want to use the JDBC-ODBC Bridge
driver, the following code will load it:

Eg.

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Your driver documentation will give you the class name to use. For instance, if
the class name is jdbc.DriverXYZ , you would load the driver with the following
line of code:

Eg.:Class.forName("jdbc.DriverXYZ");

3. It is used to create an instance of a driver and register it with the
DriverManager. When you have loaded a driver, it is available for making a
connection with a DBMS.

4. In establishing a connection is to have the appropriate driver connect to the
DBMS. The following line of code illustrates the general idea:

Eg.
String url = "jdbc:odbc:Fred";

Connection con = DriverManager.getConnection(url, "Fernanda”, "J8");

1.8 FURTHER READING

For more focus on JDBC read the book: Database Programming with JDBC and

Java by George Reese.

1.9 ASSIGNMENTS

1. What is the use of JDBC?
2. Describe the JDBC Architecture in detail.

1.10 ACTIVITIES

e Try to create ODBC object for Microsoft Access Database which you have

create for accessing data in java.

87

Unit 2: JDBC Queries ¥4

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Prepared Statement

2.4, Callable Statement

2.5. Letussumup

2.6. Check your Progress

2.7. Check your Progress: Possible Answers
2.8. Further Reading

2.9. Assignments

2.10. Activities

88

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e JDBC Connection to DB
e JDBC Statements

2.2 INTRODUCTION

The JDBC connectivity must require the JDBC connectivity. You should enlist the
driver in your program before you use it. Enlisting the driver is the procedure by
which the Oracle driver's class record is stacked into the memory, so it tends to be
used as a usage of the JDBC interfaces.

You have to do this enlistment just once in your program. You can enroll a driver in

one of two different ways.
1. Class.forName()

The most well-known way to deal with register a driver is to utilize Java's
Class.forName() technique, to powerfully stack the driver's class document
into memory, which naturally enlists it. This strategy is ideal since it enables

you to make the driver enlistment configurable and convenient.
Example:
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

2. DriverManager.registerDriver()

The second way to register a driver, is to wuse the static
DriverManager.registerDriver() method.

You should use the registerDriver() method if you are using a non-JDK

compliant JVM, such as the one provided by Microsoft.
Example:
Driver myDriver = new sun.jdbc.odbc.JdbcOdbcDriver();

DriverManager.registerDriver(myDriver);

89

Database URL Formulation:

you can build up connection utilizing by the DriverManager.getConnection()
technique. For simple reference, let me list the three over-burden

DriverManager.getConnection() strategies —
getConnection(String url)

getConnection(String url, Properties prop)
getConnection(String url, String client, String secret key)

Here each structure requires a database URL. A database URL is a location that

focuses to your database.

Detailing a database URL is the place the majority of the issues related with setting

up an association happens.
Example
Connection cn=DriverManager.getConnection(String url);

When connection is acquired we can cooperate with the database. The JDBC
Statement, CallableStatement, and PreparedStatement interfaces characterize the
techniques and properties that empower you to send SQL or PL/SQL directions and
get information from your database.

They additionally characterize techniques that assistance connect information type

contrasts among Java and SQL information types utilized in a database.

Statement object is used to execute a SQL statement and create statement by the

Connection object's createStatement() method.
Statement stmt= conn.createStatement();
Methods

boolean execute (String SQL): Returns a boolean value of true if a ResultSet
object can be retrieved; otherwise, it returns false. Use this method to execute SQL
DDL statements or when you need to use truly dynamic SQL.

int executeUpdate (String SQL): Returns the number of rows affected by the
execution of the SQL statement. Use this method to execute SQL statements for

90

which you expect to get a number of rows affected - for example, an INSERT,
UPDATE, or DELETE statement.

ResultSet executeQuery (String SQL): Returns a ResultSet object. Use this
method when you expect to get a result set, as you would with a SELECT statement.

2.3 PREPARED STATEMENT

The PreparedStatement interface extends the Statement interface, which gives you

added functionality with a couple of advantages over a generic Statement object.
This statement gives you the flexibility of supplying arguments dynamically.
String SQL = "Update stud SET pwd = ? WHERE id = ?";

stmt = conn.prepareStatement(SQL);

All parameters in JDBC are represented by the ? symbol, which is known as the
parameter marker. You must supply values for every parameter before executing the

SQL statement. The ? symbol represent values respectively.

The setXXX() methods bind values to the parameters, where XXX represents the
Java data type of the value you wish to bind to the input parameter. If you forget to
supply the values, you will receive an SQLEXxception.

2.3 CALLABLE STATEMENT

After the connection is established,creates the CallableStatement object, which
would be used to execute a call to a database stored procedure.

Syntax for Create Procedure in Database:
CREATE OR REPLACE PROCEDURE getStudName
(STUD_ID IN NUMBER, STUD_FIRST OUT VARCHAR) AS
BEGIN
SELECT first INTO STUD_FIRST

FROM Employees

91

WHERE ID = STUD_ID;
END;

The CallableStatement object can use the three types of parameters: IN, OUT, and
INOUT.

IN: A parameter whose value is unknown when the SQL statement is created. You

bind values to IN parameters with the setXXX() methods.

OUT: A parameter whose value is supplied by the SQL statement it returns. You

retrieve values from theOUT parameters with the getXXX() methods.

INOUT: A parameter that provides both input and output values. You bind variables
with the setXXX() methods and retrieve values with the getXXX() methods.

The Connection.prepareCall() method is used to instantiate a CallableStatement

object based on the preceding stored procedure —
Syntax:

CallableStatement cstmt = null;

try {
String SQL = "{call getStudName (?, ?)}";

cstmt = conn.prepareCall (SQL);

}
2.5 LET US SUM UP

This chapter focus on the different types of statements supported by java. The usage

of different statement and utilisation of it is discussed in this chapter.

2.6 CHECK YOUR PROGRESS

1. What is the use of PreparedStatement?

2. What is the use of CallableStatement?

92

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Refer 2.3
2. Refer 2.4

2.8 FURTHER READING

For more focus on JDBC read the book: Database Programming with JDBC and

Java by George Reese

2.9 ASSIGNMENTS

e Demonstrate use of Statement, Prepared Statement and Callable

Statement.

2.10 ACTIVITIES

e Try to create database and use different statement for data manipulation. Use

the Procedure also.

93

Unit 3: Exception Handling in

Unit Structure

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Learning Objectives

Introduction

SQLException Methods
Try...Catch...Finally with Example

Let us sum up

Check your Progress

Check your Progress: Possible Answers
Further Reading

Assignments

Activities

JDBC

3

94

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:
e JDBC SQLException methods
e The usage of Try...Catch... Finally Block

3.2 INTRODUCTION

Exception handling allows you to handle exceptional conditions such as program-

defined errors in a controlled fashion.

When an exception condition occurs, an exception is thrown. The term thrown
means that current program execution stops, and the control is redirected to the
nearest applicable catch clause. If no applicable catch clause exists, then the

program'’s execution ends.

JDBC Exception handling is very similar to the Java Exception handling but for
JDBC, the most common exception you'll deal with is java.sql. SQLException.

3.3SQLEXCEPTION METHODS

An SQLException can occur both in the driver and the database. When such an
exception occurs, an object of type SQLException will be passed to the catch clause.
The passed SQLException object has the following methods available for retrieving

additional information about the exception —

Method Description

getErrorCode() Gets the error number associated with the
exception.

getMessage() Gets the JDBC driver's error message for

an error, handled by the driver or gets the
Oracle error number and message for a
database error.

95

getSQLState()

Gets the XOPEN SQLstate string. For a
JDBC driver error, no useful information is
returned from this method. For a database
error, the five-digit XOPEN SQLstate code
is returned. This method can return null.

getNextException()

Gets the next Exception object in the
exception chain.

printStackTrace()

Prints the current exception, or throwable,
and it's backtrace to a standard error
stream.

printStackTrace(PrintStream s)

Prints this throwable and its backtrace to
the print stream you specify.

printStackTrace(PrintWriter w)

Prints this throwable and it's backtrace to
the print writer you specify.

3.4Try...Catch...Finally WITH EXAMPLE

By utilizing the information available from the Exception object, you can catch an

exception and continue your program appropriately. Here is the general form of a try

block —

try {

/I Your risky code goes between these curly braces!!!

}

catch(Exception ex) {

Il Your exception handling code goes between these

Il curly braces, similar to the exception clause

/l'in a PL/SQL block.

96

finally {
/I 'Your must-always-be-executed code goes between these

Il curly braces. Like closing database connection.

3.5 LET US SUM UP

This chapter focus on the exception handling in JDBC. It focus on exception handling
block.

3.6 CHECK YOUR PROGRESS

1. Write a short note on Exception Handling.
2. What is the use of Try...Catch...Finally block?

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Refer 3.3
2. Refer 3.4

3.8 FURTHER READING

For more focus on JDBC read the book: Database Programming with JDBC and

Java by George Reese

3.9 ASSIGNMENTS

e Demonstrate use of try catch block in JDBC program.

3.10 ACTIVITIES

e Try to create database with also use the Exception handling.

97

Unit 4: JDBC Driver

Unit Structure

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

Learning Objectives

Introduction

JDBC Driver Types

ResultSet

JDBC Example

Let us sum up

Check your Progress

Check your Progress: Possible Answers
Further Reading

Assignments

A

98

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e JDBC Drivers and which one is best

e Actual implementation of JDBC application

4.2 INTRODUCTION

JDBC is an API adds the database programming capabilities to Java.java.sql is
referred to as JDBC API. JDBC drivers are used by Java applications applets to
communicate with database servers.import java.sgl.*; The star (*) indicates that all

of the classes in the package java.sql are to be imported.

JDBC drivers are used by Java applications applets to communicate with database
servers.It accepts the Java call and converts them into database’s native language

specific calls and vice versa.

Database Server

Database L —> (Oracle/ MySQL/
Java Application/ Applet Driver Microsoft SQL

< Server etc)

Figure 2: JDBC Driver

Database driver plays a vital role it accepts Java language specific calls from the
Java application converts them into database’s native language specific call which
database engine can understand and converts database’s native language specific

responses into Java language specific response and delivers to Java application.

99

4.3JDBC Driver Types

JDBC drivers are classified into four categories.

e Type 1: IDBC-ODBC bridge driver: This is developed by Javasoft. It uses the
functionalities of Microsoft's ODBC driver to communicate with database
server. It is only as a temporary solution.

e Type 2: Native-API partly Java driver. These drivers use a server's native
protocol that talks to database servers.

e Type 3: JDBC-Net pure Java Driver: These are pure Java drivers use
standard protocol to communicate with database access server.

e Type 4: Native protocol pure Java driver: These are the pure Java driver uses

vender specific protocol to communicate with database servers.

The type four drivers are using as a current industrial standard.

Type 1 JDBC-ODBC Bridge driver

JDBC-ODBC Bridge driver The Type 1 driver translates all JDBC calls into ODBC
calls and sends them to the ODBC driver. ODBC is a generic APl. The JDBC-ODBC
Bridge driver is recommended only for experimental use or when no other alternative

is available.

Java Application
IDBC Api

N

Bridge Drirver

L

| DsmN |
h 3
| Diiiver |

ODEBC

Figure 3: JDBC Type 1 Driver

100

e Advantage

o The JDBC-ODBC Bridge allows access to almost any database,

since the database's ODBC drivers are already available.
e Disadvantages

o0 Since the Bridge driver is not written fully in Java, Type 1 drivers
are not portable.

0 A performance issue is seen as a JDBC call goes through the
bridge to the ODBC driver, then to the database, and this
applies even in the reverse process.

0 They are the slowest of all driver types.

0 The client system requires the ODBC Installation to use the
driver.

0 Not good for the Web.

Type 2Native-APl/partly Java driver

The distinctive characteristic of type 2 jdbc drivers are that Type 2 drivers convert
JDBC calls into database-specific calls i.e. this driver is specific to a particular
database. Some distinctive characteristic of type 2 jdbc drivers are shown below.

Example: Oracle will have oracle native api.

Java Apphication
JDBC Ap1

Native API Dirver

I

Natrve API

Figure 4: JDBC Type 2 Driver

101

e Advantage
0 The distinctive characteristic of type 2 jdbc drivers are that they
are typically offer better performance than the JDBC-ODBC
Bridge as the layers of communication (tiers) are less than that
of Type 1 and also it uses Native api which is Database specific.
e Disadvantages
0 Native APl must be installed in the Client System and hence
type 2 drivers cannot be used for the Internet.
o Like Type 1 drivers, it's not written in Java Language which
forms a portability issue.
o If we change the Database we have to change the native api as
it is specific to a database 4.
0 Mostly obsolete now
0 Usually not thread safe.

Type 3All Java/Net-protocol driver

Type 3 database requests are passed through the network to the middle-tier server.
The middle-tier then translates the request to the database. If the middle-tier server

can in turn use Typel, Type 2 or Type 4 drivers.

Java Apphcation
JDBC Ap1

"

Type 3 Dirver

‘L net comimon protocol

Middleware component [©F Server

Figure 5: JDBC Type 3 Driver

102

Advantage

(0}

(0]

This driver is server-based, so there is no need for any vendor
database library to be present on client machines.

This driver is fully written in Java and hence Portable. It is
suitable for the web.

There are many opportunities to optimize portability,
performance, and scalability.

The net protocol can be designed to make the client JDBC
driver very small and fast to load.

The type 3 driver typically provides support for features such as
caching (connections, query results, and so on), load balancing,
and advanced system administration such as logging and
auditing.

This driver is very flexible allows access to multiple databases
using one driver.

They are the most efficient amongst all driver types.

Disadvantages

(0]

It requires another server application to install and maintain.
Traversing the recordset may take longer, since the data comes

through the backend server.

Type 4Native-protocol/all-Java driver

The Type 4 uses java networking libraries to communicate directly with the database

server.

Java Applhcation
JDBC Api

N

Than' Ty pe 4 Diiver

Hative Protocol

Figure 6: JDBC Type 4 Driver

103

e Advantage

0 The major benefit of using a type 4 jdbc drivers are that they are
completely written in Java to achieve platform independence
and eliminate deployment administration issues. It is most
suitable for the web.

o Number of translation layers is very less i.e. type 4 JDBC drivers
don't have to translate database requests to ODBC or a native
connectivity interface or to pass the request on to another
server, performance is typically quite good.

0 You don’t need to install special software on the client or server.
Further, these drivers can be downloaded dynamically..

e Disadvantages

0 With type 4 drivers, the user needs a different driver for each

database.

Loading a database driver

The jdbc connection process, we load the driver class by calling Class.forName()
with the Driver class name as an argument. Once loaded, the Driver class creates an
instance of itself. A client can connect to Database Server through JDBC Driver.
Since most of the Database servers support ODBC driver therefore JDBC-ODBC

Bridge driver is commonly used.

The return type of the Class.forName (String ClassName) method is “Class”. Class is

aclassin
java.lang package.

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver”); //Or any other driver

}

catch(Exception x){

System.out.printin(“Unable to load the driver class!”);

104

Creating a oracle jdbc Connection

The JDBC DriverManager class defines objects which can connect Java applications
to a JDBC driver. DriverManager is considered the backbone of JDBC architecture.
DriverManager class manages the JDBC drivers that are installed on the system. Its
getConnection() method is used to establish a connection to a database. It uses a
username, password, and a jdbc url to establish a connection to the database and
returns a connection object. A jdbc Connection represents a session/connection with
a specific database. Within the context of a Connection, SQL, PL/SQL statements
are executed and results are returned. An application can have one or more
connections with a single database, or it can have many connections with different
databases. A Connection object provides metadata i.e. information about the

database, tables, and fields. It also contains methods to deal with transactions.
JDBC URL Syntax:: jdbc: <subprotocol>: <subname>

JDBC URL Example:: jdbc: <subprotocol>: <subname>¢Each driver has its own

subprotocol

*Each subprotocol has its own syntax for the source. We're using the jdbc odbc
subprotocol, so the DriverManager knows to use the sun.jdbc.odbc.JdbcOdbcDriver.

try{

Connection

dbConnection=DriverManager.getConnection(url,”loginName”,”"Password”)

}

catch(SQLException x){

System.out.printin(“Couldn’t get connection!”);

4.4JDBC RESULTSETS & STATEMENTS

Once a connection is obtained we can interact with the database. Connection

interface defines methods for interacting with the database via the established

105

connection. To execute SQL statements, you need to instantiate a Statement object

from your connection object by using the createStatement() method.
Statement statement = dbConnection.createStatement();
A statement object is used to send and execute SQL statements to a database.
Three kinds of Statements
e Statement: Execute simple sql queries without parameters.
Statement createStatement()
Creates an SQL Statement object.

e Prepared Statement: Execute precompiled sqgl queries with or without
parameters.
PreparedStatement prepareStatement(String sql)
returns a new PreparedStatement object. PreparedStatement objects are
precompiledSQL statements.

e Callable Statement: Execute a call to a database stored procedure.
CallableStatement prepareCall(String sql)
returns a new CallableStatement object. CallableStatement objects are SQL
stored procedure call statements.

ResultSet

Statement interface defines methods that are used to interact with database via the
execution of SQL statements. The Statement class has three methods for executing

statements:

executeQuery(), executeUpdate(), and execute(). For a SELECT statement, the
method to use is executeQuery . For statements that create or modify tables, the
method to use is executeUpdate. Note: Statements that create a table, alter a table,

or drop a table are all examples of DDL

statements and are executed with the method executeUpdate. execute() executes

an SQLstatement that is written as String object.

106

Creating a ResultSet

You create a ResultSet by executing a Statement or PreparedStatement, like this:
Statement statement = connection.createStatement(); ResultSet result =
statement.executeQuery("select * from people"); Or like this: String sqgl = "select *
from people"; PreparedStatement statement = connection.prepareStatement(sql);

ResultSet provides access to a table of data generated by executing a Statement.
The table rows are retrieved in sequence. A ResultSet maintains a cursor pointing to
its current row of data. The next() method is used to successively step through the
rows of the tabular results.

ResultSetMetaData Interface holds information on the types and properties of the

columns in a ResultSet. It is constructed from the Connection object.

ResultSet Types

A ResultSet can be of a certain type. The type determines some characteristics and
abilities of the ResultSet. Not all types are supported by all databases and JDBC
drivers. You will have to check your database and JDBC driver to see if it supports
the type you want to use. The DatabaseMetaData.supportsResultSetType(int type)
method returns true or false depending on whether the given type is supported or
not. The DatabaseMetaData class is covered in a later text. At the time of writing

there are three ResultSet types:

1. ResultSet. TYPE_FORWARD_ONLY

2. ResultSet. TYPE_SCROLL_INSENSITIVE
3. ResultSet. TYPE_SCROLL_SENSITIVE

The default type is TYPE_FORWARD_ONLY TYPE_FORWARD_ONLY means that
the ResultSet can only be navigated forward. That is, you can only move from row 1,
to row 2, to row 3 etc. You cannot move backwards in the ResultSet.

TYPE_SCROLL_INSENSITIVE means that the ResultSet can be navigated
(scrolled) both forward and backwards. You can also jump to a position relative to
the current position, or jump to an absolute position. The ResultSet is insensitive to
changes in theunderlying data source while the ResultSet is open. That is, if a record

in the ResultSet is changed in the database by another thread or process, it will not

107

be reflected in already opened ResulsSet's of this type. TYPE_SCROLL_SENSITIVE
means that the ResultSet can be navigated (scrolled) both forward and backwards.
You can also jump to a position relative to the current position, or jump to an
absolute position. The ResultSet is sensitive to changes in the underlying data
source while the ResultSet is open. That is, if a record in the ResultSet is changed in
the database by another thread or process, it will be reflected in already opened

ResulsSet's of this type.

4.5JDBC APPLICATION

Create Microsoft Access Database and table. Then create odbc object for

connectivity purpose. The code always resides between try..catch block.

Example 1: Display database metadata

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection connection=DriverManager.getConnection("jdbc:odbc:JdbcBasic");
DatabaseMetaData meta=connection.getMetaData();
System.out.print("Database: "+meta.getDatabaseProductName());
System.out.printin(" version "+meta.getDatabaseProductVersion());
System.out.printin("User name: "+meta.getUserName());
System.out.printin("Driver name:"+ meta.getDriverName());

System.out.printin("URL:"+meta.getURL());

Example 2: Display database data
Statement st=connection.createStatement();
ResultSet rs=st.executeQuery("select * from temp");
ResultSetMetaData rsm=rs.getMetaData();
int j=1;

inti=1;

108

int cocount=rsm.getColumnCount();
while(j<=cocount)
{

System.out.printin(rsm.getColumnName()));

j+t;
}
while(rs.next())
{

System.out.printin(rsm.getColumnName(2)+":"+rs.getString(2));

Ili++;

Example 3: CRUD Operations into mysql database
Insert Data:

Class.forName("com.mysgl.jdbc.Driver");

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou”, "root",

"root");
String sql= "insert into msc2 values(25,'Pray','Mehsana’)";
Statement st=cn.createStatement();
st.executeUpdate(sql);
cn.close();
connection.close();
Delete Data:

Connection

cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","root");

Statement st=cn.createStatement();

109

st.executeUpdate("delete from msc2");

Display Data:

Connection
cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root", "root");

Statement st=cn.createStatement();
ResultSet rs=st.executeQuery("select * from msc2");
while (rs.next())
{
System.out.printin(rs.getString(2));
int a= Integer.parselnt(rs.getString(1));

System.out.printin(a);

cn.close();

Update Data:

Connection
cn=DriverManager.getConnection("jdbc:mysql://localhost:3306/baou","root","root");

Statement st=cn.createStatement();

st.executeUpdate("update msc2 set name=abc where id=25");

4.6 LET US SUM UP

This chapter focus on data base connectivity using JDBC.

110

4.7 CHECK YOUR PROGRESS

© © N o gk~ wDdhPE

How can you create JDBC statements?

How can you retrieve data from the ResultSet?

What are the different types of Statements?

How can you use PreparedStatement?

What setAutoCommit does?

How to call a Strored Procedure from JDBC?

How to Retrieve Warnings?

How can you Move the Cursor in Scrollable Result Sets?

What's the difference between TYPE_SCROLL_INSENSITIVE, and
TYPE_SCROLL_SENSITIVE?

10.How to Make Updates to Updatable Result Sets?

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1.

Create JDBC statements:

A Statement object is what sends your SQL statement to the DBMS. You
simply create a Statement object and then execute it, supplying the
appropriate execute method with the SQL statement you want to send. For a
SELECT statement, the method to use is executeQuery. For statements that
create or modify tables, the method to use is executeUpdate.

Eg.

It takes an instance of an active connection to create a Statement object. In
the following example, we use our Connection object con to create the
Statement object stmt :

Statement stmt = con.createStatement();

Retrieve data from the ResultSet:
Step 1.

JDBC returns results in a ResultSet object, so we need to declare an instance
of the class ResultSet to hold our results. The following code demonstrates

declaring the ResultSet object rs.

111

Eg.

ResultSet rs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM
COFFEES");

Step2.
String s = rs.getString("COF_NAME");

The method getString is invoked on the ResultSet object rs , so getString will
retrieve (get) the value stored in the column COF_NAME in the current row of

Is.

. Types of Statements:
1.Statement (use createStatement method)
2. Prepared Statement (Use prepareStatement method) and

3. Callable Statement (Use prepareCall)

. Use PreparedStatement:

This special type of statement is derived from the more general class,
Statement.If you want to execute a Statement object many times, it will
normally reduce execution time to use a PreparedStatement object
instead.The advantage to this is that in most cases, this SQL statement will be
sent to the DBMS right away, where it will be compiled. As a result, the
PreparedStatement object contains not just an SQL statement, but an SQL
statement that has been precompiled. This means that when the
PreparedStatement is executed, the DBMS can just run the
PreparedStatement 's SQL statement without having to compile it first.

Eg.

PreparedStatement updateSales = con.prepareStatement("UPDATE
COFFEES SET SALES = ? WHERE COF_NAME LIKE ?");

. When a connection is created, it is in auto-commit mode. This means that
each individual SQL statement is treated as a transaction and will be
automatically committed right after it is executed. The way to allow two or
more statements to be grouped into a transaction is to disable auto-commit

mode

112

Eg.

con.setAutoCommit(false);

Once auto-commit mode is disabled, no SQL statements will be committed
until you call the method commit explicitly.

Eg.

con.setAutoCommit(false);

PreparedStatement updateSales = con.prepareStatement(

"UPDATE COFFEES SET SALES =? WHERE COF_NAME LIKE ?");
updateSales.setint(1, 50);

updateSales.setString(2, "Colombian");
updateSales.executeUpdate();

PreparedStatement updateTotal = con.prepareStatement("UPDATE
COFFEES SET TOTAL = TOTAL + ? WHERE COF_NAME LIKE ?");

updateTotal.setint(1, 50);
updateTotal.setString(2, "Colombian");
updateTotal.executeUpdate();
con.commit();

con.setAutoCommit(true);

. Call a Strored Procedure from JDBC:

The first step is to create a CallableStatement object. As with Statement an
and PreparedStatement objects, this is done with an open Connection object.
A CallableStatement object contains a call to a stored procedure;

Eg.

CallableStatement cs = con.prepareCall("{call SHOW_SUPPLIERS}");

ResultSet rs = cs.executeQuery();

. Retrieve Warnings:

SQLWarning objects are a subclass of SQLException that deal with database
access warnings. Warnings do not stop the execution of an application, as
exceptions do; they simply alert the user that something did not happen as

113

planned.A warning can be reported on a Connection object, a Statement
object (including PreparedStatement and CallableStatement objects), or a
ResultSet object. Each of these classes has a getWarnings method, which
you must invoke in order to see the first warning reported on the calling object
Eg.

SQLWarning warning = stmt.getWarnings();

if (warning !'= null) {

System.out.printin("\n---Warning---\n");

while (warning = null) {

System.out.printin("Message: " + warning.getMessage());
System.out.printin("SQLState: " + warning.getSQLState());
System.out.print("Vendor error code: ");
System.out.printin(warning.getErrorCode());

System.out.printin("™);

warning = warning.getNextWarning();

}
}

. Move the Cursor in Scrollable Result Sets? :

One of the new features in the JDBC 2.0 API is the ability to move a result
set's cursor backward as well as forward. There are also methods that let you
move the cursor to a particular row and check the position of the cursor.

Eg.

Statement stmt =
con.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,

ResultSet. CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM
COFFEES");

The first argument is one of three constants added to the ResultSet API to
indicate the type of a ResultSet object: TYPE_FORWARD_ONLY,
TYPE_SCROLL_INSENSITIVE , and TYPE_SCROLL_SENSITIVE .

The second argument is one of two ResultSet constants for specifying
whether a result set is read-only or updatable: CONCUR_READ_ONLY and
CONCUR_UPDATABLE . The point to remember here is that if you specify a

114

type, you must also specify whether it is read-only or updatable. Also, you
must specify the type first, and because both parameters are of type int , the
compiler will not complain if you switch the order.

Specifying the constant TYPE_FORWARD_ONLY creates a nonscrollable
result set, that is, one in which the cursor moves only forward. If you do not
specify any constants for the type and updatability of a ResultSet object, you
will automatically get one that is TYPE _FORWARD_ONLY and
CONCUR_READ_ONLY

. TYPE_SCROLL_INSENSITIVE v/sTYPE_SCROLL_SENSITIVE.

You will get a scrollable ResultSet object if you specify one of these ResultSet
constants.The difference between the two has to do with whether a result set
reflects changes that are made to it while it is open and whether certain
methods can be called to detect these changes. Generally speaking, a result
set that is TYPE_SCROLL_INSENSITIVE does not reflect changes made
while it is still open and one that is TYPE_SCROLL_SENSITIVE does. All
three types of result sets will make changes visible if they are closed and then
reopened.

Eg.

Statement stmt =
con.createStatement(ResultSet. TYPE_SCROLL_INSENSITIVE,

ResultSet. CONCUR_READ_ONLY);

ResultSet srs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM
COFFEES");

srs.afterLast();

while (srs.previous()) {

String name = srs.getString("COF_NAME");

float price = srs.getFloat("PRICE");

System.out.printin(name + " " + price);

}

115

10.Make Updates to Updatable Result Sets:
Another new feature in the JDBC 2.0 API is the ability to update rows in a
result set using methods in the Java programming language rather than
having to send an SQL command. But before you can take advantage of this
capability, you need to create a ResultSet object that is updatable. In order to
do this, you supply the ResultSet constant CONCUR_UPDATABLE to the
createStatement method.
Eg.
Connection con =
DriverManager.getConnection("jdbc:mySubprotocol:mySubName");
Statement stmt =
con.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATABLE);
ResultSet uprs = stmt.executeQuery("SELECT COF_NAME, PRICE FROM
COFFEES");

4.9 FURTHER READING

e Refer Tutorial Point

4.10 ASSIGNMENTS

e Create an android application for CRUD operations in JAVA

116

Block-3

Java Network Programming

117

Unit 1. Networking Basics & 1

Socket Programming

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Socket Programming

1.4. Client Server Communication using Socket
1.5. Letussumup

1.6. Check your Progress

1.7. Check Your Progress:Possible Answers
1.8. Further Reading

1.9. Assignments

1.10. Activities

118

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e Learn Java networking concepts
e Java client server communication

e Socket Programming

1.2 INTRODUCTION

The term network programming refers to writing programs that execute across
multiple devices (computers), in which the devices are all connected to each other
using a network.

The java.net package of the J2SE APIs contains a collection of classes and
interfaces that provide the low-level communication details, allowing you to write
programs that focus on solving the problem at hand.

The java.net package provides support for the two common network protocols -

e TCP - TCP stands for Transmission Control Protocol, which allows for
reliable communication between two applications. TCP is typically used over
the Internet Protocol, which is referred to as TCP/IP.

« UDP - UDP stands for User Datagram Protocol, a connection-less protocol
that allows for packets of data to be transmitted between applications.

1.3 SOCKET PROGRAMMING

Java Socket programming is used for communication between the applications
running on different JRE. Java Socket programming can be connection-oriented or

connection-less.

Socket and ServerSocket classes are used for connection-oriented socket
programming and DatagramSocket and DatagramPacket classes are used for

connection-less socket programming.

119

The client in socket programming must know two information:
1. IP Address of Server, and

2. Port number.
Socket class

A socket is simply an endpoint for communications between the machines. The
Socket class can be used to create a socket. The following are the constructors.

public Socket(String host, int port) throws UnknownHostException, IOException
public Socket(InetAddress host, int port) throws IOException

public Socket(String host, int port, InetAddress localAddress, int localPort) throws
IOException

public Socket(InetAddress host, int port, InetAddress localAddress, int localPort)

throws IOException
public Socket()

Important methods

Sr.No. Method & Description

public void connect(SocketAddress host, int timeout) throws
IOException

1 This method connects the socket to the specified host. This method is
needed only when you instantiate the Socket using the no-argument

constructor.

public InetAddress getinetAddress()

2 This method returns the address of the other computer that this socket is

connected to.

120

public int getPort()

3
Returns the port the socket is bound to on the remote machine.
public int getLocalPort()
4
Returns the port the socket is bound to on the local machine.
public SocketAddress getRemoteSocketAddress()
5
Returns the address of the remote socket.
public InputStream getinputStream() throws IOException
6 Returns the input stream of the socket. The input stream is connected to
the output stream of the remote socket.
public OutputStream getOutputStream() throws IOException
7 Returns the output stream of the socket. The output stream is connected
to the input stream of the remote socket.
public void close() throws IOException
8 Closes the socket, which makes this Socket object no longer capable of

connecting again to any server.

ServerSocket class

The ServerSocket class can be used to create a server socket. This object is used to
establish communication with the clients. The following are the constructors.

public ServerSocket(int port) throws IOException

public ServerSocket(int port, int backlog) throws IOException

public ServerSocket(int port, int backlog, InetAddress address) throws IOException

121

public ServerSocket() throws IOException

Important methods

Sr.No.

Method & Description

public int getLocalPort()

Returns the port that the server socket is listening on. This method
is useful if you passed in 0 as the port number in a constructor and

let the server find a port for you.

public Socket accept() throws IOException

Waits for an incoming client. This method blocks until either a
client connects to the server on the specified port or the socket
times out, assuming that the time-out value has been set using the
setSoTimeout() method. Otherwise, this method blocks indefinitely.

public void setSoTimeout(int timeout)

Sets the time-out value for how long the server socket waits for a

client during the accept().

public void bind(SocketAddress host, int backlog)

Binds the socket to the specified server and port in the
SocketAddress object. Use this method if you have instantiated the

ServerSocket using the no-argument constructor.

1.4CLIENT SERVER COMMUNICATION USING SOCKET

Example: Java socket programming in which client sends a text and server receives

it.

122

MyServer.java

import java.io.*;

import java.net.*;

public class MyServer {

public static void main(String[] args){

try{

ServerSocket ss=new ServerSocket(6666);
Socket s=ss.accept();//establishes connection
DatalnputStream dis=new DatalnputStream(s.getinputStream());
String str=(String)dis.readUTF();
System.out.printin("message= "+str);
ss.close();

}catch(Exception e){System.out.printin(e);}

}
}

MyClient.java

import java.io.*;

import java.net.*;

public class MyClient {

public static void main(String[] args) {

try{

Socket s=new Socket("localhost",6666);

DataOutputStream dout=new DataOutputStream(s.getOutputStream());

dout.writeUTF("Hello Server");

123

dout.flush();

dout.close();

s.close();

}catch(Exception e){System.out.printin(e);}

}
}

Run the program:

. _ ——— — —
E"‘ Somituprtemn 1t e = - W ey tem P eve L st el
HMicroso Hindows Version 6.1.76-0 Microesoft Windows ersion 6. 1. 7600 -]
Copyright (c) Z20@% Microsoft Corp | iCup-,-l-Lght (c) 209 Microsoft Caorpor {
lc Users“SONOO>cd™ C:vlsers“SONOO>cd™ |
',C twIred new C iwPod new
Civnew? javac MyServer. java IC: \rewd Jlavac MyClient . jawa « M
C:wnew? java MyServer Civmewd java MyClient
message= Hello Server |

C i snewd

T e

1.5LET US SUM UP

This chapter focus on java networking and socket programming.

1.6CHECK YOUR PROGRESS

1. Explain Java Networking in brief.
2. Explain Socket Class in brief.

3. Explain ServerSocket class in brief.

1.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Refer 1.2
2. Refer 1.3
3. Refer 1.3

124

1.8 FURTHER READING

e For more detail refer Socket Programming in java book.

1.9 ASSIGNMENTS

1. Explain Java Networking in brief.
2. Explain Socket Class in brief.

3. Explain ServerSocket class in brief.

1.10 ACTIVITIES

e Create Client Server communication using in java.

125

Unit 2: Introduction of RMI

Unit Structure

2.1.

2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

Learning Objectives

Introduction

RMI Architecture

RMI Registry & Method

Let us sum up

Check your Progress

Check your Progress: Possible Answers
Further Reading

Assignments

126

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e RMI introduction

e RMI Architecture

2.2 INTRODUCTION

The RMI (Remote Method Invocation) is an API that provides a mechanism to create
distributed application in java. The RMI allows an object to invoke methods on an

object running in another JVM.

The RMI provides remote communication between the applications using two objects

stub and skeleton.
To write an RMI Java application, you would have to follow the steps given below -

« Define the remote interface

o Develop the implementation class (remote object)
« Develop the server program

e Develop the client program

« Compile the application

o Execute the application

2.3 RMI ARCHITECTURE

RMI Feature Gives Java Programmers Ability To Distribute Computing Across The
Network. In the RMI model, the server defines objects that the client can use
remotely RMI Defines Remote Interface That can Be Used To Create Remote
Object. Client can Invoke Method of Remote Object the Same Syntax That is Use to
Invoke Method on Local Object. RMI APl Provides Classes And Methods That
Handles All Communication and Parameter Referencing Requirement. RMI Also

Handles Serialization of Object.

127

—_— e —

< Client > < Server O

Stub Skeleton
Remote Remote
Reference - - - > Reference
Layer Virtual Connection Laver

Transport
Layer

Transport
Layer

Network Connection

Figure 1: RMI Architecture

Stub:

e Stub basically act as a remote object proxies that are local to client.

e Stub is binding a call to server and find it.

e |t also formatting data

e Ex: Marshalling And DMarshalling.

e Marshalling means converted message in proper format.

e The rmic tool will took specified class and generate a stub file for class which
exposed all the methods to be used by clients. Stub name and class name is

same.

Marshalling:
Example of Marshalling
host 1:------ 1,1.2,1.3,1.4,.1.5-----------
Marshalling this data in binary format
010101010101010------

UnMarshalling this data into original format

Host 2:------1,1.2,1.3,1.4,1.5-------- _

128

Skeleton:

The stub resides on the client machine and the skeleton resides on the server
machine.

When a client invokes a server method, the JVM looks at the stub to do type
checking. The request is then routed to the skeleton on the server, which in
turn calls the appropriate method on the server object.

In other words, the stub acts as a proxy to the skeleton and the skeleton is a
proxy to the actual remote method.

A skeleton is a helper class that is generated for RMI to use. The skeleton
understands how to communicate with the stub across the RMI link.

The skeleton carries on a conversation with the stub; it reads the parameters
for the method call from the link, makes the call to the remote service
implementation object, accepts the return value, and then writes the return

value back to the stub.

Remote Reference Layer:

The Remote Reference Layers defines and supports the invocation semantics
of the RMI connection. This layer provides a RemoteRef object that
represents the link to the remote service implementation object.

The stub objects use the the RemoteRef object understands the invocation
semantics for remote services.

RMI provides only one way for clients to connect to remote service
implementations: a multi cast, point-to-point connection. Before a client can
use a remote service, the remote service must be instantiated on the server
and exported to the RMI system. (If it is the primary service, it must also be
named and registered in the RMI Registry).

Transport Layer:

The Transport Layer makes the connection between JVMs. All connections
are stream-based network connections that use TCP/IP.

Even if two JVMs are running on the same physical computer, they connect
through their host computer's TCP/IP network protocol stack.

RMI uses a wire level protocol called Java Remote Method Protocol (JRMP).
JRMP is a proprietary, stream-based protocol.

129

http://java.sun.com/developer/onlineTraining/rmi/RMI.html�

Sun and IBM have jointly worked on the next version of RMI, called Rmi-llOP,

which will be available with Java 2 SDK Version 1.3. The interesting thing

about RMI-IIOP is that instead of using JRMP, it will use the Object Management

Group (OMG) Internet Inter-ORB Protocol, 1IOP, to communicate between

clients and servers.

2.4RM|I REGISTRY & METHOD

The server object makes methods available for remote invocation by binding it to a

name in the RMI Registry. The client object, can thus check for the availability of a

certain server object by looking up its name in the registry. The RMI Registry thus

acts as a central management point for Java-RMI. The RMI Registry is thus a simple

name repository. It does not address the problem of actually invoking remote

methods.

Package
Import rmi. *;
Import rmi. server.*;
Exception
RemoteException
Method
Rebind()
Bind()

Number of Steps:

Define Interface for the remote classes.

Create and Compile Implementation Classes for The Remote Classes.

Create Stub and Skeleton Classes using rmic Command.
Create and Compile Server Application.

Start The RMI Registry and Server Application

Create And Compile a Client Program to Access Remote Object
Test Client

130

http://java.sun.com/developer/onlineTraining/rmi/RMI.html�
http://www.omg.org/�
http://www.omg.org/�
http://www.omg.org/�

2.5 LET US SUM UP

This chapter focus on the RMI architecture.

2.6 CHECK YOUR PROGRESS

1. What is the use of RMI?
2. Explain the RMI Architecture in brief.

2./CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Refer 2.3
2. Refer 2.4

2.8 FURTHER READING

For more focus on RMI read RMI Programming in java.

2.9 ASSIGNMENTS

e Demonstrate use of RMI Architecture.

131

Unit 3: RMI Implementationand

Client-Server Programming

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Developing the Implementation Class
3.4. Developing Server — Client Program
3.5. Client-Server Programming using RMI
3.6. Letussumup

3.7. Check your Progress

3.8. Check your Progress: Possible Answers
3.9. Further Reading

3.10. Activities

132

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

e RMI Implementation

e Create RMI client server programming

3.2 INTRODUCTION

A remote interface provides the description of all the methods of a particular remote

object. The client communicates with this remote interface.

To create a remote interface —

o Create an interface that extends the predefined interface Remote which
belongs to the package.

e Declare all the business methods that can be invoked by the client in this
interface.

e Since there is a chance of network issues during remote calls, an exception

named RemoteException may occur; throw it.

3.3DEVELOPING THE IMPLEMENTATION CLASS

We need to implement the remote interface created in the earlier step. (We can
write an implementation class separately or we can directly make the server
program implement this interface.)

To develop an implementation class -

« Implement the interface created in the previous step.

« Provide implementation to all the abstract methods of the remote interface.

133

3.4ADEVELOPING SERVER - CLIENT PROGRAM

An RMI server program should implement the remote interface or extend the

implementation class. Here, we should create a remote object and bind it to
the RMIregistry.

To develop a server program -

Create a client class from where you want invoke the remote object.

Create a remote object by instantiating the implementation class as shown
below.

Export the remote object using the method exportObject() of the class
named UnicastRemoteObject which belongs to the

package java.rmi.server.

Get the RMI registry using the getRegistry() method of
the LocateRegistry class which belongs to the package java.rmi.registry.

Bind the remote object created to the registry using the bind()method of the
class named Registry. To this method, pass a string representing the bind

name and the object exported, as parameters.

Write a client program in it, fetch the remote object and invoke the required method
using this object.

To develop a client program -

Create a client class from where your intended to invoke the remote object.

Get the RMI registry using the getRegistry() method of

the LocateRegistry class which belongs to the package java.rmi.registry.

Fetch the object from the registry using the method lookup() of the
class Registry which belongs to the package java.rmi.registry.

To this method, you need to pass a string value representing the bind name

as a parameter. This will return you the remote object.
The lookup() returns an object of type remote, down cast it to the type Hello.

Finally invoke the required method using the obtained remote object.

134

3.5 CLIENT-SERVER PROGRAMMING USING RMI

Create Interface:
import java.rmi.*;
public interface RMlInter extends Remote{

public int sum(int a,int b) throws RemoteException;

Implement Interface:

import java.rmi.*;

import java.rmi.server.*;

public class RMlInterimpl extends UnicastRemoteObject implements RMlInter

{
public RMIInterimpl() throws RemoteException{

}
public int sum(int a,int b) throws RemoteException{

return(a+b);

Create Server:
import java.rmi.*;
/limport java.rmi.regisrty.

public class RMlInterServer{

public static void main(String args[]){
RMIInterlmpl rii;
try{
rii= new RMlInterimpl();
Naming.rebind("RMlinterServer",rii);

}

catch(Exception e){

}

135

Create Client:
import java.rmi.*;
/limport java.rmi.regisrty.
public class RMlInterClient {
public static void main(String args[]){

try{
String url="RMlInterServer";
RMilInter rmi=(RMIlInter)Naming.lookup(url);
System.out.printin(rmi.sum(10,20));

}

catch(Exception e){

e.printStackTrace();

How to RUN?
Within same folder you can see four files

1. Remote Interface : Hl.java

2. Remote Interface Definition: HD.java
2. Server : HS.java

3. Client : HC.java

Set all required paths to run java program.

Now carefully these following commands in given order
1. javac HD.java , javac Hl.java

2. javac HS.java

3. rmic HS

4. javacHC.java

5. close window.

136

Open another command window and type.
1. rmiregistry

2. minimize this window (remember dont close this window)

open another command window and type
1. policytool
and you can see java policy setting tool
1.1 click on add policy entry
1.2 another form will be displayed within that form click on add permission
1.3 again another form will be diplayed within that click on permission list box
and select "AllPermission" then click ok.
1.4 then click "done"
1.5 then select file->save menu and give name any name for ex: mypolicy then
close this form (Remember svae this file to the same location at where your
RMI files saved)

1.6 close this window

open command window apply the following command

1 java -Djava.security.policy=mypolicy HS

Open another command apply the following command

1 java -Djava.security.policy=mypolicy HC

3.6 LET US SUM UP

This chapter focus on the RMI implementation and RMI programming example.

3.7 CHECK YOUR PROGRESS

1. Write a short note on RMI Client — Server Programming.

3.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Refer 3.3 &Refer 3.4

137

3.9 FURTHER READING

e For more detail refer RMI implementation.

® Refer Tutorial Point RMI Practical.

3.10 ACTIVITIES

e Create an RMI application for client server communication using java RMI.

138

Block-4
Servilet and JSP

139

Unit 1: Introduction of Servlet

Unit Structure

1.1

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

1.10.

Learning Objectives
Introduction to Servlet

Create your first Servlet
Servlet Lifecycle

Servlet Life Cycle Methods
Types of Servlets

Servlet Request and Response
Cookie in Servlet

Session Management

Let us sum up

1

140

1.1 LEARNING OBJECTIVE

After going through this unit, you should be able to know:

e how to install the Servlet Engine / Web Server;

e Dbasics of Servlet and how it is better than other server extensions;

e how the Servlet engine maintains the Servlet Life Cycle;

e where do we use HttpServletRequest Interface and some of its basic
methods;

e where do we use HttpServletResponse Interface and some of its basic
methods;

e what is session tracking;

e different ways to achieve Session Tracking like HttpSession & persistent
cookies, and

e different ways to achieve inter-servlet communication.

1.2 INTRODUCTION TO SERVLET

Servlet technology is used to create a dynamic web application, resides at server
side and generates a dynamic web page. The technology is robust and scalable as it
is based on the Java language. Servlet can be described in many ways, depending
on the context, the servlet is a technology used to create a web application, it is
mainly used to write a business logic part in an enterprise web application.

Before Servlet, CGI (Common Gateway Interface) scripting language was common
as a server-side programming language. However, there were many disadvantages

to this technology.

O
Q
@

Ccal
Shell O Program

CGl
Shell &

Request

Request

Request

CGl
Shell O

Processor Load

141

There are many problems in CGI technology If the number of clients increases, it
takes more time to prepare and response the users. For each user request, web
server has to starts a new process, and a web server have limited memory space to

start a new processes. It uses platform dependent language such as C++, Perl.

Over the CGI, the Servlet has many advantages, the web container creates threads
for handling the multiple requests to the Servlet. Threads have many benefits over
the processes such as they share a common memory area, lightweight, cost of

communication between the threads are low.

Web Server

5ﬁ\.ren Container

Thread

Request
Request

YyYvYy

Request

Processor Load \

o ARNEEEN

The advantages of Servlet are as follows:

e Better performance: because it creates a thread for each request, not

process.
e Portability: because it uses Java language.

e Robust: JVM manages Servlets, so we don't need to worry about the memory

leak and garbage collection.
e Secure: because it uses Java language.

There are many interfaces and classes in the Servlet APl such as Servlet,
GenericServlet, HttpServlet, ServletRequest, ServietResponse, etc. GenericServlet
is not specific to any protocol while HttpServlet is specific to the HTTP protocol and
use to create a Servlet that handles the HTTP requests.

1.3 CREATE YOUR FIRST SERVLET

The javax.servlet and javax.servlet.http packages represent interfaces and classes
for servlet API. The javax.servlet package contains many interfaces and classes that

are used by the servlet or web container. These are not specific to any protocol. The

142

javax.servlet.http package contains interfaces and classes that are responsible for

requests only.

HelloWorld.java

Write the first servlet program, save it as HelloWorld.java

import java.io.|lOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServiletResponse;

publicclassHelloWorldextendsHttpServlet {

publicHelloWorld() {
super();

}

protectedvoiddoGet(HttpServletRequest request, HitpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();
out.printin("<h1>Hello World!</h1>");

}

protectedvoiddoPost(HttpServietRequest request, HttpServietResponse response)
throws ServletException, IOException {
doGet(request, response);

}
}

Like other java programs, you can compile the servlet program as well through the
command line using java compiler.
Desktop mantavyagajjar$ javac HelloWorld.java

You may get an error, as java servlet is not a normal java program it runs on the web
server we need to add the support for java web API, a servlet-api.jar library should
be added in the CLASSPATH

143

The servlet-api.jar can be found as a part of the web server or web container or can

be downloaded from external source too.

To test the output of Servlet, you have to deploy servlet into a web server or web
containers such as JBoss or Tomcat. The most popular and lightweight web server
and the container is Apache Tomcat.

Download Apache Tomcat

Download the Apache Tomcat server from https://tomcat.apache.org/download-

90.cqi, the current version is 9.0. If you are using windows platform choose

http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/bin/apache-tomcat-

9.0.17-windows-x64.zip. If you are working on Linux or MacOS, the best option is to

download the source codehttp://mirrors.estointernet.in/apache/tomcat/tomcat-

9/v9.0.17/src/apache-tomcat-9.0.17-src.tar.qz.

¢ i Apache Tomcat® @ l APACHE

%0 Tomcat 9 Software Downloads

Apache Tomcat Vielcome to the Apache Tamcat™ 5.x software download page, This page provides downlaad Enks far obtaining the latest version of Tomeat 9.0.x software, as well as links o the archives

Home of clder releases.
Taglibs
Maven Plugin Quick Navigation
KEYS | 20,17 | Browse | frchives
Release Integrity
You must yerify the integriny of the downloaded files, We provide OpenPGP signatures for every releaze file, This signature should be matched againgt the KEYS file which containg the

OpenPGP keys of Tomeats Release Managers, We 3iso provice SHA-512 chacksums for every release file, After you download the file, you should calculate 3 chacksum for your
downioad, and make sure it is the same as aurs.

Mirrars
ou are curren tly using H yau encouriter a prablem with this mirror, please select anather mirror. If all mirrors are failing. there are backup
i d of the mirrors list) that should be available
Other mirrors: | hispminon ssteintamat. bns pachal B crang
9.017
Presentations Please see the REAGME file for packaging infarmation. It explains what every distribution contains.
Problems? Binary Distributions
Security Regorts
Find help
A

Bu Database
RC

Get Involved

Overvimw

o far ha512)
Apache Tomcat Website Home Page - http://tomcat.apache.org/

Install the Tomcat server or extract the source depending on the platform you use.
You will get the list of directories after the installation of Tomcat Server.

144

https://tomcat.apache.org/download-90.cgi�
https://tomcat.apache.org/download-90.cgi�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/bin/apache-tomcat-9.0.17-windows-x64.zip�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/bin/apache-tomcat-9.0.17-windows-x64.zip�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/src/apache-tomcat-9.0.17-src.tar.gz�
http://mirrors.estointernet.in/apache/tomcat/tomcat-9/v9.0.17/src/apache-tomcat-9.0.17-src.tar.gz�

o0 ® |29 apache-tomcat-8.0.17
> Bl=0- = #- Q
Favourites
@ AirDrop
LE} Recents
43 Applications bin conf lity logs temp webapps

=2 Desktop
@ Documents
O Downloads

TXT TXT

fil mantavyagajiar work CONTRIBUTING. README.md BUILDING.txt RUNNING.xt LICENSE

md
iCloud

<7 iCloud Drive

Locations

® Remote Di
&) Remote Lise NOTICE RELEASE-NOTES

@ Network

Tags

The directory structure after extract of Apache Tomcat

The bin directory contains the list of the commands used to start, stop the server or
check the version of Tomcat Server. The lib directory contains the list of libraries
required for the web API including servlet-api.jar, the webapps directory contains

the web applications, we have to add our application into webapps directory.

Add the servlet-api.jar to the CLASSPATH. The servlet-api.jar is available under the
Tomcat lib directory.

export CLASSPATH="/Users/mantavyagajjar/apache-tomcat-9.0.17/lib/servlet-api.jar"

Now, you should be able to compile your Servlet java program using the javac

command.

Desktop mantavyagajjar$ javac HelloWorld.java

Create a web application

Servlet program is not like, writing Java code and execute through command prompt.
We need to follow the following steps in order to develop any servlets program. Even
for a simple "Hello World" program also one must follow this standard directory

structure which is prescribed.

145

1. Create a root directory with your web app name, create a subdirectory with

name ‘src’ and move servlet program in that directory

2. Create sub-directory called WEB-INF in the root directory, this WEB-INF

contains the web.xml file.
3. Create a directory called classes under the WEB-INF directory.

4. Compile the servletHelloWorld.java we moved to src directory, you will get the
.class file, copy that .class file into classes directory under the WEB-INF

directory.

ROOT

src } contains java, jsp and .html files

WEB-INF

classe: :)— copy all the class files

b :)— contains the additional libraries jar
META-INF

Now, are ready to launch the tomcat server, to start the Tomcat server goto bin
directory and run thestartup.sh (If you use windows operating system, you should

runthestartup.bat file to start the tomcat server)

Desktop mantavyagajjar$./startup.sh

Open http://localhost:8080/hello/HelloWorld into the browser, you should get the
“Hello World!” string as a result.

146

@0 ® < [localhost:B080/hello/HelloWorld ¢

Hello World!

[==
h
i

Web Descriptor, web.xml is called a deploymentdescriptor file, for every web app it
has to be created under WEB-INF directory, it contains the configuration for the
application. Servlet and servlet mapping are one of the parameters used to define on

with URL the servlet is accessible.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmIns.jcp.org/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmIns.jcp.org/xml/ns/javaee
http://xmIns.jcp.org/xml/ns/javaee/web-app_4 0.xsd"
version="4.0" metadata-complete="true">

<description>Hello World</description>
<display-name>Hello World</display-name>
<servlet>
<servlet-name>HelloWorld</servlet-name>
<servlet-class>HelloWorld</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>HelloWorld</servlet-name>
<url-pattern>/HelloWorld</url-pattern>
</servlet-mapping>

</web-app>

Here, in this example, the servlet will be called when user access /HelloWorldURL

from the web-browser.

WebServlet Annotation

WebServlet annotation is an alternative way to define the servlet configuration, all

the servlet has to be defined under the web.xml file with their name and URL-

147

mapping, using WebServlet you can do the same while writing the java file. So, you
can ignore the configuration of servlet under the web.xml. Let's see where is the

difference when you define the servlet mapping using the WebServlet annotation.

HelloWorld.java

import java.io.|lOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServietResponse;

@WebServlet(hame = "HelloWorld", urlPatterns = {"/HelloWorld"})
publicclassHelloWorldextendsHttpServlet {

publicHelloWorld() {
super();

}

protectedvoiddoGet(HttpServletRequest request, HitpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();
out.printin("Hello World!");

}

protectedvoiddoPost(HttpServietRequest request, HttpServietResponse response)
throws ServletException, IOException {
doGet(request, response);

}
}

Web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmins="http://xmins.jcp.org/xml/ns/javaee”
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmIns.jcp.org/xml/ns/javaee
http://xmins.jcp.org/xml/ns/javaee/web-app_4 0.xsd"

148

version="4.0" metadata-complete="false">

</web-app>

Instead of defining the servlet and servlet-mapping into the XML file, it is defined into
java file just above the class using an annotation, also one parameter in web.xml has
changed from true to false,metadata-complete="false". Define the servlet

configuration using an annotation is super clean and easy to understand.

1.4 SERVLET LIFECYCLE

The entire life cycle of a Servlet is managed by the Servlet container which uses
the javax.servlet.Servlet interface to understand the Servlet object and manage it.
So, before creating a Servlet object let’s first understand the life cycle of the Servlet
object which is actually understanding how the Servlet container manages the

Servlet object.

Stages of the Servlet Life Cycle: The Servlet life cycle mainly goes through four

stages,
e Loading a Servlet.
e Initializing the Servlet.
e Request handling.
e Destroying the Servlet.

Let's look at each of these stages in details:

Loading a Servlet

The first stage of the Servlet life cycle involves loading and initializing the Servlet by
the Servlet container. The Web container or Servlet Container can load the Servlet at

either of the following two stages :

e |Initializing the context, on configuring the Servlet with a zero or positive

integer value.

149

e If the Servlet is not preceding stage, it may delay the loading process until the

Web container determines that the Servlet is needed to service a request.

The Servlet container performs two operations in this stage :
e Loading: Loads the Servlet class.

e [nstantiation: Creates an instance of the Servlet. To create a new instance of

the Servlet, the container uses the no-argument constructor.

INSTANTIATION

l init()

INITIALIZED i.e NOW }

LOADING AND J

READY FOR SECURITY

End of the

'FISE ?el‘::;t service()

destroy()

END }

Initializing a Servlet

After the Servlet is instantiated successfully, the Servlet container initializes the
instantiated Servlet object. The container initializes the Servlet object by invoking the
Servlet.init(ServletConfig) method which accepts ServletConfig object reference as

parameter.

The Servlet container invokes the Servlet.init(ServletConfig) method only once,
immediately after the Servlet.init(ServletConfig) object is instantiated successfully.

This method is used to initialize the resources, such as JDBC data source.

Now, if the Servlet fails to initialize, then it informs the Servlet container by throwing

the ServletException or UnavailableException.

150

Handling request

After initialization, the Servlet instance is ready to serve the client requests. The
Servlet container performs the following operations when the Servlet instance is

located to service a request :

e It creates the ServletRequest and ServletResponse objects. In this case, if
this is HTTP request then the Web container creates HttpServletRequest and
HttpServletResponse objects which are subtypes of the ServletRequest and

ServletResponse objects respectively.

e After creating the request and response objects it invokes the
Servlet.service(ServletRequest, ServletResponse) method by passing the

request and response objects.

The service() method while processing the request may throw the ServletException

or UnavailableException or IOException.

Destroying a Servlet

When a Servlet container decides to destroy the Servlet, it performs the following

operations,

e It allows all the threads currently running in the service method of the Servlet

instance to complete their jobs and get released.

e After currently running threads have completed their jobs, the Servlet

container calls the destroy() method on the Servlet instance.

After the destroy() method is executed, the Servlet container releases all the

references of this Servlet instance so that it becomes eligible for garbage collection.

1.5SERVLET LIFE CYCLE METHODS

There are three life cycle methods of a Servlet :
e init()
e service()

e destroy()

151

init() destroy()
Called only once service() Called only once
Initialise parameters handels multiple when servlet destroy

client requests and
send response

Let's look at each of these methods in detail:

init() method

The Servlet.init() method is called by the Servlet container to indicate that this

Servlet instance is instantiated successfully and is about to put into service.

publicclassMyServietimplementsServlet {
publicvoidinit(ServletConfig config) throws ServletException {

/linitialization code

}

/Irest of code

}

service() method

The service() method of the Servlet is invoked to inform the Servlet about the client

requests.

e This method uses the ServletRequest object to collect the data requested by

the client.

e This method uses a ServletResponse object to generate the output content.

152

/I service() method

publicclass HelloWorld implements Servlet {
publicvoid service(ServletRequest res, ServletResponse res)
throws ServletException, IOException {

/I request handling code

}

/I rest of code

destroy() method

The destroy() method runs only once during the lifetime of a Servlet and signals the
end of the Servlet instance.

//[destroy() method

publicvoiddestroy() {
}

As soon as the destroy() method is activated, the Servlet container releases the

Servlet instance.

1.6 TYPES OF SERVLETS

There are two main servlet types, Generic and HTTP:

Generic servlet, extend javax.servlet.GenericServlet.They are protocol
independent. They contain no inherent HTTP support or any other transport protocol.

HTTP servlet, extend javax.servlet.HttpServlet.Have built-in HTTP protocol support

and are more useful in a Sun Java System Web Server environment.

153

For both servlet types, you implement the constructor method init() and the

destructor method destroy() to initialize or deallocate resources.

All servlets must implement a service() method, which is responsible for handling
servlet requests. For generic servlets, simply override the service method to provide
routines for handling requests. HTTP servlets provide a service method that
automatically routes the request to another method in the servlet based on which
HTTP transfer method is used. So, for HTTP servlets, override doPost() to process

POST requests, doGet() to process GET requests, and so on.

The previous example HelloWorld.java we inherit HttpServlet and implement doGet
and doPost methods to print “Hello world!”, let's write a program to have the same
result using GenericServletand try to understand how GenericServet and HttpServlet

are different from each other.

import java.io.|lOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;
import javax.servlet.GenericServlet;
import javax.servlet.ServletRequest;

import javax.servlet.ServletResponse;

publicclassHelloWorldextendsGenericServlet {

privatestaticfinallong serialVersionUID = 1L,

publicHelloWorld() {
super();
}
@Override
publicvoidservice(ServletRequest request, ServletResponse response)

throws IOException, ServletException{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

154

out.print("Hello World!");

The HttpServlethasdoGet and doPost methods are used to receive the data which
are transferred by the HTTP POST and GET methods while GenericServlethas the
service method, which is independent of any protocol. There are a couple of

differences listed below.

GenericServlet HttpServlet

Can be used with any protocol (means, .
Should be used with HTTP protocol only
you can create a servlet that can N
(can handle HTTP specific requests).
handleFTPrequest, to upload or delete
) _ Protocol dependent.
the file). Protocol independent.

All methods are concrete except
_ _ . All methods are concrete (non-abstract).
service() method. service() method is an _ _
service() is non-abstract method.
abstract method.

service() should be override in the class _ _
o _ service() method need not be overridden.
which implement the GenericServlet.

It is must to use service() method as itis Being service() is non-abstract, it is
a callback method. replaced by doGet() or doPost() methods.

Extends Object and implements _ _
_ _ Extends GenericServlet and implements
interface Servlet, ServletConfig, and _ o
o interface Serializable
Serializable.

Direct subclass of Servlet interface. Direct subclass of GenericServlet.

155

Defined javax.servlet package.

All the classes and interfaces belonging
to javax.servlet package are protocol

independent.

Used to handle the protocols other then
HTTP.

Check Your Progress 1

1. State True or False:

Defined javax.servlet.http package.

All the classes and interfaces present in
javax.servlet.http package are protocol
dependent (specific to HTTP).

Used always when handling HTTP

request.

a. Servletis not a Java Class. T/F

b. Tomcat 4.0 is an open source and free Servlet Container and JSP

Engine. T/F

c. init() and destroy() methods will be called only once during the lifetime

of the Servlet. T/F

2. What are the advantages of servlets over other common server extension

mechanisms?

3. Write a Servlet program to display “Welcome to Fifth semester of MCA”

4. Explain different between doGet() and doPost() methods of HttpServlet.

5. Draw a Servlet Life Cycle, to represent the different phases of Servlet Life

Cycle.

1.7 SERVLET REQUEST AND RESPONSE

The main job of Servlet is to handle the client’s request, process data on the server,

and respond to the client back. Servlet APl provides two important interfaces

javax.servlet.ServletRequest and

implementation of those

javax.servlet.ServletResponse. The

interfaces are provided

156

injavax.servlet.http.HttpServletRequest and javax.servlet.http.HttpServletResponseto

encapsulate client request.
Capture user Input

There are two types of information encapsulated in the requests, system generated
and user input data. Let's see an example of how user data can be accessed in the
servlet which was entered by the user on HTML web page and create a custom hello

message based on the user input.
Index.html

Create anHTML file with the input box, where user can enter the name, on
submission of form data entered in the input box passed to the servlet inform of key

and value pair.

<IDOCTYPE html>

<html>

<head>

<title>User Input Form</title>

</head>

<body>

<form action="/hello/HelloForm" method="get">
<p>Enter your name: <input type="text" name="name"></p>
<input type="submit" value="login">

</form>

</body>

</html>

HelloForm.java

Based on the method either GET or POST through which servlet called, is based on
the method defined on the form. The form data is prepared in form of a key, value
pair and passed to the servlet, a piece of individual key information can be accessed
through getParameter(name) method, you can iterate on all the keys using

getParameterValues() method.

157

import java.io.*
import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.annotation.*;

@WebServlet(name = "HelloForm", urlPatterns = {"/HelloForm"})

publicclassHelloFormextendsHttpServlet {

publicHelloForm() {
super();

}

protectedvoiddoGet(HttpServiletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.printin("<h1>Hello " + request.getParameter("name") + " I</h1>");

protectedvoiddoPost(HttpServietRequest request, HttpServietResponse response)
throws ServletException, IOException {

doGet(request, response);

Web.xml

<welcome-file> parameter is used to search for the default file when user access

application, you can define multiple default files too.

<?xml version="1.0" encoding="UTF-8"?>

158

<web-app xmlIns="http://xmIns.jcp.org/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlIns.jcp.org/xml/ns/javaee
http://xmIns.jcp.org/xmi/ns/javaee/web-app_4 0.xsd"
version="4.0" metadata-complete="false">

<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Access your application /hello and you will see input-box, enter the name and click

on submit button.

@0 ® < Bl (&) localhost:B080/hello/ i

B2
O
+

Enter your name: Ajay

legin

The name will be passed to a servlet, it creates a new page with a custom message

generated by the servlet.

(@] ® < B} localhost:B080/hello/HelloForm &

Hello Ajay !

[
|
48

Capture the system parameters

159

When a user clicks a hyperlink or a submit button, we know that the data entered by
a user in the form fields are sent to the server. Along with user input a lot of extra
information goes to the server as a request header attached to the request object.
Servlet request object can getthose information using getHeaderNames() and
getHeader() methods of HttpServletRequest interface.

0@ < 2l localhost:8080/hellofHelloForm < th O [
L]
Hello Ajay !
host = localhost:8080
accept = text/html application/xhtml+xml.application/xml;q=0.9,*/*;q=0.8
accept-encoding = gzip, deflate
accept-language = en-us
content-type = application/x-www-form-urlencoded
origin = http://localhost:8080
user-agent = Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_4) AppleWebKit/605.1.15 (KHTML, like Gecko) Version/12.1
Safari/605.1.15
connection = keep-alive
upgrade-insecure-requests = 1
referer = hitp://localhost:3080/hello/
content-length = 9
cookie = name=Ajay

Apart from user data, other data received in the request header such as client IP
address, local port used by browser to initiate a request, browser name and version,

user’s current language, and many other information attached to the request header.

Let's modify our program to get all this information and print it on the web page along

with the output.

HelloForm.java

import java.io.lOException;

import java.io.PrintWriter;

import java.util. Enumeration;

import javax.servlet.ServletException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

160

@WebServlet(hame = "HelloForm", urlPatterns = {"/HelloForm"})

publicclassHelloFormextendsHttpServlet {

publicHelloForm() {
super();

}

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();
out.printin("<h1>Hello " + request.getParameter("name”) + " I</h1>
");

Enumeration e = request.getHeaderNames();

while (e.hasMoreElements()) {
String name = (String)e.nextElement();
String value = request.getHeader(name);

out.printin("" + name + " =" + value + "
");

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

doGet(request, response);

1}

Request Dispatcher

The RequestDispatcher interface provides the facility of dispatching the request to
another resource it may be HTML, servlet or JSP. This interface can also be used to

include the content of another resource also.

161

There are two methods defined in the RequestDispatcher interface. Forward transfer

a request to another resource (Servlet, JSP file, or HTML file) on the server.

RequestDispatcher rd=request.getRequestDispatcher("/Login");

rd.forward(request, response);

Include the content of a resource (Servlet, JSP page, or HTML file) in the response.

RequestDispatcher rd=request.getRequestDispatcher("/Login");

rd.include(request, response);

The main difference between include() and forward() is that include method is used
to load the contents of the specified resource, could be a Servlet, JSP, or static
resource e.g. HTML files directly into the Servlet's response. On the other hand,
forward method is used for server side redirection, where an HTTP request for one

servlet is routed to another resource for processing.

1.8COOKIE IN SERVLET

A cookie is a small piece of information that is persisted between the multiple client
requests. A cookie has a name, a single value, and optional attributes such as a

comment, path and domain qualifiers, a maximum age, and a version number.

By default, each request is considered a new request. In cookies technique, we add
a cookie with the response from the servlet. So cookie is stored in the cache of the
browser. After that, if the request is sent by the user, a cookie is added with a
request by default. Thus, we recognize the user as the old user.

There are 2 types of cookies, Non-persistent cookie and Persistent cookie. Non-
persistence is valid for a single session only. It is removed each time when the user
closes the browser while Persistent is valid for multiple session. It is not removed
each time when a user close the browser. It is removed only when the user logs out

or sign out.

162

It is a simple technique of maintaining the state at the client browser. But, it will not
work if the cookie is disabled on the browser. Only textual information can be set in

Cookie.

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.annotation.?*;

@WebServlet(hame = "HelloForm", urlPatterns = {"/HelloForm"})

publicclassHelloFormextendsHttpServlet {

publicHelloForm() {
super();

}

protectedvoiddoGet(HttpServiletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

String name = request.getParameter("name");

/Iset the cookie in client's browser

response.addCookie(new Cookie("name",name));

PrintWriter out = response.getWriter();

out.printin("<h1>Hello " + name + " I</h1>
");

protectedvoiddoPost(HttpServietRequest request, HttpServietResponse response)

throws ServletException, IOException {

163

doGet(request, response);

The cookie can be accessed through JavaScript or Servlet, have a look at a client

browser in below screen.

0@ (< | lacalhost:8080/hello/HelloForm?name=Ajay

Hello Ajay !

=
0
i3

x 3 O & @ O & Q-

E Elements @ Network G Debugger D Resources @ Timelines = Storage [as] canvas Console =+ {E}

0

Application Cache

& Coockies &

\&y Cookies — localhost Name ~ | Value Domain Path Expires Size | Secure | HttpOnly | S..
|I| Local Storage — localhost " "

name Ajay localhost Jhello Session 8B _
|I| Session Storage — localhost

1.9SESSION MANAGEMENT

The HttpSession object is used for session management. A session contains
information specific to a particular user across the whole application. When a user
enters into a website or an online application for the first time HttpSession isobtained
via request.getSession(), the user request is given a unique ID to identify his

session. This unique ID can be stored into a cookie in a request parameter.

The HttpSession stays alive until it has not been used for more than the timeout
value specified in web.xml deployment descriptor file. The default timeout value is
30 minutes, this is used if you don't specify the value in web.xml. This means that
when the user doesn’t visit web application until 30 minutes, the session is destroyed
by the servlet container. The subsequent request will not be served from this session

anymore and the servlet container will create a new session.

164

Let's create an example that demonstrates how a session can be created and store

information in the session.

ProcessRequest.java

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.annotation.?*;

@WebServlet(hname = "ProcessRequest"”, urlPatterns = {"/ProcessRequest"})

publicclassProcessRequestextendsHttpServlet {

publicProcessRequest() {
super();

}

protectedvoiddoGet(HttpServletRequest request, HitpServletResponse response)

throws ServletException, IOException {

HttpSession session = request.getSession(false);

if (session == null) {

response.sendRedirect("/hello/Login.html");

response.setContentType("text/html");

String name = request.getParameter("name");

PrintWriter out = response.getWriter();

out.printin("<h1>Hello " + name + " I</h1>
");

165

protectedvoiddoPost(HttpServietRequest request, HttpServietResponse response)

throws ServletException, IOException {

doGet(request, response);

The method getSession(false) return a session, if it was created and alive. If session

is not found means that the user is not logged inso, redirect to the login page.If user

login successfully a message will be printed (Hello Ajay!) on the screen. Let’s write a

code for a Login.html page and Login.java servlet.

Login.html

<IDOCTYPE html>

<htmlI>

<head>

<title>Login Page</title>

</head>

<body>

<form action="/hello/Login" method="POST">
<p>Username:

<input type="text" name="name"/>

</p>
<p>Password:

<input type="password" name="name"/>

</p>

<input type="submit" value="Login"/>

166

</form>
</body>

</html>

The userentersusername and password, and submit the form to /hello/LoginServlet,
Login servlet verify the user, create a new session if the user is valid. Look at the
below code of Login.java servlet.

Login.java

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.annotation.*;

@WebServlet(hame = "Login", urlPatterns = {"/Login"})

publicclassLoginextendsHttpServlet {
publicLogin() {

super();

}

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

String name = request.getParameter("user");

String password = request.getParameter("password");

HttpSession session = request.getSession();

User user = new User(name, password);

167

if (user.validUser()) {
session.setAttribute("userObject”, user);

response.sendRedirect("/hello/ProcessRequest");

On successful login, a message (Hello Ajay!) will be printed on the client browser,

you can also track the session key stored in the cookie.

00 ® <] localhost:8080/hello/SessionForm?name=Ajay &

Hello Ajay !

=
o
J’_

x| ;3§ [0 [RR)] i1 278 (@)25.4ms & a-

ﬁ Elements @ MNetwaork 'm' Debugger Dl Resources @ Timelines = Starage [aa] Canvas Console + {‘E}

| A Storage | -

& Cooki <
Application Cache 2 \& Lookies =
[Cookies — localhost Name ~ | Value Domain Path Expiras Size | Secure | HttpOnly | 5..
E.E Local Sterage — localhost B
JSESSIONID 6BB4FOB2DA39VEZACDO... localhost fhello Session 42 B o —

|I| Session Storage — localhost X N
name Ajay localhost fhello Session 8B —_—

Check Your Progress 2

1. What are the main functions of the HTTPServletRequest Interface? Explain
the methods which are used to obtain cookies and query string from the

request object.

2. What are the main functions of the HTTPServletResponse Interface? Explain
the methods which are used to add cookies to response and send an error
response.

3. Explain various purposes for which we use Session tracking. Also, Explain in

brief the two ways to handle Session Tracking in Servlets.

4. What are the two ways used for Servlet collaboration Servlet Programming

168

8.
9.

10.Can we use the constructor, instead of init(), to initialize servlet?

How do | call a servlet with parameters in the URL?
How do | deserialize an HTTP session?

How do I restrict access to servlets and JSPs?
What is the difference between JSP and servlets?

Difference between GET and POST .

11.What are two different types of servlets? Explain the differences between

12.What is the difference between ServletContext and ServletConfig?

13.What are the differences between a session and a cookie?

these two.

14.How will you delete a cookie?

15.What is the difference between Context init parameter and Servlet init

parameter?

16.What are the different types of Servlet Engines?

1.10LET US SUM UP

Java servlets are small, platform-independent Java programs that run in a web

server or application server and provide server-side processing such as enterprise

commercial applications. Servlets are widely used for web programming. Servlets

dynamically extend the functionality of a web server. A servlet engine can only

execute servlet which is contained in the web-servers like, Tomcat or JBoss.

Servlets are basically developed for the server side applications and designed to

handle HTTP requests. They are better than other common server extensions like

CGI as they are faster, have all the advantages of Java language and supported by

many of the browsers.

169

A Java Servlet has a lifecycle that defines how the servlet is loaded and initialized,
how it receives and responds to requests, and how it is taken out of service. Servlets
run within a Servlet Container, creation and destruction of servlets is the duty of
Servlet Container. There are three principal stages in the life of a Java Servlet,
namely: Servlet Initialisation, Servlet Execution, and Servlet Destruction. In first
stage, the servlet's constructor is called along with the servlet init() method - this is

called automatically once during the servlet execution life cycle.

Once your servlet is initialized, a request received by the Servlet Container, will be
forwarded to Servlet's service() method. HttpServlet class breaks service() method
into more useful doGet(), doPost(), doDelete(), doOptions(), doPut() and doTrace()
methods depending on the type of HTTP request it received. When the application is
stopped or Servlet Container shuts down, your Servlet's destroy() method will be
called to clean up any resources allocated during initialization and to shutdown

gracefully.

There are two important interfaces included in the servlet API. They are
HttpServletRequest and HttpServletResponse. HttpServletRequest encapsulates the
functionality for a request object that is passed to an HTTP Servlet. It provides
access to an input stream and so allows the servlet to read data from the client and it
has methods Ilike getCookies(), getQueryString()& getSession, etc.
HttpServletResponse encapsulates the functionality for a response object that is
returned to the client from an HTTP Servlet. It provides access to an output stream
and so allows the servlet to send data to the client and it has methods like
addCookie(), sendError() and getWriter(), etc.

Session tracking is another important feature of the servlet. Every user of a site is
associated with a javax.servlet.http.HttpSession object that servlets can use to store

or retrieve information about that user.

A servlet uses its request object's getSession() method to retrieve the current
HttpSession object and can add data to an HttpSession object with the putValue()
method. Another technique to perform session tracking involves persistent cookies.
A cookie is a bit of information sent by a web server to a browser and stores it on a

client machine that can later be read back from that browser. For each request, a

170

cookie can automatically provide a client’s session ID or perhaps a list of the client’s

preferences.

Servlets, which are running together on the same server, have several ways to
communicate with each other. There are three reasons to use inter-serviet
communication. First is Direct Servlet manipulation handling in which servlet can
gain access to the other currently loaded servlets and perform some task on each.
Second is Servlet Reuse that allows one servlet to reuse the abilities (the public
methods) of another servlet. Third is Servlet collaboration that allows servlets to

cooperate, usually by sharing some information.

171

2

Unit 2: Servlet with JIDBC

Unit Structure

2.1. Learning Objectives

2.2. Introduction

2.3. Connection to Database

2.4. Insert Record Into The Database
2.5. Reading from Database

2.6. Update or Delete Records

2.7. Database Connection Pooling

2.8. Restrict user-access to servlet

172

2.1 LEARNING OBJECTIVE

After going through this unit, you should be able to:

e Understand the different approach to establish the connection and fetch data
into Servlet.

e Understand how to insert the record into the database through a Servlet.

e Understand the different approaches to update or delete the records in the
database.

e Understand how to configure and use the connection pool in servlet to
manage the database connection efficiently.

e Learn how Servlet filter works, let's verify the user and redirect to correct page

using servlet filter.

2.2 INTRODUCTION

Accessing data from the database or in any other data sources is a significant
operation in web programming. Data access in JSPs and Servlets is done through
Java Database Connectivity (JDBC). There are two packages in JDBC 3.0-java.sql
and javax.sql. The java.sql package is often referred to as the JDBC core application
programming interface (API) and is sufficient to do basic data manipulations. The
javax.sql package is the JDBC Optional Package API which provides additional
features, including connection pooling, which will be discussed at the end of the
chapter. Let's see the different days, you can do the database connection, reading

data from and writing to the database.

2.3 CONNECTION TO DATABASE

You have already gone through the database connection and reading data from the
database in java program, there is no change in reading data from the database

when you are writing a Java Servlet program.

Let's take an example of a contact book application, we will connect to the database,
read the contacts and display those contacts on the screen. Let's write a program
that connects to the contact book database.

173

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.annotation.*;

import java.sqgl.* ;

@WebServlet(hame = "Contact", urlPatterns = {"/Contact"})

publicclassContactextendsHttpServlet {

private Connection conn = null;
private Statement stmt = null;

private ResultSet rset = null;

private String databaseUrl = "jdbc:postgresql://localhost:5432/contactbook™;
private String username = "mantavyagajjar";

private String password = "*xxxkkextt

publicContact() {

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

try {
Class.forName("org.postgresql.Driver");

this.conn = DriverManager.getConnection(databaseUrl, username, password);

} catch (Exception e) {

174

out.printin("<h4>Connection to database unsuccessful</h4>");

return,

}

out.printin("<h4>Connection to database successfully</h4>");

Above example print the string in browser “Connection to database successfully”
when your connection to the database is successful, else you will see the message
“Connection to database unsuccessful”.

When you open a connection on each user request make sure that it has to be
closed properly at the end of the request. The connection has to be closed in the

finally block to release all the resource acquired by the servlet to serve the request.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.annotation.*;

import java.sqgl.* ;

@WebServlet(hame = "Contact", urlPatterns = {"/Contact"})

publicclassContactextendsHttpServlet {
private Connection conn = null;
private Statement stmt = null;

private ResultSet rset = null;

private String databaseUrl = "jdbc:postgresql://localhost:5432/contactbook”;

175

private String username = "mantavyagajjar";

private String password = "xxxxkkist,

publicContact() {

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

try {
Class.forName("org.postgresqgl.Driver");

this.conn = DriverManager.getConnection(databaseUrl, username, password);
} catch (Exception e) {
out.printin("<h4>Connection to database unsuccessful</h4>");

if (this.conn == null) {
return,;

}

out.printin("<h4>Connection to database successfully</h4>");

try {
stmt = this.conn.createStatement();

rset = stmt.executeQuery("SELECT * FROM dummy");
} catch (SQLEXxception e) {

} finally {

176

try {
out.close();

stmt.close();
conn.close();
} catch (SQLEXxception e) {

Connection Parameters

In the above example, we have seen how the database connection is being opened
and closed in the servlet program, it is not advisable to write the database
connection parameters (databaseURL, username, and password) in a servlet
program, as an enterprise application may have many servlets, and changing
connection parameters leads to modify all those servlet programs who access the

database.

It is advisable to write the database connection parameters (databaseURL,
username, and password) into deployment descriptor file web.xml so that the servlet
read those parameters during the initialized phase. i.e. init(ServletConfig config)

method.

web.xml

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmins="http://xmins.jcp.org/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmlIns.jcp.org/xml/ns/javaee
http://xmins.jcp.org/xml/ns/javaee/web-app_4 0.xsd"

version="4.0" metadata-complete="false">

177

<context-param>
<param-name>databaseURL</param-name>
<param-value>jdbc:postgresql://localhost:5432/contactbook</param-value>
</context-param>

<context-param>
<param-name>username</param-name>
<param-value>mantavyagajjar</param-value>
</context-param>

<context-param>
<param-name>password</param-name>
<param-value>********</naram-value>

</context-param>

<welcome-file-list>
<welcome-file>login.html</welcome-file>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

The servlet gets the parameters in init(ServletConfig config) method through
ServletConfig when servlet get initialized by the servlet container.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.annotation.*;

import java.sql.* ;

178

@WebServlet(hame = "Contact", urlPatterns = {"/Contact"})

publicclassContactextendsHttpServlet {

private Connection conn = null;
private Statement stmt = null;
private ResultSet rset = null;

private String databaseUrl = null;
private String username = null;

private String password = null;

@Override
publicvoidinit(ServletConfig config) throws ServletException {

super.init(config);

ServletContext context = config.getServletContext();
databaseURL = context.getInitParameter("databaseURL");
username = context.getinitParameter("username”);

password = context.getInitParameter("password");

protectedvoiddoGet(HttpServletRequest request, HitpServletResponse response)

throws ServletException, IOException {

Now, the database connection parameters can be changed easily in deployment

descriptor web.xml file.

179

Database Connection Approaches

Writing a single user program that connect to the database and read data from
database is not a challenging compared to writing a multi-user enterprise application,
you need to choose the right approach to connect to and reading data form the
database. Let’s understand the different approach available to wiring an enterprise

application.

First Approach

Create JDBC connectionobject in init() method, use JDBC connection object to
create statement JDBC object and write JDBC persistence logic in service(request,
response), doGet(request, response) or doPost(request, response) method. Close

JDBC connection object in destroy() method.

In this approach, the JDBC connection object must be taken as an instance variable
of the servlet program. So connection object is shared between multiple user

requests and therefore it is not threaded safe.

Advantage is, all requests coming to the servlet program will use a single
connection to interact with database. This improves the performance of web
applications.

Disadvantage is, multiple threads may use a single connection object
simultaneously or concurrently, which means programmer should take care of

multithreading issues by using synchronization concept.

Second Approach

Create JDBC connection object in service(request, response), doGet(request,
response) or doPost(request, response) method. Use JDBC connection object to
create statement object and develop JDBC Persistence logic in service(request,
response), doGet(request, response) or doPost(request, response) methods. Close
JDBC connection object at the end of theservice(request, response), doGet(request,

response) or doPost(request, response) method.

180

Advantage is, a JDBC connection object is a local variable of service(request,
response), doGet(request, response) or doPost(request, response) methods so no

need to take care for the multithreading synchronization.

Disadvantage is, for every request one separate JDBC connection object will be

created. So this approach degrades the performance.

Third Approach

Get JDBC connection object from JDBC connection pool inservice(request,
response), doGet(request, response) or doPost(request, response) method, use
JDBC connection object to create statement object and develop JDBC persistence
logic in service(request, response), doGet(request, response) or doPost(request,
response) method. We do not have to close the connection object explicitly, as the
connection will be return back to connection pool automatically at the end of
service(request, response), doGet(request, response) or doPost(request, response)

methods.

Advantages are:

e JDBC connection object should be taken as a local variable of
service(request, response), doGet(request, response) or doPost(request,

response) method. So there is no need to worry about multithreading issues.

e While working with JDBC connection pool, servlet programs are not

responsible to create, manage and destroy JDBC connection object.

e \We can use a minimum number of JDBC connection objects to handle more

clients and requests interact with database.
e Connection Pooling approach perform better than Approach 2.

e Connection pool can be defined specific to a single web application or
connection pool can be defined as shared between multiple web applications.

We will see how to use the connection pooling system in java web application at the

end of this chapter in detail.

181

2.4 INSERT RECORD INTO THE DATABASE

The SQL Insert query should be executed in order to insert records in the database,
open the connection, create a statement and execute an Insert SQL query through a

statement.

The user inputs the values on the HTML form, those values are transferred to the
servlet through GET or POST method, the servlet process the data and inserts into
the database. Let's take an example of contact book, user input name, email and
phone number fieldson the html form (Contact.html) and passed to the servlet to

store those fields into the database.

Create a table into the database.

CREATETABLE contact(
nameVARCHAR (50),
email VARCHAR (50) UNIQUE,
phone VARCHAR (50)

The connection information is set up in the application descriptor file web.xml, let's
create a servlet that takes an input from the user (HTML form) and create a record
into the database.

Contact.html

Takes input from the user and transferred to the servlet through GET method.

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

182

<title>Create Contact</title>

</head>

<body>

<form method="get" action="/contactbook/SaveContact">

<p>
Name: <input type="text" name="name">

Email: <input type="text" name="email">

Phone: <input type="text" name="phone">

</p>

<input type="submit" value="Create Contact">

</fform>

</body>

</html>

Contact.java

Read the values of fields (name, email and phone) from request object, use
getParameter(name) method to read an values captured and transferred by the html

form (Contact.html).

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.annotation.*;

import java.sql.*;

@WebServlet(hame = "Contact”, urlPatterns = {"/SaveContact"})

publicclassContactextendsHttpServlet {

private Connection conn = null;

private PreparedStatement preparedStmt = null;

183

private String databaseURL = null;
private String username = null;

private String password = null;

@Override
publicvoidinit(ServletConfig config) throws ServletException {

super.init(config);

ServletContext context = config.getServletContext();
databaseURL = context.getInitParameter("databaseURL");
username = context.getinitParameter("username”);

password = context.getInitParameter("password");

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

try {
Class.forName("org.postgresql.Driver");

this.conn = DriverManager.getConnection(databaseURL, username, password);

} catch (Exception e) {

if (this.conn == null) {
return;

}

String insertSQL = "INSERT INTO contact (name, phone, email) VALUES (?, ?,

184

?)"

try {
preparedStmt = conn.prepareStatement(insertSQL);

preparedStmt.setString(1, request.getParameter("name"));
preparedStmt.setString(2, request.getParameter("phone"));
preparedStmt.setString(3, request.getParameter("email"));

preparedStmt.execute();

out.printin("Record created successfully");
preparedStmt.close();
conn.close();

} catch (SQLEXxception e) {
out.printin("Error Occurred : " + e);

}

out.close();

The java.sql.PreparedStatement is an ideal way to execute the insert or update
guery as it verify the data according to the type before inserting into the database
table, on the successful execution of the above servlet you can see the record is
inserted into the contact table.

contactbook=# select * from contact;

name | emalil | phone
------------- L
Ajay Kumar | ajay@gmail.com | 9898098981

185

Nikunj Jani | nikunjani@gmail.com | 9898798985
(2 rows)

You may get an error on screen if duplicate record found, we have created contact

table where email field is defined as unique.

Error Occurred : org.postgresql.uti.PSQLException: ERROR: duplicate key value
violates unique constraint "contact_email_key" Detail: Key (email)=(ajay@gmail.com)

already exists.

2.5 READING FROM DATABASE

Java web application has Servlet as a base technology, the servlet is a tool to write
the controllers in MVC application model. Servlet can also help to secure the
business process in web based enterprise applications, we can write the business
logic part in servlet such as:

e Validate the use input as per the business need
e Populate the result by applying the business logic
e Insert or update the record into the table

Let's write a program to fetch the records form contact table and and display all

thecontact records on web page.

ReadContact.java

import java.io.*,

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.annotation.?*;

import java.sqgl.* ;

186

@WebServlet(hame = "Contact", urlPatterns = {"/ReadContact"})

publicclassReadContactextendsHttpServlet {

private Connection conn = null;

private PreparedStatement preparedStmt = null;

private String databaseURL = null;
private String username = null;

private String password = null;

@Override

publicvoidinit(ServletConfig config) throws ServletException {

super.init(config);
ServletContext context = config.getServletContext();
databaseURL = context.getInitParameter("databaseURL");
username = context.getinitParameter("username");

password = context.getinitParameter("password");

protectedvoiddoGet(HttpServiletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

try {
Class.forName("org.postgresqgl.Driver");

this.conn = DriverManager.getConnection(databaseURL, username, password);
} catch (Exception e) {

return,

}

187

String insertSQL = "SELECT * FROM contact WHERE 1=1";

try {
preparedStmt = conn.prepareStatement(insertSQL);

ResultSet rs = preparedStmt.executeQuery();

out.print("<table border=\"1\"><tr>");

out.print("<th>Name</th><th>Email</th>");

out.print("<th>Phone</th></tr>"),

while(rs.next()) {

out.print("<tr><td>"+rs.getString("name")+"</td>");
out.print("<td>"+rs.getString("email")+" </td>");
out.print("<td>"+rs.getString("phone")+"</td></tr>");

}

out.printin("</table>");

preparedStmt.close();
conn.close();

} catch (SQLException e) {
out.printin("Error Occured" + e);

}

out.close();

Access the URLhttp://localhost:8080/contactbook/ReadContact you will see all the

contacts you have created in the database.

188

0@ < 5|

localhost:B080/contactbook/ReadContact

*
(]

=

o

Contact List

| Name | Email Phone
Ajay Kumar ajay @gmail.com 9898098981
Nikunj Jani nikunjjani @ gmail.com OB98TIR9ES
Harshad Modi harshad @ gmail.com O8B9T187928
|Anjana Raval anjana@gmail .com 9897187922
[Deepak Raval [deepak @gmail.com 9897187924
[Pramukh Suthar [pramukh @gmail com 9897287923

Contacts available in the database

contactbook=# select * from contact;

name | emalil | phone
________________ S S

Ajay Kumar | ajay@gmail.com | 9898098981
Nikunj Jani | nikunjjani@gmail.com | 9898798985

Harshad Modi | harshad@gmail.com | 9897187928
Anjana Raval | anjana@gmail.com | 9897187922
Deepak Raval | deepak@gmail.com |9897187924
Pramukh Suthar | pramukh@gmail.com | 9897287923

(6 rows)

Reading all the data from the database table may slow down the application

performance when you have millions of records stored into the database table. The

performance can be improved when we fetch and display only the required data.

Let’'s modify our program (ReadContact.java) to display only requested data by the

user, take an input from the user and search and display the contacts based on the

user's input.

189

mailto:nikunjjani@gmail.com�

protectedvoiddoGet(HttpServiletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

try {
Class.forName("org.postgresql.Driver");

this.conn = DriverManager.getConnection(databaseURL, username, password);
} catch (Exception e) {

return;

}

String insertSQL = "SELECT * FROM contact WHERE name ilike ? ESCAPE 'I"";

out.print("<h2>Contact List</h2>");
out.print("<form action='/contactbook/ReadContact' method='get'>");
out.print("Search Contact: <input type="text' name='q">");

out.print("<input type="submit' value='Search Contact'></form>");

try {
preparedStmt = conn.prepareStatement(insertSQL);

String query = "%" + request.getParameter("q") + "%";

if(query = null) {
preparedStmt.setString(1, query);

ResultSet rs = preparedStmt.executeQuery();
out.print("<table border="1" style="width:100%'><tr>");

out.print("<th>Name</th><th>Email</th>");
out.print("<th>Phone</th></tr>");

190

while(rs.next()) {
out.print("<tr><td>"+rs.getString("name")+"</td>");
out.print("<td>"+rs.getString("email")+" </td>");
out.print("<td>"+rs.getString("phone")+"</td></tr>");
}

out.print("</table>");

preparedStmt.close();

conn.close();

}
} catch (SQLException e) {
out.printin("Error Occured” + e);

}

out.close();

Just change the doGet method to allow a user to filter on the name field.

0@ < [Em| localhost:8080/contactbook/ReadContact?g=raval

BE
Contact List
Search Contact: raval Search Contact
Name Email Phone
Anjana Raval anjana@ gmail.com 9897187922
Deepak Raval deepak @ gmail .com 9897187924

2.6 UPDATE OR DELETE RECORDS

The delete or update operation needs an identification to the record on which the

operation is being executed, usually developer choose the primary key as an auto

191

increment number field which is use to identify unique record. The id of record can
be guessed easily and the user can perform the update or delete operation just by

accessing an URL as below.

http://localhost:8080/contactbook/DeleteContact?id=29

You should secure those sensitive servlets, so only valid user can access such
servlets. There are three ways to make it secure, it is advisable to implement the

best suitable approach in your java web application.

First Approach

The first approach to secure sensitive urls, check for the user’s validity on access of
such restricted urls. This approach is commonly implemented by all the web
developers, we should check for the current session, if valid user found in session
allow access to such urls else redirect user to login page. So, each time we can

check the session for a valid user before executing the critical operation.

HttpSession session = request.getSession(false);
if(session.getAttribute("userObj") ==) {
RequestDispatcher rd = request.getRequestDispatcher("/Login.html");

rd.forward(request, response);

Second Approach

The second approach is to create a urlsafe key for each record based on a unique
key field. Add new column in the table and then change the code to generate the

values for urlsafe column.

ALTER TABLE contact ADD COLUMN urlsafe VARCHAR(100);

192

Let's modify our SaveContact.java servlet to create the urlsafe key based on the

unique field email.

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");

PrintWriter out = response.getWriter();

try {
Class.forName("org.postgresql.Driver");

this.conn = DriverManager.getConnection(databaseURL, username, password);
} catch (Exception e) {

return;

}

String insertSQL = "INSERT INTO contact (name, phone, email, urlsafe) VALUES
(?,?, ?, md5(?))";
try {
preparedStmt = conn.prepareStatement(insertSQL);
preparedStmt.setString(1, request.getParameter("name"));
preparedStmt.setString(2, request.getParameter("phone"));
preparedStmt.setString(3, request.getParameter("email"));

preparedStmt.setString(4, request.getParameter("email™));

preparedStmt.execute();

out.printin("Record created successfully");
preparedStmt.close();
conn.close();

} catch (SQLException e) {

out.printin("Error Occured” + e);

193

}

out.close();

We have added a new field named urlsafe which can be generated by PostgreSQL
based on the unique value, so now we can identify each record uniquely in the
database. Your data will be looking as below.

contactbook=# select * from contact;

name | email | phone | urlsafe

+ + +

Ajay Kumar | ajay@gmail.com | 9898098981 | 3bal708d4d427814c9falb5a56675bee
Nikunj Jani | nikunjjani@gmail.com | 9898798985 | b6a6cla62a09c42a1325ffdalf8c91lbc
Harshad Modi | harshad@gmail.com | 9897187928 | f5e2b761c60508a8d9ff30eadf272879
Anjana Raval | anjana@gmail.com | 9897187922 | 377935861f33a7c1d296ddf15713c0f2
Deepak Raval | deepak@gmail.com | 9897187924 | 5ae4927580af7bac3c6adi451158e0e5
Pramukh Suthar | pramukh@gmail.com | 9897287923 | dfdc36f348b15558albc912deeca26¢ch
Mantavya Gajjar | mantavyagajjar@gmail.com | 9898798982 | 11a2db4be94e348f34ecdb906cee25d2

(7 rows)

Now, it will be difficult for the userto make a guess for any record to delete when you

use the urlsafe key as a record key in the URL parameter.

http://localhost:8080/contactbook/DeleteContact?id=5ae4927580af7bac3c6adf451158
e0e5

Third Approach

The third approach does not delete any record in the database, instead of adding a
new field named active, by default when a record is being created in the system set
active to true if you want to delete any record set active to false. So by default when
you perform read or search operation add the default condition such as WHERE

active="t".

194

http://localhost:8080/contactbook/DeleteContact?id=5ae4927580af7bac3c6adf451158e0e5�
http://localhost:8080/contactbook/DeleteContact?id=5ae4927580af7bac3c6adf451158e0e5�

stable=# select name, email, urlsafe, active from contact;

name | email | urlsafe | active

----------------- e e

Ajay Kumar | ajay@gmail.com | 3bal1708d4d427814c9falb5a56675bee | t

Nikunj Jani | nikunjjani@gmail.com | b6a6cla62a09c42a1325ffdalf8c91lbc |t
Harshad Modi | harshad@gmail.com | f5e2b761c60508a8d9ff30eadf272879 | t
Deepak Raval | deepak@gmail.com | 5ae4927580af7bac3c6adi451158e0e5 | t
Mantavya Gajjar | mantavyagajjar@gmail.com | 11a2db4be94e348f34ecdb906cee25d2 | t
Pramukh Suthar | pramukh@gmail.com | dfdc36f348b15558albc912deeca26ch | f
Anjana Raval | anjana@gmail.com | 377935861f33a7¢1d296ddf15713c0f2 | f

(7 rows)

2.7 DATABASE CONNECTION POOLING

Database Connection Pooling is a great technique used by a lot of application
servers to optimize performance. Database Connection creation is a costly task thus
it impacts the performance of the application. Hence a application server creates a
database connection pool which are pre-initiated database connections that can be

leveraged to increase performance.

Connection pool is a set of opened connection to the same database, those are
created when application server start, so we can save the time to load the JDBC
database driver into memory and established the connection to the database, when
user need a connection it can be assigned from the pool and when database
operation completed the connection can be taken back and add to the pool, this is

the biggest advantages of using connection pool in an enterprise web application.

Apache Tomcat also provides a way of creating database Connection Pool. Let us
see an example to implement database Connection Pooling in the Apache Tomcat
server. We will improve our contact book web application to use the connection pool
to get the database connection from database connection pool and fetch the data

using a query.

195

Apache Tomcat allowsan application to define the resource used by the web
application in context.xml (from Tomcat 5.x version onwards). We have to create a

file context.xml under META-INF directory.

Additional Libraries

You may need to add some additional libraries to the CLASSPATH to compile the
servlet. In my example | have added below listed libraries to the CLASSPATH, they
are available in the Tomcat lib directory.

apache-tomcat-9.0.17/lib/tomcat-jni.jar

apache-tomcat-9.0.17/lib/tomcat-jdbc.jar

META-INF/context.xml

<?xml version="1.0" encoding="UTF-8"?>

<Context>

<!-- Specify a JDBC datasource -->

<Resource name="jdbc/contactbook" auth="Container"
type="javax.sgl.DataSource" username="mantavyagajjar" passworg="x**x"
driverClassName="org.postgresql.Driver"

url="jdbc:postgresql://localhost:5432/contactbook” maxldle="4" maxTotal="8"/>

</Context>

In the above code snippet, we have specified a database connection pool. The name
of the resource is jdbc/contactbook. We will use this name in our application to get

the data connection.

196

Modify the Servlet Program

Let's modify the servlet to use the connection from the connection pool instead of

open and close connection on each user request. Now connection related activities

will be managed by the connection pool.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.annotation.*;
import java.sql.* ;

import javax.sql.*;

import javax.naming.*;

@WebServlet(hame = "Contact", urlPatterns = {"/ReadContact"})

publicclassReadContactextendsHttpServlet {

private DataSource dataSource;
private Connection connection;

private PreparedStatement statement;

@Override
publicvoidinit(ServletConfig config) throws ServletException {
super.init(config);
try{
Context initContext = new InitialContext();
Context envContext = (Context) initContext.lookup(“java:/comp/env");
dataSource = (DataSource) envContext.lookup("jdbc/contactbook™);

} catch (NamingException e) {

197

protectedvoiddoGet(HttpServletRequest request, HitpServletResponse response)

throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

String insertSQL = "SELECT * FROM contact WHERE name ilike ? ESCAPE "";

out.print("<h2>Contact List</h2>");
out.print("<form action="/contactbook/ReadContact’ method='get'>");
out.print("Search Contact: <input type="text' name='q">");

out.print("<input type="submit' value='Search Contact'></form>");

try {
connection = dataSource.getConnection();

statement = connection.prepareStatement(insertSQL);

String query = "%" + request.getParameter("q") + "%";

if(query = null) {
statement.setString(1, query);

ResultSet rs = statement.executeQuery();

out.print("<table border="1" style="width:100%'><tr>");
out.print("<th>Name</th><th>Email</th>");

out.print("<th>Phone</th></tr>"),

while(rs.next()) {
out.print("<tr><td>"+rs.getString("name")+"</td>");
out.print("<td>"+rs.getString("email")+" </td>");

out.print("<td>"+rs.getString("phone")+"</td></tr>");

198

}

out.print("</table>");

}

} catch (SQLEXxception e) {

out.printin("Error Occured" + e);

The output remains the same, there is no change in the execution of the queries, if

you compare the code,reduced a lot as connection is managed by the application

server.

2.8 RESTRICT USER-ACCESS TO SERVLET

Normally, when a user requests a servlet or web page, a request is sent to the

application server, the application server allows access to that requested servlet or

web page if exist on the server, we have to change that mechanism so it will have to

pass through the filter before reaching the servlet or web page required, like the

illustration below:

Browser

pagel

pagel

Web App

pagel

u

199

However, there are situations where the user's request does not pass all Filters, as a
user does not have enough access to such resource and due to that filter redirects

users to another page.

Let's implement the filter that verifies the current user, if the user is not valid then

redirect to a login page or allow access on the page requested for valid users.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.annotation.*;

@WebFilter("/ReadContact")

publicclassReadContactFilterimplementsFilter {

publicvoiddoFilter(ServletRequest request, ServletResponse response, FilterChain
chain)

throws IOException, ServletException {

HttpSession session = null;
HttpServletRequest httpRrequest = (HttpServletRequest) request;

session = httpRrequest.getSession(false);

if(session.getAttribute("user”) == null) {
session.setAttribute("returnURL", httpRrequest.getServietPath());
RequestDispatcher rd = request.getRequestDispatcher("/login.jsp");
rd.forward(request, response);
}else{

chain.doFilter(request, response);

200

We have implemented the Filter which will be called when user request for
/ReadContact url from the browser, a doFilter method will be called with
ServletRequest, ServletResponse, FilterChain objects. The filter will check the
session for a valid user object, if valid user object found then allow the user to

access the /ReadContact servlet else redirect to the Login page.

o0 ® [Em| localhost:BOB0/contactbook/ReadContact

=
i)
+

Username:
Password:

Login

Enter the user and password, and click on the Login button we will be redirected to
Login Servlet to verify the user, the session will be created if user is valid. Filter will

check for the session again and grant access on the requested resource.

o0 ® [Em| localhost:BOB0/contactbook/ReadContact?g=raval t a o
Contact List
Search Contact: || Search Contact
Name | Email Phone
Anjana Raval |anja.na@gmail.c0m 9897187922
Deepak Raval |dccpak@ gmail.com 9897187924

Until a valid user found in session, the user will be able to access /ReadContact

servlet.

201

Unit 3: Basics of Java Server

Unit Structure

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

Learning Objectives
Introduction to JSP

JSP Scripting Elements
JSP Directives

JSP Implicit Objects

JSP Expression Language
JSP Action Tags

JSP Cookies and Session

MVC Architecture in JSP

Pages

3

202

3.1 LEARNING OBJECTIVE

After going through this unit, you should be able to:
e understand the need for JSP;
e understand the functioning of JSP;
e understand the relation of applets and servlets with JSP;
e know about various elements of JSP;
e explain various scripting elements of JSP;
e explain various implicit objects of JSP, and
e understand the concept of custom tags and the process of creating custom
tag libraries in JSP.

3.2 INTRODUCTION TO JSP

Java Server Pages is a technology used to create web application just like Servlet
technology. It can be thought of as an extension to Servlet because it provides more
functionality than servlet such as expression language, JSTL. A JSP page consists
of HTML tags and JSP tags. The JSP pages are easier to maintain than Servlet

because we can separate designing and development.

JSP is a technology based on the Servlet, Servlet Container or Application Server
convert all the JSP pages to Servlet, the Servlet will be executed by the servlet
container finally. Java Server Pages are mostly used to prepare an application user
interface than Servlet that generates the user interface. We can use all the objects

such as HttpServletRequest or HttpServletResponse which are available to Servlet.

Java Server Pages executes much faster compared to other dynamic languages. It
is much better than the Common Gateway Interface (CGIl). Java server pages are
built over Java Servlets API. Hence, JSP Page has access to all Java Servlet APIs,
even it has access to JNDI (Java Naming Directory Interface), JDBC and other java
libraries. JSP is used in MVC architecture as a view layer. The MVC application
architecture can be achieved using JSP and Servlet technologies, Java Beans are
use to create a model, Servlet used to create a controllers and JSP pages are used

to create a view layer.

203

There are various advantages of using Java Server Pages, some of them are listed

below:

e As it is built on Java technology, hence it is platform independent and not

dependent on any specific operating system.

e JSP page converted to Java Servlet, hence you can access all the Java

objects in JSP page which can be used in Servlet.

e JSP Scripting elements enables you to mix the Java and HTML code together
in JSP file.

e Using JSP Custom Tag Library feature code can be simplified and readable
format, The JSP Taglib Directive executed by the Servlet Container or Web

server and converted into the equivalent HTML code.

3.3 JSP SCRIPTING ELEMENTS

All the JSP files converted to Servlet before it executed by the Servlet Container or
Web Server, The code written inside the JSP scripting elements will be added to the
Servlet. Using scripting elements we will be able to write the Java and HTML code in

a single file.

There are three forms of writing the elements in JSP file:
e JSP Declaration
e JSP Scriptlet
e JSP Expression

Let's see the usage of those elements.

JSP Declaration

A declaration tag is a piece of Java code for declaring variables, methods, and
classes. If we declare a variable or method inside declaration tag it means that the
declaration is made inside the servlet class but outside the service method.

We can declare any variables inside the declaration block such as static member, an
instance variable, an integer or a string variable, we can also declared any other

Java object inside the declaration tag.

204

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="IS0O-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<htmlI>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Declaration Tag Example</title>

</head>

<body>

<%! int count =10; %>

<% out.printin("The Number is " + count); %>

</body>

</html>

The variable which is declared in the declaration tag is initialized and printed as

output.

JSP Scriptlet

Scriptlet tag allows writing Java code into a JSP file. The JSP file converted into
Servlet by Servlet Container, all the statements written within Screplet tags are
encapsulated in _jspservice() method of Servlet, finally Servlet will be compiled and
executed by the Servlet Container. For each request of the client, service method of
the JSP gets invoked hence the code inside the Scriptlet executes for every request.
A Scriptlet contains java code that is executed every time JSP is invoked.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//IDTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>

205

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Scriplet Example</title>

</head>

<body>

<% int number_ond=10;
int number_two=40;
int numbers = number_ond + number_two;
out.printin("Scriplet Number is " +numbers);
%>

</body>

</html>

In the Scriptlet tags, we have declared two variables number_one and number_two.
Third variable numberswill be declared andinitialized with the summation of

number_one and number_two.

JSP Expression

Expression tag evaluates the expression placed inside the block. It can access the
data stored in any variables. It allows for creating expressions like arithmetic and
logical, the final result will be encapsulated into the println statement, hens the final

result will be displayed on the webpage.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html|>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Expression Example</title>

206

</head>

<body>

<% int number_one=10; int number_two=10; int number_three=20; %>
<% out.printin("The expression number is "); %>

<%= number_one * number_two * number_three %>

</body>

</html>

We have used anexpression tag, where we have written an arithmetic expression to

multiply three numbers i.e. number_one and number_two and number_three.

JSP Comments

The JSP comments are the statement or block of statements, converted to the Java
comments by the JSP container during the conversion form JSP file to Java Servlet.
The HTML comments are encapsulated into the printin function and pushed to the

browser as HTML file.

Comment in JSP Comment in HTML

<% -- JSP Comments %> <l-- HTML Comment -->

Comments are used to write a documentation within the code or we can ignore a

part of the code by adding comment.

3.4 JSP DIRECTIVES

JSP directives are the messages to JSP container. They provide global information
about an entire JSP page. JSP directives are used to give special instruction to a
container for translation of JSP to Servlet code. During the translation phase of JSP
Lifecycle, a JSP file is converted into the Java Servlet, will complied to Java Class
file. JSP Directives give instructions to the Servlet Container on how to transfer the

207

code into the Servlet during the translation phase. Directives can have many
attributes separated by a space inform of key-value pairs. JSP Directive can be

described written as<%@ attribute="" %>.
There are three types of directives:

e Page directive

e Include directive

e Taglib directive

Let's see each one of them in detail with an example:

JSP Page directive

It provides attributes that are applied to the entire JSP page. It defines page-
dependent attributes, such as scripting language, error page, and buffering
requirements. It is used to provide instructions to a Servlet Container that creates the
Servlet related to the current JSP page.

Following are the list of attributes associated with page directive:
1. Language
2. Extends
3. Import
4. contentType
5. info
6. session
7. isThreadSafe
8. autoflush
9. buffer
10.IsErrorPage
11.pageEncoding
12.errorPage

13.isELIgonored

208

Language

At the beginning of JSP file, a page directives should be declared as below.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1S0O-8859-1"%>

Import

To perform a specific operation if you need support from external libraries, those
libraries can can be import in JSP page using an import attribute.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
import="java.util. Date" pageEncoding="1SO-8859-1"%>

Extends

As every JSP page is converted to Servlet java class before execution, you can
inherit another java class using extends attribute.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1SO-8859-1"%>
<%@ page extends="hello.LoginPage" %>

In the above example, JSP page extends an existing servlet LoginPage which is

declared in hello package.

Info

It defines a string which can be accessed by getServletinfo() method. This attribute

is used to set the servlet's description.

<%@ page info="HelloWorld Example" pageEncoding="ISO-8859-1"%>

209

Session

JSP page creates a session automatically for all pages by default. Sometimes we
don't need a session to be created automatically in JSP page, we can set Session
attribute to false. The default value of the session attribute is true, so the session is
created automatically. When it is set to false, then we can indicate the compiler to

not create the session by default.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"

session="false"%>

isThreadSafe

When isThreadSafe is set to true, Servlet Container creates multiple objects for the
same JSP file when requested by multiple clients. Each client is served with a
separate _jspService() method. When isThreadSafe is set to false, indicates the
container to create one Servlet object for each client requesting the same JSP.
Multiple clients will have multiple Servlet objects created by the container to honor all

the clients.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"

isThreadSafe="true"%>

AutoFlush

This attribute specifies that the buffered output should be flush automatically or not,
the default value of that attribute is true. If the value is set to false the buffer will not

be flush automatically, when the buffer gets full we may get an exception.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
autoFlush="false"%>

210

Buffer

Using this attribute the output response object may be buffered. We can define the
size of the buffer to be done using this attribute, the default buffer size is 8KB. The
bufferindicatesa size of the buffer used by the servlet to write the output to the buffer

before writing to the response object.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
buffer="16KB"%>

ErrorPage

This attribute is used to set an error page for the JSP page. When anexception
occurs during the executing of JSP page, Servlet Container automatically redirects a

request to the error page.

<%@ page language="java" contentType="text/html;" pageEncoding="1SO-8859-1"

errorPage="errorHandler.jsp"%>

iserrorPage

It indicates that JSP Page have the capability to receive an exception from other JSP

pages. The default value is false.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"

isErrorPage="true"%>

isELIgnored

The default value is set to true, means you can evaluate an expression such as ${2 *
4 + 3 * 4} in JSP page. You can deactivate by setting values to false for any specific
JSP file.

<%@ page language="java" contentType="text/html;" pageEncoding="1SO-8859-1"

iSELIgnored="true"%>

211

JSP Include directive

JSP include directive is used to include one file into another file. This included file

can be HTML, JSP, text files. It is very good features that used to break the user

interface into a header, footer and content part. The filer will be included during the

translation phase. Let’s divide the whole page into header, footer and use them into

index page using the JSP include.

header.jsp

Define the menu bar.

<nav class="navbar navbar-expand-Ig navbar-light bg-light">

<div class="container">

Navbar

<div class="collapse navbar-collapse" id="navbarNavAltMarkup">

<div class="navbar-nav">

Home(current)

Features

Pricing

</div>

</div>

</div>

</nav>

Footer.jsp

Define the sticky footer which stays bottom of the page

<style>
footer {
background-color: #f5f5f5;

212

}

</style>

<footer class="footer mt-auto py-3">

<div class="container">

Place sticky footer content here.
</div>

</footer>

Index.jsp

Create an index page with the content and reuse the header and footer by including

them into the page.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"

pageEncoding="1S0O-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<htmlI>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Header with Menu</title>

<link rel="stylesheet"
href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"
crossorigin="anonymous"/>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/bootstrap.min.js"
crossorigin="anonymous"/>

</head>

<body class="d-flex flex-column h-100">

<%@ include file="header.jsp" %>

<main role="main" class="flex-shrink-0">

213

<div class="container">
<h1 class="mt-5">JSP Include Example</h1>
<p class="lead">
header.jsp and footer.jsp gives the predefined header and footer content.
</p>
</div>

</main>

<%@ include file="footer.jsp" %>
</body>

</html>

Now, open the index.jsp file in the browser you will see a beautiful page with menu
bar and footer.

[] ® < [} localhost:BOB0/hello/template.jsp & (4] th o
Navbar Home Features Pricing
JSP Include Example

header.jsp and footer.,jsp gives the predefined header and footer content.

Place sticky footer content here.

JSP Taglib Directive

JSP taglib directive is used to import the tag library with "taglib” as a prefix. The tag
library is a set of custom tags which executed by the Servlet Container to generate
the HTML output. It uses a set of custom tags, identifies the location of the library

and provides means of identifying custom tags in JSP page.

Let's take an example to understand how custom tag library can help a developer to
simplify the JSP code.

e Create a new web app calledhellounderwebapps directory

214

e Create a required directory structure, i.e. WEB-INF and WEB-INF/lib directory

e Copy taglibs-standard-impl-1.2.5.jJar and taglibs-standard-spec-1.2.5.jar

libraries into webapps/hello/WEB-INF/lib form webapps/examples/WEB-

INF/lib directory.

e Create an index.jsp in webapps/hello/index.jsp and use the below code to test

the custom tag-library.

<htmlI>

<head>

<title>Tag Plugin Examples: forEach</title>
</head>

<body>

<%@ taglib uri="http://java.sun.com/jspl/jstl/core" prefix="c" %>

<%@ page import="java.util.Vector" %>

<h3>Iterating over a range</h3>

<c:forEach var="item" begin="1" end="10">
${item}

</c:forEach>

<% Vector v = new Vector();

v.add("One"); v.add("Two"); v.add("Three"); v.add("Four");

pageContext.setAttribute("vector”, v);

%>

<h3>lIterating over a Vector</h3>

<c:forEach items="${vector}" var="item">
${item}

</c:forEach>

</body>

</html>

215

The taglib is a tool used to define custom tags that are processed by the Servlet
Container and translated into the HTML code as per the definition of custom tag and

its method. Look at the output of the above code, the HTML page is generated.

localhost:B080/hello/taglib-example. V]

Iterating over a range
12345678910
Iierating over a Vector

One Two Three Four

3.5JSP IMPLICIT OBJECTS

JSP implicit objects are created during the translation phase automatically added to
the Servlet. When writing a JSP page we do not have to create those objects
explicitly as they are created by the Servlet Container. There are 9 implicit objects

can be accessed directly without explicit declaration in any JSP file:
1. out
2. request
3. response
4. config
5. application
6. session
7. pageContext
8. page

9. exception

216

Let's see the usage of each object in detail

out

Out is one of the implicit objects used to write data to buffer and send output to the
client in response. Out object allows us to access the servlet output stream, out is an

instance of javax.servlet.jsp.jspWriter class.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1S0O-8859-1"%>
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>Implicit Objects - out Example</title>
</head>
<body>
<% int number_one=10; int number_two=20;
out.printin("number_one is " +number_one);
out.printin("number_two is "+number_two);
%>
</body>

</html>

Request

The request object is an instance of java.servlet.http.HttpServlet class. The request
is one of the arguments of service method, for every user request Servlet Container
create an instance of java.servlet.http.HttpServlet class and passed to
_jspservice(request, response) method. It will be used to get information like user
inputs and request header values. We can get the list of parameters using

getParameter() method to access the user inputs pass to the server.

217

Index.html - the HTML form takes username and password from user and passes to
hello.jsp file. The hello.jsp that get the reads the username and password from

request object and display a value on the hello.jsp page.

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html|>

<head>

<title>User Input Form</title>

</head>

<body>

<form action="/hello/ProcessRequest" method="post">

<p>Enter your name: <input type="text" name="username"></p>

<input type="submit" value="login">

</form>

</body>

</html>

Hello.jsp

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1S0O-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html|>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=1S0O-8859-1">

<title>Request Object - Example</title>

</head>

<body>

<%

String username = request.getParameters(‘'username’);

218

out.printin("Welcome " + username);
%>
</body>
</html>

Response

The response is an instance of type HittpServietResponse interface. The
containercreates a request object and pass it to _jspservice(request, response)
method as a parameter. It represents the response that is given to the client.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1S0O-8859-1"%>
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<html|>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Response Object - Example</title>
</head>
<body>
<%
String username = request.getParameters(‘'username’);
response.addCookie(new Cookie("username",username));
%>
</body>
</html>

Config

The config is of the type java.servlet.servletConfig interface, It is created by the
Servlet Container for each JSP page, It reads the initialization parameter from

web.xml and passes to Servlet or JSP page.

219

Application

The application object is an instance of javax.servlet.ServletContext interface, the
instance is created by the Servlet Container, loads the attributes defined in the
web.xml deployment descriptor file. The javax.servlet.ServletContext object contains
a set of methods which are used to get and set the attributes which are loaded in

Servlet Container.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html|>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Application Object - Example</title>

</head>

<body>

<% out.printin(application.getContextPath()); %>

</body>

</html>

This code will print the application root path, i.e. /hello

Session

The session object is holding "httpsession™ object. The session object is used to get,
set and remove attributes to session scope and also used to get session information.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1S0O-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

220

<html|>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=1SO-8859-1">
<title>Session Object - Example</title>

</head>

<body>

<% session.setAttribute("user"”,"ajay@gmail.com”); %>
Click to see current login user
</body>

</html>

The above program will set the attribute “user” to the session, the below program will

read the same “user” attribute form the session.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1S0O-8859-1"%>
<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html|>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Session Object - Example</title>
</head>
<body>
<%
String name = (String)session.getAttribute("user");
out.printin("User Name is " + name);
%>
</body>

</html>

221

pageContext

In JSP, pageContext is an implicit object of type javax.servlet.jsp.PageContext class.
The pageContext object can be used to set, get or remove the attribute from one of

the following scopes:
® page
e request
e session
e application

In JSP, the page is the default scope, if you do not pass the scope.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="1S0O-8859-1"%>
<IDOCTYPE html PUBLIC "-//W3C//IDTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=1SO-8859-1">
<title>Session Object - Example</title>
</head>
<body>
<%
pageContext.setAttribute("student”, "Vijay Patel", pageContext. PAGE_SCOPE);
String name = (String) pageContext.getAttribute("student");
out.printin("student name is " +name);
%>
</body>

</html>

Student attribute will not be accessible to another page in this example.

222

Page

The page is an implicit object holds the currently executed servlet object for the

corresponding JSP. Acts as this object for current JSP page.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1S0O-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=1SO-8859-1">
<title>Session Object - Example</title>
</head>
<body>
<%

String pageName = page.toString();

out.printin("Page Name is " +pageName);

%>

</body>

</html>

Print the string representation of the current jsp page.

Exception

The exception object represents all errors and exceptions. The exception implicit

object is of type java.langThrowable. You can access the exception object on a page

that you declare to be an error page using the isErrorPage attribute of the page

directive.

The exception object is created only if the JSP uses the page directive to set

isErrorPage set to true. When a JSP generates an error and forwards that error to

223

the error page, the container sets the JSP exception object of the error page to the

generated error.

3.6 JSP EXPRESSION LANGUAGE

Expression Language (EL) is a mechanism that simplifies the accessibility of data
stored in the Java bean component or any other objects like request, session, and
application. There are several implicit objects, operators and reserved words in
Expression Language. The JSP Expression Language supports operators and
control-flow statements, There are many operators supported in JSP such as
arithmetic and logical operators to perform an expression. The Expression Language

was introduced in JSP 2.0.

JSP Syntax of Expression Language (EL)

The expression written within the curly braceswill be evaluated at runtime and sent to
the output stream.The expression should be a valid expression and it can be mixed
with a html text and can be combined with other expressions to form larger
expression. To get a better idea, on how expression works in JSP, let’s go through

below example.

In this example, we will write an arithmetic expression using plus (+) operator to add

two numbers i.e. (1+2) and get the output.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://mww.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=1SO-8859-1">

<title>JSP Expression Language - Example</title>

</head>

<body>

224

<a>Expression is:
${1+2};
</body>

</html>

You will see “Expression is 3” line in your browser as an output.

JSP Flow Control Statements

JSP is based on the Java Language, hens we can use all the flow and control
statements which are used in Java such as if - else, switch, for or while. We can use
all the APIs and building blocks of Java programming language in JSP programming
including control flow statements. There are two types of flow control statements

described below;

Decision-Making Statements: Decision-making statement in JSP is based on
whether the resultfor a condition is true or false. The statement will behave according
to the result of a condition. There are two types of decision-making statements

described below:

o |[f—else
e Switch
JSP If-else

"If-else” statement is basic of control flow statement, and it tells the program to
execute the certain section of code only if the particular conditions evaluates to true.
The if-else statement can evaluate multiple conditions, based on the result the next
set of statements will be executed, If the first condition is true then "if block" is
executed and if the conditions is false then "else block" is executed.

if (test condition) {

/IBlock of statements

225

else {

/IBlock of statements

In JSP page if-else can be written as below.

<body>

<%! int month=5; %>

<% if(month==2){ %>

<p>Its February</p>

<% }else{ %>

<p>Any month other than February</p>
<%} %>

</body>

JSP Switch

The body of the switch statement is called a "switch block". The switch case is used

to check the number of possible execution paths. A switch can be used with byte,

short, char, and int primitive data types. The switch statement contain more than one

cases, we can also include a default case as it is optional. Consider the below JSP

program, it declares an int named weekday whose value represents a day of

week(1-7). The code displays the name of the day, based on the value of day, using

the switch statement.

<body>

<%! int weekday=2; String weekday="Saturday" %>

<%
switch(weekday) {
case O:
weekday="Sunday";

break;

226

case 1:
weekday="Monday";
break;

case 2:
weekday="Tuesday";
break;

case 3:
weekday="wednesday";
break;

case 4:
weekday="Thursday";
break;

case 5:
weekday="Friday";
break;

}
out.printin(weekday);
%>

</body>

JSP For loop

It is used for iterating over the list of elements for a certain condition, and it has three

parameters.
e Variable counter is initialized
e Condition till the loop has to be executed
e Counter has to be incremented

Go through the below program, i is the counter variable, the loop will be executes 5

times based on the conditions, and counter will be increased by 1 on each iteration.

<body>

227

<%! int num=5; %>
<%
out.printin("Numbers are:");
for(int i=0;i<num;i++){
out.printin(i);

}

00>

</body>

We have for loop which iterates till counter (i.e. int i is counter)is less than 5, the
output will be “Numbers are: 01 2 3 4”.

JSP While loop

It is used to executes the code block based on the conditions, while loop has only

one parameter (i.e. condition), the loop will be executed until the condition is true.

<body>
<%! int day=2; int i=1; %>
<%
while(day>=i){
if(day==i){
out.printin("lts Monday");

break;

i++;

%>

</body>

228

JSP Operators

JSP Operators supports most of arithmetic and logical operators which are

supported by java within expression language (Expression Language) tags.

Frequently used operators are mentioned below:

I

()

[/ or div

% or mod

== or eq

I= or ne

<orlt

> or gt

<=orle

>=or ge

Access a bean property or Map entry

Access an array or List element

Group, a subexpression to change the evaluation order

Addition

Subtraction or negation of a value

Multiplication

Division

Modulo (remainder)

Test for equality

Test for inequality

Test for less than

Test for greater than

Test for less than or equal

Test for greater than or equal

229

&& orand Test for logical AND

|| or or Test for logical OR
I or not Unary Boolean complement
Empty Test for empty variable values

JSP Expression Language (EL) makes it easy to access the application for the data
stored in the JavaBeans components. It also allows creating expressions which are
both arithmetic and logical. Within EL tags we can use integers, floating point
numbers, strings, and Boolean values. In JSP we can also use loops and decision-

making statements using Expression Language tags

3.7 JSP ACTION TAGS

Actions are used to controlling behavior of Servlet Engine. JSP actions are written in
XMLlanguage. JSP provides a bunch of standard Action Tags that we can use for
specific tasks such as working with java bean objects, including other resources,

forward the request to another resource.

There are 11 types of action names as following:

1. jsp:useBean 5. jsp:forward 9. jsp:text

2. jsp:setProperty 6. jsp:plugin 10.jsp:param
3. jsp:getProperty 7. jsp:attribute 11.jsp:attribute
4. jsp:include 8. jsp:body 12.jsp:output

Jsp:useBean

jsp:useBean action name is used when we want to set or get the multiple values of
object in the JSP page. With this tag, we can easily invoke a bean, get and set the

attributes of that bean.

230

Let's take an example to understand how user input values from HTML form will be

set in Java Bean using jsp:useBean, jsp:setProperty and jsp:getProperty. We will

create below a list of files in our example.

e Contact.java - Java Bean, declare a Contact class

e Index.html - HTML form which takes input from a user and passes to

createContact.jsp when a user submits the form.

e createContact.jsp - A JSP file create an instance of Contact Bean, set to the

values received form Index.html.

The name of the object variables declared in Java bean (i.e. name, email, and

phone) and name of the fields declared in HTML form are same. Servlet Container

automatically maps the received parameters with the properties of Java Beans using

set methods (i.e. setName, setEmail, setPhone) in Java Beans.

Contact.java

package com.company;,

publicclassContact {

private String name;
private String email;

private String phone;

public String getName() {

return name;

}

publicvoidsetName(String name) {

this.name = name;

}

231

public String getEmail() {

return email;

}

publicvoidsetEmail(String email) {
this.email = email;

}

public String getPhone() {

return phone;

}

publicvoidsetPhone(String phone) {
this.phone = phone;

}

Index.html

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">
<htmlI>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>Java Beans Example - Create Contact</title>
</head>
<body>
<form method="get" action="/bean-example/createContact.jsp">
Name: <input type="text" name="name">

Email: <input type="text" name="email">

Phone: <input type="text" name="phone">

<input type="submit">

</form>

232

</body>

</html>

createContact.jsp

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8" %>

<%@ page import="com.company.Contact" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html|>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Java Bean Example</title>

</head>

<body>
<jsp:useBean id="employee" class="com.company.Contact" scope="session">

<jsp:setProperty name="employee" property="+"/>

<p>Employee Name: <jsp:getProperty name="employee" property="name"/></p>
<p>Email: <jsp:getProperty name="employee" property = "email"/></p>
<p>Email: <jsp:getProperty name="employee" property = "phone"/></p>
</jsp:useBean>

</body>

</html>

Web.xml

233

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="http://xmIns.jcp.org/xml/ns/javaee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://xmIns.jcp.org/xml/ns/javaee
http://xmins.jcp.org/xml/ns/javaee/web-app_4 0.xsd"

version="4.0" metadata-complete="false">
<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Now, open URLhttp://localhost:8080/contactbook you will see a form to create a

contact.

O ® < [El} localhost:B8080/contactbook/ &

B
o
|

MName: ajay Kumar
Email: ajay@gmail.com
Phone: 9898098981
Submit

Click on Submit button, name, email, and phone will be passed to a JSP page,

Contact Bean will be invoked and all the attributes set using setProperty methods.

[] ® < Em} localhost:B080/contactbook/createContact (o] i) =3 T
Name: Ajay Kumar
Email: ajay @ gmail.com

Email: 9898098981

234

http://localhost:8080/contactbook�

Jsp:include

It is used to insert output of oneJSP file into another JSP file, just like include

directive. It is added during the request processing phase.

Index.jsp

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="1S0O-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<htmlI>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Index Page</title>

</head>

<body>

<jsp:include page="index.html" flush="true" />

</body>

</html>

It will display the HTML form to create a contact form as below.

B
&

@ ® < [El| localhost:B080/contactbook/index.jsp

Name:

Email:

Phone:
Submit

Jsp:forward

It is used to forward the implicit request object to another JSP or any static page.

Here the request can be forwarded with parameters or without parameters.

235

index.jsp

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1SO-8859-1"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.0rg/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Index Page</title>

</head>

<body>

<jsp:forward page="index.html" />

</body>

</html>

When we access the index.jsp, it will be redirected to index.html.

Jsp:plugin

It is used to add Java components into JSP, Java components can be either an
applet or bean. It detects the browser and adds <object> or <embed> tags to the

response.

<jsp:plugin type="applet/bean” code="objectcode" codebase="objectcodebase">

The type attribute specifies either an object or a bean value, code attribute specifies
class name of applet or bean, the codebase contains the package name for the Java

Bean or URL that contains Applet.

Jsp:param

This is a child object of the jsp:plugin object described above, jsp:paramis used to

pass additional values to the Java Bean or Applet.

236

<jsp:plugin type="bean" code="Student.class" codebase="com.book">
<jsp:params>

<jsp:param name="name" value="Ajay Kumar" />

<jsp:param name="email" value="ajay@gmail.com” />

<jsp:param name="email" value="9898098981" />

</jsp:params>

</jsp:plugin>

Jsp:text

It is used to template text in JSP pages. Its body does not contain any other

elements, and it contains only text and EL expressions.

<jsp:text>Template text</jsp:text>

Template text refers to only text which can be any generic text which needs to be

printed on JSP or an EL expression.

Jsp:output

The jsp:output element specifies the XML declaration or the document type

declaration in the request output of the JSP document.

The XML declaration and document type declaration that are declared by the
jsp:output element are not interpreted by the JSP container. Instead, the container

simply directs them to the request output.

To illustrate this, let's take below example:

<jsp:output doctype-root-element="books" doctype-system="books.dtd" />

The resulting output is:

<IDOCTYPE books SYSTEM "books.dtd">

237

3.8 COOKIES IN JSP

Cookies are text data stored on the client computer and are used to store
information. A JSP can access to the cookies through the request method
request.getCookies() which returns an array of Cookie objects and set the cookie

through response.addCookie(cookie) method.

Adding Cookie to Response

If the browser is configured to store cookies, it will keep those cookies until the expiry

date, Itcan be set-up using the following steps:
e Creating the cookie object
e Setting the maximum age

e Sending the cookies in HTTP response headers

Please refer the below code, it is used to add name and email fields in the cookie.

<%
Cookie name = new Cookie("name", request.getParameter("name"));

Cookie email = new Cookie("email", request.getParameter("email"));

name.setMaxAge(60*60*10);
email.setMaxAge(60*60*10);

response.addCookie(name);
response.addCookie(email);

%>

3.9 MVC ARCHITECTURE IN JSP

MVC is an application architecture that separates business logic, presentation and

data. In MVC,M stands for Model, V stands for View, C stands for the controller.

238

MVC is a systematic way to use the application where the flow starts from the view
layer, where the request is raised and processed in controller layer and sent to

model layer to insert data and get back the success or failure message.

Model Layer:

This is the data layer which consists of the business logic of the system. It contains
all the data of an application, It also represents the state of an application. It consists
of classes which fetches the data from the database on users request. The controller
connects with model and fetches the data and sends to the view layer. The model

connects with the database as well and stores the data into a database.

View Layer:

This is a presentation layer. It consists of HTML, JSP, etc. into it. It normally presents
the Ul of the application. It is used to display the data which is fetched from the
controller which in turn fetching data from model layer classes. This view layer

shows the data on the user interface of the application.

Controller Layer:

It acts as an interface between View and Model. It intercepts all the requests which
are coming from the view layer. It receives the requests from the view layer and
processes the requests and does the necessary validation for the request. This
request is further sent to the model layer for data processing, and once the request
is processed, it sends back to the controller with the required information and

displayed accordingly by the view.

Example

Let's take an example to understand how mode, view, and the controller can be
developed using HTML, servlet and JSP page. Develop a login form which takes
user and password as input and to a servlet, servlet verifies the user and password
and depending on the result choose which JSP page (welcome or error) to display

on the user's browser.

User.java - a model class which defines the data and method to process the data

239

package com.book;

publicclassUser {

private String username;

private String password;

publicUser(String username, String password) {

this.username = username;

this.password = password,;

}

public String getUsername() {

return username;

}

publicvoidsetUsername(String username) {

this.username = username;

}

public String getPassword() {

return password,

}

publicvoidsetPassword(String password) {

this.password = password,;

}

public Boolean login() {
/Icheck in the database

/Iverify the validity of the user and password

240

returntrue;

}

Login.java - servlet act as a controller, which actually takes the input from the user
(login.html), initiate the model and verify the login if login valid redirect to index.jsp

else error.jsp.

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;
import javax.servlet.annotation.*;

import com.book.*;

@WebServlet(name = "Login", urlPatterns = {"/Index"})

publicclassLoginextendsHttpServlet {
publicLogin() {

super();

}

protectedvoiddoPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

String name = request.getParameter("username");

String password = request.getParameter("password");

User user = new User(name, password);

HttpSession session = null;

241

RequestDispatcher rd = null;

if (user.login()) {
session = request.getSession();

session.setAttribute("user”, user);

rd = request.getRequestDispatcher("/index.jsp");
rd.forward(request, response);

}else {
rd = request.getRequestDispatcher("/error.jsp");

rd.forward(request, response);

Index.jsp - A view which is called from the controller and displayed home page after

the login.

<%@ page language="java" contentType="text/html; charset=1SO-8859-1"
pageEncoding="1SO-8859-1"%>

<%@ page import="com.book.*"%>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html|>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Index Page</title>

</head>

<body>

<%

242

User user = (User) session.getAttribute("user");
out.printin("<h2>Hello " + user.getUsername() +"</h2>");

%>
<jsp:include page="index.html" />
</body>
</html|>

Output

localhost:8080/contactbook/
Username:
Password:

Login

Enter a username and password and click on the Login button, the value will be

transferred to the Login servlet and redirect to Index.jsp if the user is valid.

[] ® < [Em| @ localhost:B080/contactbook/Index > th il e
Welcome admin

Name:

Email:

Phone:

Create Contact

243

Unit 4. JDBC with JSP

Unit Structure

4.1.

4.2.

4.3.

4.4.

4.5.

Learning Objectives
Introduction

Connecting to Database
Java Standard Tag Libraries

Example : Contact Book

A

244

4.1 LEARNING OBJECTIVE

After going through this unit, you should be able to know:
e Understand how to establish connection to database in JSP

e Understand how to fetch the data from database and display it on the JSP
page

e Understand how you can get powered the java standard tag libraries

4.2 INTRODUCTION TO JSP

We have gone through Chapter 3: Introduction JSP and JSP Basics , we learn the
basics of JSP Elements and JSP Directives, usage of JSP Implicit Objects and JSP
Expression Language, JSP Action Tags, JSP Cookies. JSP technology is used
based on the servilet, as every JSP page is converted to servlet by the servlet
container. Servlet is used to define the controllers in the MVC application whereas
JSP pages take care for the presentation part.

The JSP is the presentation layer in the MVC model, it is most important how
securely we can fetch the data from database and display it on the web page. The
current trend in web applications is to fetch the data through javascript RPC call, the
browser renders the data in the view. JSP is rendered at server side as first is
converted into Servlet and served by the servlet container . So, what we get on the

browser is HTML page including the data.

In this chapter, we will go through the database connection, fetch the data from
database and display it on the JSP page. We will use the different built-in JSTL
libraries to perform some basics utility functions such as iteration on the dataset or

fetch the data set form the database

4.3 CONNECTING TO DATABASE

We will follow the best approach to do the database connection, the connection pool

is the right approach when you are working in the java web application. Opening and

245

closing the connection will be taken care of by the connection pool which is managed

by the web server.

Let's go through the database connection example and fetch the data into the JSP

page. Create a new project contact book.

Import Libraries

Import libraries used to make the database connection and java standard tag
libraries to manage the core template activities and database utility to fetch the data.

/WEB-INF/lib/postgresql-42.2.5.jar
/WEB-INF/lib/taglibs-standard-impl-1.2.5.jar
/WebContent/WEB-INF/lib/taglibs-standard-spec-1.2.5.jar

Database Connection

As explained above we will follow the best approach to make the connection with the
database using the connection pool, let's create a context.xml file under the directory
IMETA-INF/context.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<Context>

<Resource name="jdbc/contactbook" auth="Container"
type="javax.sgl.DataSource" username="mantavyagajjar" password="shreeji"
driverClassName="org.postgresql.Driver"

url="jdbc:postgresql://localhost:5432/stable" maxldle="4" maxTotal="8"/>

</Context>

Index.jsp, to fetch the data we have used the sqgl taglib and to iterate and fetch the
values we use the core JSTL library, which provides the.

246

<%@ page import="java.sql.*, javax.sql.*, javax.naming.*"%>

<% @ taglib uri="http://java.sun.com/jspljstl/core" prefix="c"%>

<% @ taglib uri="http://java.sun.com/jspljstl/sql" prefix="sql"%>

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<IDOCTYPE html>

<htmlI>

<head>

<meta charset="UTF-8">
<title>Insert title here</title>
</head>

<body>

<h2>Contact List</h2>

<sql:query var="result" dataSource="jdbc/contactbook">
SELECT * FROM contact

</sql:query>

<table border="1" style="width: 100%">
<tr>

<th>Name</th>

<th>Email</th>

<th>Phone</th>

</tr>

<c:forEach var="row" items="${result.rows}">
<tr>

<td><c:out value="${row.name}"/></td>
<td><c:out value="${row.phone}"/></td>
<td><c:out value="${row.email}"/></td>
</tr>

</c:forEach>

247

</table>
</body>

</html>

This code will produce the below output. If you look at the output closely, we get the
same output which was generated by the servlet in Block-4 Chapter 2: Servlet with
JDBC, under the Database Connection Pooling topic. The huge amount of code is
reduced only because we place the piece of code in the right place. Servlet is not

used to generate the user interface, the presentation layer has to be produced by the

JSP page.
200 (< il localhost:B080/contactbook/ th a
Contact List
Name Email Phone
Ajay Kumar 9898098981 ajay@ gmail .com
Nikunj Jani 9898798985 nikunjjani@gmail.com
Harshad Modi 9897187928 harshad @ gmail.com
Anjana Raval 0897187922 anjana@gmail.com
Deepak Raval 9897187924 deepak@gmail com
Pramukh Suthar 9897287923 pramukh@gmail.com
Mantavya Gajjar (9BOBT98982 mantavyagajjar@gmail.com

4.4 JAVA STANDARD TAG LIBRARIES

We have to see the basics of Java Standard Tag Libraries in chapter Chapter 3:
Basics of Java Server Pages under the topic JSP Taglib Directive. During the

previous example we have wused two java standard tag libraries

http://java.sun.com/jsp/jstl/core and http://java.sun.com/jsp/jstl/sal, which provides a

great set of features to build the user interface.

Core Tags

All the JSP Expression Language statements can be replaced with the tags available

in http://jJava.sun.com/jsp/jstl/core standard tag library.

248

http://java.sun.com/jsp/jstl/core�
http://java.sun.com/jsp/jstl/sql�
http://java.sun.com/jsp/jstl/core�

<% @ taglib prefix = "c" uri = "http://java.sun.com/jsp/jstl/core" %>

Following table lists out the Formatting JSTL Tags

S.No. Tag & Description

<c:out>

Like <%= ... >, but for expressions.

<c:set >

2
Sets the result of expression evaluation in a 'scope’
<c:remove >

3
Removes a scoped variable (from a particular scope, if specified).
<c:catch>

4
Catches any Throwable that occurs in its body and optionally exposes it.
<c:if>

5 Simple conditional tag which evaluates its body if the supplied condition
IS true.
<c:choose>

6 Simple conditional tag that establishes a context for mutually exclusive
conditional operations, marked by <when> and <otherwise>.
<c:when>

7 Subtag of <choose> that includes its body if its condition evaluates to
‘true’.

249

<c:otherwise >

3 Subtag of <choose> that follows the <when> tags and runs only if all of

the prior conditions evaluated to 'false’.

<c:import>

9 Retrieves an absolute or relative URL and exposes its contents to either

the page, a String in 'var', or a Reader in 'varReader".

<c:forEach >

10 The basic iteration tag, accepting many different collection types and

supporting subsetting and other functionality.

<c:forTokens>

11
Iterates over tokens, separated by the supplied delimiters.
<c:param>

12
Adds a parameter to a containing 'import' tag's URL.
<c:redirect >

13
Redirects to a new URL.
<c:url>

14
Creates a URL with optional query parameters

SQL Tags

The JSTL SQL tag library provides tags for interacting with relational databases
(RDBMSs) such as PostgreSQL, Oracle, MySQL, or Microsoft SQL Server.

<% @ taglib prefix = "sqgl" uri = "http://java.sun.com/jsp/jstl/sql" %>

250

https://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_choose_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_import_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm�
https://www.tutorialspoint.com/jsp/jstl_core_foreach_tag.htm�

Following is the syntax to include JSTL SQL library in your JSP

S.No. Tag & Description

<sgl:setDataSource>

Creates a simple DataSource suitable only for prototyping

<sqgl:query>

Executes the SQL query defined in its body or through the SQL attribute.

<sql:update>

3 Executes the SQL update defined in its body or through the SQL

attribute.

<sql:param>

Sets a parameter in an SQL statement to the specified value.

<sqgl:dateParam>

5 Sets a parameter in an SQL statement to the specified java.util.Date

value.

<sgl:transaction >

6 Provides nested database action elements with a shared Connection, set

up to execute all statements as one transaction.

JSTL Functions

JSTL includes a number of standard functions, most of which are common string
manipulation functions. Following is the syntax to include JSTL Functions library in
your JSP -

<% @ taglib prefix = "fn" uri = "http://java.sun.com/jsp/jstl/functions" %>

251

Following table lists out the various JSTL Functions

S.No.

Function & Description

fn:contains()

Tests if an input string contains the specified substring.

fn:containsignoreCase()

Tests if an input string contains the specified substring in a case

insensitive way.

fn:endsWith()

Tests if an input string ends with the specified suffix.

fn:escapeXmi()

Escapes characters that can be interpreted as XML markup.

fn:indexOf()

Returns the index within a string of the first occurrence of a specified
substring.

fn:join()
Joins all elements of an array into a string.

fn:length()

Returns the number of items in a collection, or the number of characters

in a string.

fn:replace()

Returns a string resulting from replacing in an input string all occurrences

252

10

11

12

13

14

15

16

with a given string.

fn:split()

Splits a string into an array of substrings.

fn:startsWith()

Tests if an input string starts with the specified prefix.

fn:substring()

Returns a subset of a string.

fn:substringAfter()

Returns a subset of a string following a specific substring.

fn:substringBefore()

Returns a subset of a string before a specific substring.

fn:toLowerCase()

Converts all of the characters of a string to lower case.

fn:toUpperCase()

Converts all of the characters of a string to upper case.

fn:trim()

Removes white spaces from both ends of a string.

4.5 EXAMPLE: CONTACT BOOK

We have gone through Servlet, Database and JSP topics in Unit 4, we have studied

the different approaches of writing the Servlet, Servlet filters, Database Connection,

Reading data from database and display those data onto the JSP page.

253

Let's see the full example with of address book, where we will create a new contact,
read or search the contacts, edit the contact and delete the contacts using JSP,

Servlet best practices.

Create Database

Let's first create the PostgreSQL database and create a contact table. Execute the

below command to create the database and table.

$ createdb contactbook --encoding=UNICODE

$ psql contactbook

Connect to the database and create a contact table.

CREATE TABLE contact (
name VARCHAR (50),
email VARCHAR (50) UNIQUE,
phone VARCHAR (50),
urlsafe VARCHAR(100)

Create a Project

This example we are going to create with Eclipse Studio, let’'s create the Dynamic
Web Project in Eclipse and name it contactbook. The blank project will be created

with the default web configuration.

254

LIS New Dyramic Web Project
e e OB Qur (GG ™5 4+ @ 4 E Dynamic Web Project

= Craate & standalons Dynamiz Wab projezs or add i 10 8 naw or evissiag Entarprise Apglication
() Project Fuploer 3] 2 o =]

Thers ané no prowcts in pour workspace.

B reay

Working sets

.
Descripbol Werking seta:

| Ditems selected hitge/fownisad ora... 0. 1-rijesesent jar

Setup the connection

First things first, set up the connection details and connection pool in the context.xml
under the META-INF folder.

<?xml version="1.0" encoding="UTF-8"?>

<Context>

<Resource name="jdbc/contactbook" auth="Container"
type="javax.sgl.DataSource" username="mantavyagajjar" passworg="****xx*x"
driverClassName="org.postgresql.Driver"

url="jdbc:postgresql://localhost:5432/contactbook” maxldle="4" maxTotal="8"/>

</Context>

Show Contact List

The default page will display the list of contacts, when user access the /contactbook
application, the contacts will be fetched from database and display on the index

255

page. We will create an index.jsp that show the list of contacts in the database and

allow the user to perform the edit or delete operations on it.

Header.jsp

A common header that creates a menubar, so every page has the same menu bar
which includes the header.jsp page. We have also included the bootstrap CSS and

font awesome icons, so other JSP pages do not have to import any CSS libraries.

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<IDOCTYPE html>

<html|>

<head>

<meta charset="UTF-8">

<title>Insert title here</title>

<link href="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css"

rel="stylesheet"/>

<link href="https://use.fontawesome.com/releases/v5.8.1/css/all.css"

rel="stylesheet"/>

</head>

<body>

<nav class="navbar navbar-expand-lg navbar-light bg-light mb-4">
<div class="container">

Contacts

<div class="collapse navbar-collapse" id="navbarNavAltMarkup">
<div class="navbar-nav">

Create
</div>

</div>

</div>

</nav>

</body>

256

</html>

So, if you access the header.jsp you can see the only menu bar on the page as

below.

o0 ® (< M @ localhost:8080/contactbaok/header.jsp

=4
o
+

Contacts Create

Index.jsp

The index.jsp page can be called with query string or without the query string, based
on the parameters received it shows the data.

Show all contacts http://localhost:8080/contactbook/

Apply the filter for name field http://localhost:8080/contactbook/index.jsp?g=ajay

<%@ page import="java.sql.*, javax.sql.*, javax.naming.*"%>

<%@ taglib uri="http://java.sun.com/jspljstl/core" prefix="c"%>

<% @ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

<IDOCTYPE html>

<html>

<head>

257

http://localhost:8080/contactbook/�
http://localhost:8080/contactbook/index.jsp?q=ajay�

<meta charset="UTF-8">
<title>Contact Book</title>

</head>

<body>

<%@ include file="header.jsp" %>
<div class="container">

<div class="row">

<div class="col-4">

<c:set var="searchName" value='<%=request.getParameter("q")%>'/>

<sqgl:query var="result" dataSource="jdbc/contactbook">
SELECT * FROM contact WHERE name ilike ?
<sql:param value="%${searchName}%" />

</sql:query>

<form action="/contactbook/index.jsp" method="get">

<div class="input-group mb-4">

<input type="text" name="q" id="q" class="form-control" placeholder="Search"/>
<div class="input-group-append">

<input type="submit" value="Search" class="btn btn-primary"/>

</div>

</div>

</form>

</div>

</div>

<div class="row">
<div class="col">

<table class="table table-striped">

258

<tr>

<th width="10">Operation</th>
<th>Name</th>

<th>Email</th>

<th>Phone</th>

</tr>

<c:forEach var="row" items="${result.rows}">
<tr>

<td>

<i class="fas fa-trash-alt"></i>

<i class="fas fa-edit"></i>

</td>

<td><c:out value="${row.name}" /></td>
<td><c:out value="${row.phone}" /></td>
<td><c:out value="${row.email}" /></td>
</tr>

</c:forEach>

</table>

</div>

</div>

</div>

</body>

</html>

The index page shows all the data on the first load as the query string is not passed,

when user search for the contact, the same page receives the query which applies to

the SQL to filter on the data.

259

o008 < am| localhost:8080/contactbook/index.jsp?q=raval & i) s

Contacts Create

raval Search

Operation Name Email Phone
o Deepak Raval 9897187924 deepak@gmail.com
o Anjana Raval 9897187922 anjana@gmail.com

Create or Update Contact

The database operation such as create, exit or update records has to be done
through the Servlet, we will write a servlet that will either create or update the record
based on the request received from the user. Let’s create the create form when a
user enters the contact data and submit to the Create.java servlet. The same
create.jsp page is used to edit the contact when the user clicks on the Edit icon

beside the name on the contact list.

Create.jsp

Create page may receive a recordID parameter if received then the form will be edit
mode or the default will be in create mode.

Create http://localhost:8080/contactbook/create.jsp
Model

Edit http://localhost:8080/contactbook/create.isp?record=3bal708d4d427814c
Mode 9falb5a56675bee

<%@ page import="java.sql.*, javax.sql.*, javax.naming.*"%>

<% @ taglib uri="http://java.sun.com/jspljstl/core" prefix="c"%>

<%@ taglib uri="http://java.sun.com/jsp/jstl/sql" prefix="sql"%>

<%@ page language="java" contentType="text/html; charset=UTF-8"
pageEncoding="UTF-8"%>

260

http://localhost:8080/contactbook/create.jsp�
http://localhost:8080/contactbook/create.jsp?record=3ba1708d4d427814c9fa1b5a56675bee�
http://localhost:8080/contactbook/create.jsp?record=3ba1708d4d427814c9fa1b5a56675bee�

<IDOCTYPE html>

<htmlI>

<head>

<meta charset="UTF-8">
<title>Create Contact</title>

</head>

<body>
<%@ include file="header.jsp" %>

<div class="container">
<div class="row">
<div class="col-6">

<h2>Contact Form</h2>

<c:set var="recordID" value='<%=request.getParameter("record")%>'/>

<sql:query var="result" dataSource="jdbc/contactbook">
SELECT * FROM contact where urlsafe=?
<sql:param value="${recordID}" />

</sql:query>

<c:set var="row" value="${result.rows[0]}"/>

<form action="/contactbook/Create" method="post">

<div class="form-group">

<input hidden type="text" name="recordID" id="recordID"
class="form-control" value="${row.urlsafe}"/>

</div>

<div class="form-group">

<label for="name">Name</label>

261

<input type="text" name="name" id="name"
class="form-control" value="${row.name}"/>

</div>

<div class="form-group">

<label for="name">Email</label>

<input type="text" name="email" id="email"
class="form-control" value="${row.email}"/>

</div>

<div class="form-group">

<label for="name">Phone</label>

<input type="text" name="phone" id="phone"
class="form-control" value="${row.phone}"/>

</div>

<input type="submit" value="Save Contact" class="btn btn-primary"/>

</form>

</div>

<div class="col-6">
</div>

</div>

</div>

</body>

</html>

The create.jsp page fetch the record from the database when it received the

recordID, the page will retrieve the data using the urlsafe key and set in the

respective fields, a hidden field on the form will be filled with the value of recordID

when received. When user submit the form all the data submitted to the Create.java

servlet

Create.java

Create Servlet received data from create.jsp page, if the form is in edit mode servlet

receive the recordlID in addition to the other fields.

262

import java.sql.*;

import javax.sql.*;

import java.io.*;

import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.annotation.*;

@WebServlet("/Create")
publicclassCreateextendsHttpServiet {

privatestaticfinallong serialVersionUID = 1L,

private DataSource dataSource;
private Connection connection;

private PreparedStatement statement;

publicCreate() {
super();

}

@Override
publicvoidinit(ServletConfig config)

throws ServletException {

super.init(config);

try{

Context initContext = new InitialContext();
Context envContext = (Context) initContext.lookup(“java:/comp/env");
dataSource = (DataSource) envContext.lookup("jdbc/contactbook™);

} catch (NamingException e) {

263

protectedvoiddoGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

String SQL = "INSERT INTO contact (name, phone, email, urlsafe) VALUES (?,
?, ?, md5(?))";
String recordID = request.getParameter("recordID");
if(recordID.length() >0) {
SQL ="UPDATE contact SET name="?, phone=?, email=?, urlsafe=md5(?)
WHERE urlsafe=?";

}

try {
connection = dataSource.getConnection();

statement = connection.prepareStatement(SQL);

statement.setString(1, request.getParameter("name"));
statement.setString(2, request.getParameter("phone™));
statement.setString(3, request.getParameter("email™));

statement.setString(4, request.getParameter("email"));

if(recordID.length() >0) {

statement.setString(5, recordID);

}

statement.execute();
} catch (SQLException e) {

}

response.sendRedirect("/contactbook/index.jsp");

protectedvoiddoPost(HttpServietRequest request, HttpServietResponse response)

264

throws ServletException, IOException {

doGet(request, response);

Servlet takes care of creating a new record or updating the existing record in the

database and redirect to the index.jsp page.

Delete Contact

The Delete Servlet takes urlsafe key from the index.jsp page and delete the record. If
receive record parameter then executes the delete query else returns back to the

index.jsp page.

import java.sql.*;

import javax.sql.*;

import java.io.*;

import javax.naming.*;
import javax.servlet.*;
import javax.servlet.http.*;

import javax.servlet.annotation.*;

@WebServlet("/Delete™)
publicclassDeleteextendsHttpServlet {

privatestaticfinallong serialVersionUID = 1L,
private DataSource dataSource;

private Connection connection;

private PreparedStatement statement;

265

publicDelete() {
super();

}

@Override
publicvoidinit(ServletConfig config)

throws ServletException {

super.init(config);

try{
Context initContext = new InitialContext();
Context envContext = (Context) initContext.lookup(“java:/comp/env");
dataSource = (DataSource) envContext.lookup("jdbc/contactbook™);

} catch (NamingException e) {

protectedvoiddoGet(HttpServletRequest request, HitpServletResponse response)

throws ServletException, IOException {

if(request.getParameter("record").length() <= 0) {

response.sendRedirect("/contactbook/index.jsp™);

String SQL = "DELETE FROM contact WHERE urlsafe=?";

try {
connection = dataSource.getConnection();

statement = connection.prepareStatement(SQL);
statement.setString(1, request.getParameter("record"));

statement.execute();

266

} catch (SQLException e) {

}

response.sendRedirect("/contactbook/index.jsp");

protectedvoiddoPost(HttpServietRequest request, HttpServietResponse response)

throws ServletException, IOException {

doGet(request, response);

Download Example

Download a copy of the full example, it is an Eclipse Dynamic Web Project
https://drive.google.com/file/d/1VgASNRsQ-iIFH8s8LEr-
3w6vpLoKG3JcJ/view?usp=sharing

267

https://drive.google.com/file/d/1VgASNRsQ-iFH8s8LEr-3w6vpLoKG3JcJ/view?usp=sharing�
https://drive.google.com/file/d/1VgASNRsQ-iFH8s8LEr-3w6vpLoKG3JcJ/view?usp=sharing�

	Important methods
	HelloWorld.java
	Download Apache Tomcat
	/
	Create a web application
	WebServlet Annotation
	Loading a Servlet
	Initializing a Servlet
	Handling request
	Destroying a Servlet
	init() method
	service() method
	destroy() method
	Check Your Progress 1
	Check Your Progress 2
	Connection Parameters
	Database Connection Approaches
	First Approach
	Second Approach
	Third Approach

	Contact.html
	Contact.java
	First Approach
	Second Approach
	Third Approach
	Additional Libraries
	META-INF/context.xml
	Modify the Servlet Program
	JSP Declaration
	JSP Scriptlet
	JSP Expression
	JSP Comments
	JSP Page directive
	JSP Include directive
	JSP Taglib Directive
	out
	Request
	Response
	Config
	Application
	Session
	pageContext
	Page
	Exception
	JSP Syntax of Expression Language (EL)
	JSP Flow Control Statements
	JSP If-else
	JSP Switch
	JSP For loop
	JSP While loop

	JSP Operators
	Jsp:useBean
	Jsp:include
	Jsp:plugin
	Jsp:param
	Jsp:text
	Jsp:output
	Adding Cookie to Response
	Model Layer:
	View Layer:
	Controller Layer:
	Example
	Import Libraries
	Database Connection
	Core Tags
	SQL Tags
	JSTL Functions
	Create Database
	Create a Project
	Setup the connection
	Show Contact List
	Header.jsp
	Index.jsp

	Create or Update Contact
	Create.jsp
	Create.java

	Delete Contact
	Download Example

	MSCIT - 303.pdf
	Page 5

	MSCIT SEM - 3 BACK SIDE.pdf
	Page 8

