

Advanced Android
Mobile Application

2019

Dr. Babasaheb Ambedkar Open University

i

ii

Expert Committee

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

Prof. M. T. Savaliya
Associate Professor and Head, Computer Eng. Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Dr. Chetan Gondaliya
Assistant Professor, Department of Computer Science, Ganpat University, Kherva
Dr. Hiral Patel,
Assistant Professor, Department of Computer Science, Ganpat University, Kherva
Dr. Ashishkumar Parejiya
Assistant Professor, Institute of Information and Communication Technology,
Indus University, Ahmedabad

Subject Reviewer

Mrs. Vishakha Patel
Manager, SWISS Infotech, Bhavnagar

Editors

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad
Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Acknowledgement: The content in this book is modifications based on work created and
shared by the Android Open Source Project and used according to terms described in the

June 2019, © Dr. Babasaheb Ambedkar Open University

ISBN-978-81-940577-5-8

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad

iii

iv

Dr. Babasaheb
Ambedkar Open
University

PGDMAD-201

Advanced Android Mobile Application

Block-1: Common APIs

Unit-1 Using Content Providers 02

Unit-2 Handling Persisting Data 08

Unit-3 JSON Web Service 16

Block-2: Multimedia

Unit-1 Gallery 25

Unit-2 Drawing 2D and 3D Graphics and Multimedia 36

Unit-3 Drawing and Working with Animation 51

Block-3: Networking, Telephony and Location

Unit-1 Android Networking, Web and Telephony API 59

Unit-2 Search 76

Unit-3 Location and Mapping 117

Unit-4 Communication, Identity, Sync and Social Media 142

v

Block-4: Sensor and Hardware Programming

Unit-1 Sensors 162

Unit-2 NFC 184

Unit-3 Speech, Gestures and Accessibility 195

Unit-4 The Android Native Development Kit (NDK) 205

Block-5: Publishing Android Application

Unit-1 Deploying Android Application to The World 210

Unit-2 Selling Your Android Application 228

 1

Block-1

 Common APIs

 2

Unit 1: Using Content Providers

Unit Structure

1.1 Learning Objectives

1.2 Introduction

1.3 Content Provider

1.4 Accessing Content Provider

1.5 Content URI

1.6 Methods

1.7 Let us sum up

1.8 Check your Progress

1.9 Check your Progress: Possible Answers

1.10 Further Reading

1.11 Assignments

1.12 Activities

1

 3

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

o Supply data from one application to others on request using Content Provider.

1.2 INTRODUCTION

A content provider is a component. It supplies data from one application to

others on request. A content provider stores its data in different ways. This data can

be stored in a database, in files, or even over a network.

Figure-1 Content Provider

Content providers becomes very useful for sharing data across applications,.

Content providers works as a central content in one place and have many

different applications access it as needed. A content provider behaves very much

like a database.

You work with content providers when:

o One may want to implement code to access an existing content provider in

another application.

o One may want to create a new content provider in your application to share

data with other applications.

 4

1.3 CONTENT PROVIDER

A content provider:

o Can share of access to your application data from any other applications

o Can send data to a widget or application.

o Can return custom search suggestions for your application through the search

framework using SearchRecentSuggestionsProvider.

o Can synchronize application data with your server using an implementation of

AbstractThreadedSyncAdapter.

o Can load data in your User Interface using a CursorLoader.

1.4 ACCESSING CONTENT PROVIDER

o If you want to access data using content provider, use

the ContentResolver to communicate with

the provider as a client.

o The ContentResolver object communicates with the provider object. This

object receives data requests from clients, performs the requested action, and

returns the results.

o The ContentResolver methods provide the basic "CRUD" (create, retrieve,

update, and delete) operations of a storage.

o To access ContentProvider from your UI easiest way is to use

a CursorLoader to run an asynchronous query in the background.

The Activity or Fragment is used as UI that calls a CursorLoader to the query,

This gets the ContentProvider using the ContentResolver.

Figure-2 Accessing Content Provider

 5

A content provider is implemented as a subclass of ContentProvider class.

public class My Application extends ContentProvider {
{

1.5 CONTENT URI

 To query a content provider, you specify the query string in the form of a URI
which has following format

<prefix>://<authority>/<data_type>/<id>

Description of the URI parts

URI parts

Prefix

The string: // is always present, and identifies this as a content URI.

Authority

This specifies the name of the content provider, for

example contacts, browser etc.

data_type

This indicates the type of data that this particular provider provides.

Id

Many providers allow you to access a single row in a table by appending an ID

value to the end of the URI.

This specifies the specific record requested.

1.6 METHODS

Methods of ContentProvider:

o OnCreate() When the provider is started, this method is used.

o query() method is used to receive a request from a client. The result is

returned as a Cursor object.

 6

o insert() method is used to insert a new record into the content provider.

o delete() method is used delete an existing record from the content provider.

o update() method is used to update an existing record from the content

provider.

o getType() method is used to return the MIME(Multipurpose Internet Mail

Extensions) type of the data at the given URI.

1.7 LET US SUM UP

Content Providers: Content provider is a component that supplies data from one

application to others on request.

For accessing Content Providers: Use ContentResolver and CursorLoader.

To query a content provider, use the query string in the form of a URI.

1.8 CHECK YOUR PROGRESS

1. The ContentResolver methods provide the _________ operations of storage

2. Explain the use of content provider in short?

3. Mention the Methods of content provider?

4. In how many ways the content provider stores the data?

1.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. The ContentResolver methods provide the basic "CRUD" (create, retrieve,

update, and delete) operations of a storage.

2. A content provider is a component.It supplies data from one application to

others on request. Content providers works as a central content in one place

and have many different applications access it as needed. A content provider

behaves very much like a database.

3. Methods of ContentProvider

 onCreate()

 query()

 insert()

 7

 delete()

 update()

 getType()

4. A content provider stores its data in different ways. This data can be stored in

a database, in files, or even over a network.

1.10 FURTHER READING

Recommended links:

http://developer.android.com/

Recommended Books:

1.

Ltd (2011)

2. Teach.Yourself.Android.Application.Development.in.24. Hours. 2nd.Edition.

3. Learning Android-Book by Marko Gargenta (2011)

1.11 ASSIGNMENTS

1. Create an Android app to add name and age and then retrieve the student

record by using content provider.

1.12 ACTIVITIES

1. Work of ContentResolver object?

2. What is use of CursorLoader?

3. Specify the query string in the form of a URI to query a content provider?

4. Mention URI parts of Content URI?

 8

Unit 2: Handling Persisting Data

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Storage Options

2.4 Internal storage

2.5 External storage

2.6 SQLite database

2.7 Shared Preferences

2.8 Let us sum up

2.9 Check your Progress

2.10 Check your Progress: Possible Answers

2.11 Further Reading

2.12 Activities

2

 9

2.1 LEARNING OBJECTIVE

 Learn all the best practices in persisting your data at Android applications with

several options using Handling and persisting data.

 learn these several data storage options in android

2.2 INTRODUCTION

Android gives many options for you to save your application data.The option

you choose depends on specific needs, such as storage your data needs, type of

data you need to store, and if you want the data to be private to your application or

accessible to other any other applications or users.

2.3 STORAGE OPTIONS

This different data storage options that are given by Android are:

 Shared Preferences

 It stores the primitive data that is private in key-value pairs.

 Internal Storage

 It stores private data on the device memory (which cannot accessed by other

users or applications)

 External Storage

 It stores public data on the shared external storage or any disk (which can be

shared by external users and applications)

 SQLite Databases

 It stores the structured data in a private database.

 Network Connection

 It stores data on the web with your own network server.

2.4 INTERNAL STORAGE

It is storage that is not accessible by the any outsider or user, except

developer. When app is uninstalled the system removes all your apps files. It is

 10

mostly used when the developer wants no other user to access his/her application.

Internal storage is the storage of the private data only on the device memory. These

files by default are private an

get deleted, when he/she deletes your application.

2.5 EXTERNAL STORAGE

In built shared storage which is "accessible by any user by plugging in a USB

cable and mounting it as a drive on a host computer".

Example: Removable storage.

Example: SD Card.

file can be read by bufferreader class which has readline method.

2.6 SQLITE DATABASE

 SQLite is a opensource SQL database that stores data to a text file on a

device. Android comes in with built in SQLite database implementation.It is used to

perform database operations on android devices such as storing, manipulating or

retrieving persistent data from the database.SQLite supports all the relational

database features. In order to access this database, you don't need to establish any

kind of connections for it like JDBC,ODBC e.t.c

Method:

Sqlite consists of 2 classes: Manager and helper

The methods of helper are:

Table-1 Methods of helper class

private static final String CREATE_TABLE = "create table " + TABLE_NAME + "(" +
EMP_NAME + " TEXT NOT NULL, "

public abstract void

onCreate(SQLiteDatabase db)

It is called only once when database is

created for

the first time.

public abstract void

onUpgrade(SQLiteDatabase db,

int oldVersion, int newVersion)

It is called when database needs to be

when upgraded.

 11

 + EMP_CITY + " TEXT);";
public Helper(Context context) {
 super(context, DB_NAME, null, DB_VERSION);
}

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL(CREATE_TABLE);
}
@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 db.execSQL("DROP TABLE IF EXISTS" + TABLE_NAME);
 onCreate(db);
}

The methods of Manager are:

Table-2 Methods of manager class

public void insert(String name, String city) {
 ContentValues contentValue = new ContentValues();
 contentValue.put(Helper.EMP_NAME, name);
 contentValue.put(Helper.EMP_CITY, city);

void execSQL(String sql) It is used to execute the sql query not select

query.

long insert(String table, String

nullColumnHack,

ContentValues values)

It is used insert a record on the database. The

table specifies the table name,

nullColumnHack doesn't allow any null

values. If second argument is null, android will

store null values if values are empty. The third

argument specifies the values to be stored.

int update(String table,

ContentValues values, String

whereClause, String[]

whereArgs)

It is used to update a row.

Cursor query(String table,

String[] columns, String

selection, String[]

selectionArgs, String groupBy,

String having, String orderBy)

It is used to return a cursor over the resultset.

 12

 database.insert(Helper.TABLE_NAME, null, contentValue);
}

public int update(String name, String city) {
 ContentValues contentValues = new ContentValues();
 contentValues.put(Helper.EMP_NAME, name);
 contentValues.put(Helper.EMP_CITY, city);
 int i = database.update(Helper.TABLE_NAME, contentValues, Helper.EMP_CITY
+ " =' " + city + " ' ", null);
 return i;
}

public void delete(String name) {
 database.delete(Helper.TABLE_NAME, Helper.EMP_NAME + "=" + name, null);
}

public Cursor fetch() {
 String[] columns = new String[] { Helper.EMP_NAME, Helper.EMP_CITY};
 Cursor cursor = database.query(Helper.TABLE_NAME, columns, null, null, null,
null, null);
 if (cursor != null) {
 cursor.moveToFirst();
 }
 return cursor;
}

2.7 SHARED PREFERENCES

Shared Preferences gives you the way to save and retrieve data in the form

of key,value pair.

In order to use shared preferences, one needs to call a method

getSharedPreferences() .

It returns a SharedPreference instance that points to the file containing the

values of preferences.

SharedPreferences sp = getSharedPreferences(MyPREFERENCES,
Context.MODE_PRIVATE);

The first parameter is the key and the second parameter is the MODE.Others are:

Mode

MODE_APPEND

It appends the new preferences with the already existing preferences

 13

MODE_ENABLE_WRITE_AHEAD_LOGGING

When Database open flag is set , it would enable write ahead logging by default

MODE_MULTI_PROCESS

It will check for modification of preferences even if the sharedpreference instance

has already been loaded.

MODE_PRIVATE

The file can only be accessed using calling application when this mode is been

set.

MODE_WORLD_READABLE

This mode will allow other applications to read the preferences.(Makes reading

public)

MODE_WORLD_WRITEABLE

This mode will allow other applications to write the preferences.(Makes writing

public)

One can save anything sharedpreferences by using SharedPreferences.Editor

class.

Methods of editor class:

Mode

apply()

This abstract method will commit your changes back from editor to the

sharedPreference object you are calling

clear()

This method will be removing all values from the editor

remove(String key)

This method will be removing the value whose key has been passed as

a parameter

 14

putLong(String key, long value)

This method will save a long value in a preference editor

putInt(String key, int value)

This method will be saving an integer value in a preference editor

putFloat(String key, float value)

This method will be saving a float value in a preference editor

Table-3 Methods of editor class

2.8 LET US SUM UP

 Storage options: Android gives many options for you to save your application

data . This options are:

 Internal Storage:This option stores private data on the device memory (which

cannot accessed by other users or applications).

 External Storage:This option stores public data on the shared external storage

or any disk (which can be shared by external users and applications).

 Shared Preferences: This option stores the primitive data that is private in

key-value pairs.

 SQLite Databases:This option stores the structured data in a private

database.

2.9 CHECK YOUR PROGRESS

1. The Shared preferences stores data in __________.

2. The interanal storage is a ________ storage.

3. The exteranal storage is a ________ storage.

4. Full form of DDMS.

5. Which of the following storage can be accessible by any user by plugging any

external device?

 internal storage

 external storage

 15

6. Which 2 classes does the sqlLite consists of?

2.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Shared preferences stores data in key-value pairs.

2. Internal Storage is private storage.

3. External Storage is public storage.

4. Dalvik Debug Monitor Server (DDMS).

5. External storage storage can be accessible by any user by plugging any

external device.

6. 2 classes of sqlLite connection is:

a) Helper

b) Manager

2.11 FURTHER READING

Recommended links: http://developer.android.com/

Recommended Books:

1.

Ltd (2011)

2. Teach.Yourself.Android.Application.Development.in.24.Hours.2nd.Edition.

3. Learning Android-Book by Marko Gargenta(2011)

2.12 ACTIVITIES

1. Mention the data storage options in android.

2. Explain DDMS in short.

3. Mention the helper class methods.

4. Mention the Manager class methods.

5. Explain Content values in short.

6. Mention methods of Content values.

7. To use shared preferences, one needs to call a method______.

8. Mention the modes in shared preferences.

9. Explain the shared preferences in short.

 16

Unit 3: JSON Web Service

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Web Service

3.4 Parser class

3.5 JSONArray

3.6 JSONObject

3.7 JSONString

3.8 Let us sum up

3.9 Check your Progress

3.10 Check your Progress: Possible Answers

3.11 Further Reading

3.12 Assignments

3.13 Activities

3

 17

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 You learn about how data send through JSON services to android mobile

phone using Parser class and web services.

 This chapter explains how to parse the URL and extract necessary

information from it.

3.2 INTRODUCTION

JSON stands for Java Script Object Notation. JSON is used to extract

information from the URL.

JSON is a programming language. It is a minimal, textual and a subset of

JavaScript. It is an alternative to XML.

Android provides support to parse the JSON object and JSON array, it

provides easy and flexible way to work with it.

3.3 WEB SERVICE

Before we get started with JSON, it is important to understand that what is a

web service and how it works.

Web Service:

A web service is a standard for interchange information between different types of

applications and platform.

For example,

 S send request of data

web service (see the figure)

Figure-4 Web Service

 18

o There is data in the Database(DB) which the client service or browser sends

request to the server.

o The server sends the data necessary information to the DB.

o The response sends via database.

o The server sends it to the Client.

o And in the last stage, Parsor class is used to check the data in your phone.

3.4 PARSOR CLASS

After learning the classes, it is easy to create your own web service with easy

implementation.

Types of Parsor class:

1) JSON Array:

2) JSON String:

3) JSON Object:

The first step is to identify the fields in the JSON data in which you are interested in:

{

"employees"

[

{"firstName":"John","lastName":"Serin"},

{"firstName":"Cristen","lastName":"Smith"},

{"firstName":"Paul","lastName":"Walker"},

] }

3.5 JSON ARRAY

JSON Array:

JSONArray class is used to create array with values.

Array ([]):

In a JSON, square bracket ([]) represents JSON array.

Example:
 ["January", "February", "March", "April", "May", "June", "July"]

 19

Constructor:

Constructor Description

JSONArray() Creates a JSONArray with no values.

JSONArray(String json) Creates a new JSONArray with values

from the JSON string.

JSONArray(Object array) Creates a new JSONArray with values

from the given array.

Table-4 Constructors of JSON Array

Methods:

 onResponse

It will return a JSON array that contains the web service response.

 onErrorResponse

It will be called when any error is generated and / or request is send.

3.6 JSON OBJECT

JSON Object:

JSON Object is class with name/value mappings.

Objects ({ }):

In a JSON, curly bracket ({}) represents a JSON object.

A JSON object contains key/value pairs same as map. The keys are strings and the
values are the JSON types. Keys and values are separated by comma.

For example:

{

 "employee": {

 "name": "John",

 "salary": 53000,

 "married": true }

}

 20

Constructor:

Constructor Description

JSONObject()

Creates a JSONObject with no name/value mappings

JSONObject(String json)

Creates a new JSONObject with name/value mappings
from the JSON string.

Table-5 Constructors of JSON Object

Methods:

onResponse:

 It will return a JSON object that contains the response of web service.

onErrorResponse:

 It will be called when any error is generated.

Key:

A JSON object contains a key that is a string. Pairs of key/value make up a JSON

object.

Value:

Each key has a value and It is not necessary that the value is always in String

format, value that could be string, integer or double etc.

Data in JSON are based on key / value pairs. The key is a string, the value can be a

numerical value, a boolean value (true or false) or an object.

The difference between [and { (Square brackets and Curly brackets):

As you can see in below figure, in general all the JSON nodes will start with a square

bracket or with a curly bracket. The difference between [and { is, the square bracket

([) represents starting of an JSONArray node whereas curly bracket ({)

represents JSONObject.

So while accessing these nodes we need to call suitable method for the data.

If your JSON node starts with [, then we should use getJSONArray() method. Same

as if the node starts with { , then we should use getJSONObject() method.

 21

Figure-5 JSON nodes

3.7 JSON STRING

JSON String:

onResponse

 It will return a JSON string that contains the web service response.

onErrorResponse

 It will be called when any error is generated.

Volley Library:

o It handles the request and response send by the user in android.

o It provides controller to handle the machinery.

o Volley is an HTTP library that makes networking for Android apps easier and

faster, developed by Google.

o It handles the processing and accumulating of network requests and saves
developers valuable time from writing the same network code again and again.

o You need not create an AsyncTask for running network operation in the

background. Volley does this by itself by creating an asynchronous task.

o Volley is fit for large download operations because it holds all responses in
memory during parsing the data.

 22

3.8 LET US SUM UP

 JSON (Java Script Object Notation) is easy extension of XML.

 There parser class namely :JSONArray, JSONString and JSONObject.

 Array ([]) In a JSON, square bracket ([) represents a JSON array.

 Objects ({ }) In a JSON, curly bracket ({) represents a JSON object.

 Key A JSON object contains a key that is string. Pairs of key/value make up a

JSON object.

 Value Each value that could be string, integer or double.

 Volley is an HTTP library that makes networking for Android apps easier

3.9 CHECK YOUR PROGRESS

1. What extension is used to save JSON file?

2. Is JSON case sensitive?

3. What two main structure compose JSON?

a) Array and Object

b) Key and value

c) Class and object

d) None of this

4. Which is incorrect value of JSON name/value pair?

1. name=value

2.

3.

4.

5. Which of the following is not type?

a.) Array

b.) String

 23

c.) Object

d.) Date

3.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. .json

2. Yes, it is case sensitive

3. A.) Array and object

4.

5. Date

3.11 FURTHER READING

1.

Ltd (2011)

2.

Education

3. Teach Yourself Android Application Development in 24Hours 2nd.Edition.

3.12 ASSIGNMENTS

1. Enter your details for example name, address, phone no., pin and email. And

pass this data through web services and print it on your screen.

3.13 ACTIVITIES
Solve this question(s):

1. Mention which function is used to convert a JSON text into an object?

2. Can we use double quote in JSON String?

 24

Block-2

Multimedia

 25

Unit 1: Gallery

Unit Structure

1.1. Learning Objectives

1.2. Introduction

1.3. Multimedia & Graphics in android

1.4. Image Components

1.5. Image gallery build and use

1.6. Let us sum up

1.7. Check Your Progress

1.8. Check your Progress: Possible Answers

1.9. Further Reading

1.10. Assignments

1.11. Activities

1

 26

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Students will understand about media content.

 They will get more clarification about grid layout and custom.

 How to pass media content to layout.

 Call another activity based on gallery action.

1.2 INTRODUCTION

tasks

beyond simple voice calls. Multimedia capabilities, or the playing and recording of audio and

video, is one such significant task that many users find to be of great value. Take a quick

look around and you will find people using the phone as a means to enjoy a variety of

programs as well as share self-recorded media among friends. Android provides the APIs to

easily access this capability as well as embed multimedia and its manipulation directly within

an application.

 Android provides a huge set of 2D-drawing APIs that allow you to create graphics.

 Android has got visually appealing graphics and mind-blowing animations.

 The Android framework provides a rich set of powerful APIS for applying animation to

UI elements and graphics as well as drawing custom 2D and 3D graphics.

1.3 MULTIMEDIA & GRAPHICS IN ANDROID

In this unit, you will get a look at the fundamentals of Android UI design. You will understand

user input, views and layouts, as well as adapters and fragments.

We will cover some multimedia and graphic aspects in Android. The Android SDK provides

a set of APIs to handle multimedia files, such as audio, video and images. Moreover, the

SDK provides other API sets that help developers to implement interesting graphics effects,

like animations and so on.

The modern smart phones and tablets have an increasing storage capacity so that we can

 27

store music files, video files, images etc. Not only the storage capacity is important, but also

the high definition camera makes it possible to take impressive photos. In this context, the

Multimedia API plays an important role.

Multimedia API

Android supports a wide list of audio, video and image formats. You can give a look here to

have an idea; just to name a few formats supported:

Audio

AAC LC/LTP *

HE-AACv1 (AAC+)

HE-AACv2 (enhanced AAC+)

AMR-NB *

AMR-WB *

MP3

FLAC (Android 3.1+)

MIDI

Ogg Vorbis

PCM/WAVE

Video

H.263 *

H.264 AVC * (encode Android 3.0+)

MPEG-4 SP

VP8 (Android 2.3.3+)

Images:

JPEG

GIF

PNG

Android, additionally, can handle local files, meaning files that are stored inside the smart

phone or tablet or remote file using data streaming. We can leverage these capabilities in

order to build very interesting apps.

All the classes provided by the Android SDK that we can use to add multimedia capabilities

to our apps are under the android.media package. In this package, the heart class is called

MediaPlayer. This class has several methods that we can use to play audio and video file

 28

stored in our device or streamed from a remote server.

This class implements a state machine with well-defined states and we have to know them

before playing a file. Simplifying the state diagram, as shown in the official documentation,

we can define these macro-states:

There are 4 state of multimedia file play either video or music:

 Idle state: When we create a new instance of the MediaPlayer class.

 Initialization state: This state is triggered when we use setDataSource to set the

information source that MediaPlayer has to use.

 Prepared state: In this state, the preparation work is completed. We can enter in this

state calling prepare method or prepareAsync. In the first case after the method returns

the state moves to Prepared. In the async way, we have to implement a listener to be

notified when the system is ready and the state moves to Prepared. We have to keep in

mind that when calling the prepare method, the entire app could hang before the method

returns because the method can take a long time before it completes its work, especially

when data is streamed from a remote server. We should avoid calling this method in the

main thread because it might cause a ANR (Application Not Responding) problem. Once

the MediaPlayer is in prepared state we can play our file, pause it or stop it.

 Completed state: The end of the stream is reached.

1.4 IMAGE COMPONENTS

In Android, ImageView class is used to display an image file in application. Image file is easy

to use but hard to master in Android, because of the various screen sizes in Android

devices. An android is enriched with some of the best UI design widgets that allows us to

build good looking and attractive UI based application.

Important Note: ImageView comes with different configuration options to support different

scale types. Scale type options are used for scaling the bounds of an image to the bounds of

the imageview. Some of them scaleTypes configuration properties are center, center_crop,

fit_xy, fitStart etc. for more detail you can refer android developer documents :

https://developer.android.com/reference/android/widget/ImageView.ScaleType

Below is an ImageView code in XML:

 29

Make sure to save lion image in drawable folder

<ImageView

android:id="@+id/simpleImageView"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:src="@drawable/lion" />

Attributes of ImageView:

your xml file.

 Id: ID is an attribute used to uniquely identify an image view in android. Below is the

example code in which we set the id of an image view.

<ImageView

android:id="@+id/simpleImageView"

android:layout_width="fill_parent"

android:layout_height="wrap_content" />

 src: src is an attribute used to set a source file or you can say image in your imageview

to make your layout attractive. Below is the example code in which we set the source of

a imageview lion which is saved in drawable folder.

<ImageView

android:id="@+id/simpleImageView"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:src="@drawable/lion" /><!--set the source of an image view-->

 In Java: We can also set the source image at run time programmatically in java class.

For that we use setImageResource() method as shown in below example code.

/*Add in Oncreate() function after setContentView()*/

ImageView simpleImageView=(ImageView) findViewById(R.id.simpleImageView);

simpleImageView.setImageResource(R.drawable.lion);

//set the source in java class

 30

Figure-6 Output of Simple Image View (SRC as lion)

background: background attribute is used to set the background of an ImageView. We can

set a color or a drawable in the background of an ImageView. Below is the example code in

which we set the black color in the background and an image in the src attribute of image

view.

Figure-7 Output of Imageview along with black background

 In Java: We can also set the background at run time programmatically in java class. In

below example code we set the black color in the background of an image view.

/*Add in Oncreate() function after setContentView()*/

ImageView simpleImageView=(ImageView) findViewById(R.id.simpleImageView);

simpleImageView.setBackgroundColor(Color.BLACK);

//set black color in the background of an image view in java class

 padding: padding attribute is used to set the padding from left, right, top or bottom of the

Imageview.

 31

 paddingRight: set the padding from the right side of the image view.

 paddingLeft: set the padding from the left side of the image view.

 paddingTop: set the padding from the top side of the image view.

 paddingBottom: set the padding from the bottom side of the image view.

Below is the example code of padding attribute in which we set the 30dp padding

an image view.

<ImageView

 android:id="@+id/simpleImageView"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:background="#000"

 android:src="@drawable/lion"

 android:padding="30dp"/>

<!--set 30dp padding from all the sides-->

Figure-8 Output of Imageview padding all side

scaleType: scaleType is an attribute used to control how the image should be re-sized or

moved to match the size of this image view. The value for scale type attribute can be fit_xy,

center_crop, fitStart etc.

Below is the example code of scale type in which we set the scale type of image view

to fit_xy.

<ImageView

android:id="@+id/simpleImageView"

 32

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:src="@drawable/lion"

android:scaleType="fitXY"/>

<!--set scale type fit xy-->

Figure-9 Output of Image ScaleType X & Y

type in an image view.

image in the start of the image view as shown below:

<ImageView

 android:id="@+id/simpleImageView"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:src="@drawable/lion"

 android:scaleType="fitStart"/>

<!--set scale type fit start of image view-->

Figure-10 Output of imageview Scaletype as fitStart

 33

Below is the example of image view in which we display two animal images of Lion and

Monkey. And whenever user click on an image Animal name is displayed as toast on

screen. Below is the final output and code:

Figure-11 Full image Display as an ImageView

1.5 IMAGE GALLERY BUILD

Android Gallery is a View commonly used to display items in a horizontally scrolling list that

images and when a user clicks an image, it will be displayed in the center of the screen.

Android Gallery View Overview

 The items of Gallery are populated from an Adapter, similar to ListView, in which

ListView items were populated from an Adapter

 We need to create an Adapter class which extends BaseAdapter class and override

getView() method

 getView() method called automatically for all items of Gallery

The layout for the Gallery is defined as follows:

<Gallery

 android:id="@+id/gallery1"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content" />

It belongs to android.widget.Gallery class. However, this class is deprecated now.

 34

1.6 LET US SUM UP

In this block we understand about 2D & 3D graphics, Multimedia & Graphics in android,

Image Components, Image gallery build and use Image view as grid layout and how to fill

the content in existing layout container.

This will help to create your own photo gallery using code.

1.7 CHECK YOUR PROGRESS

A. API Stands for _________________.

B. _____________ is type of image type.

C. (AVI,JPEG,GIF,PNG)

D. paddingRight: set the padding from the right side of the image view. (TRUE/FALSE)

E. getView() method do not call automatically for all items of Gallery. (TRUE/FALSE)

1.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. Application Programming interface

B. AVI

C. TRUE

D. FALSE

1.9 FURTHER READING

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn Griffiths

ISBN-13: 978-1449362188 ISBN-10: 1449362184

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch Guides)

3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano ISBN-13: 978-0134706054

ISBN-10: 0134706056

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13: 978-

1118717370 ISBN-10: 1118717376

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-13:

978-1118949528 ISBN-10: 9781118949528

 35

1.10 ASSIGNMENTS

1) Write sort note on 4 state of multimedia file play either video or music.

2) Explain Image Components in detail.

3) Write an application structure code for create Gallery

4) Explain how to build Image gallery using built in component.

5) Write a sort note on Image view as grid

1.11 ACTIVITIES

 Create android application for Photo collage apps using different layout

 36

Unit 2: Drawing 2D and 3D
Graphics and Multimedia

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Drawing 2D

2.4 3D Graphics

2.5 Multimedia

2.6 Let Us Sum Up

2.7 Check your Progress

2.8 Check your Progress: Possible Answers

2.9 Further Reading

2.10 Assignment

2.11 Activities

2

 37

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand about 2D & 3D graphics Animation

 How to create graphics using Library

 Understand about how to play multimedia file in multimedia players or other way

 Will be able to create 2d or 3D graphics object component

2.2 INTRODUCTION

Android provides a huge set of 2D-drawing APIs that allow you to create graphics.

Android has got visually appealing graphics and mind-blowing animations.

The Android framework provides a rich set of powerful APIS for applying animation to UI

elements and graphics as well as drawing custom 2D and 3D graphics.

The android.graphics.Canvas can be used to draw graphics in android. It provides methods

to draw oval, rectangle, picture, text, line etc.

The android.graphics.Paint class is used with canvas to draw objects. It holds the

information of color and style.

 Canvas

Android graphics provides low level graphics tools such as canvases, colour, filters, points

and rectangles which handle drawing to the screen directly.

The Android framework provides a set of 2D-DRAWING APIs which allows user to provide

own custom graphics onto a canvas or to modify existing views to customize their look and

feel.

There are two ways to draw 2D graphics,

1. Draw your animation into a View object from your layout.

2. Draw your animation directly to a Canvas.

 38

Some of the important methods of Canvas Class are as follows

I. drawText()

II. drawRoundRect()

III. drawCircle()

IV. drawRect()

V. drawBitmap()

VI. drawARGB()

You can use these methods in onDraw() method to create your own custom user interface.

Drawing an animation with a View is the best option to draw simple graphics that do not

need to change dynamically and are not a part of a performance-intensive game. It is used

when user wants to display a static graphic or predefined animation.

Drawing an animation with a Canvas is better option when your application needs to re-draw

itself regularly. For example video games should be drawing to the Canvas on its own.

2.3 DRAWING 2D

Android comes along with strong open-source API libraries which support customized 2D

and 3D graphics in addition to animations.

The Android framework APIs as well makes available a set of 2D-drawing APIs which gives

you room to customize graphics onto a canvas or to alter current Views to change their

appearance and feel.

When drawing 2D graphics, you will characteristically do that in two ways. API makes

available 2D drawing APIs for simple animation that does not have any need for key

alterations changes. These two ways of carrying this out using API are:

 To draw to a View

 To draw on a Canvas

DRAWING A CIRCLE TO VIEW : Drawing to view is a preferred option when your UI does

not require dynamic alterations in the application. The most suitable aspect of doing so is

that the Android framework will make available for you a pre-defined Canvas to which you

will put your drawing calls.

 39

This can be fulfilled merely simply by extending the View category and define an onDraw()

callback technique.

canvas.drawCircle(x / 2, y / 2, radius, paint);). onDraw() is a callback technique called when

the view is at first drawn.

DRAWING TO A CANVAS: This is the preferred option when your application requires to

constantly re-draw itself. Applications like video games ought to be drawing to the Canvas

by itself. Although, there are other ways this could be achieved.

HOW TO DRAW 2D OBJECTS ON A CANVAS: To draw 2D graphics in a place in your

application that requires to constantly re draw itself, the best option for you is to draw on a

canvas. A Canvas functions for you as an interface, to the real surface on which your

graphics will be drawn.

If you are required to produce a fresh Canvas, then you ought to specify the bitmap on

which drawing will in reality be out. The Bitmap is at all times needed for a Canvas.

DRAWABLES: Android provides a customized 2D graphics files for drawing shapes and

images. The android.graphics.drawable file is the location where the regular categories used

for drawing in two-dimensions can be found.

We have provided here the fundamentals of making use of Drawable objects to draw

graphics and how to make use of a few subclasses of the Drawable category.

the Drawable category extends to define a lot of particular forms of drawable graphics,

which consists of BitmapDrawable, ShapeDrawable, PictureDrawable, LayerDrawable, and

many others. You can as well extend these to specify your own customized Drawable

objects that act in particular ways.

There are three ways to specify and initiate a Drawable: Through the utilization of an image

saved in your project resources; through the use of an XML file that specifies the Drawable

features; or the of standard category constructors.

GENERATING FROM RESOURCE IMAGES: An easy way to incorporate graphics to your

 40

application is by referring to an image file from your project resources.

The file types that are supported are PNG (which is the most preferred option), JPG (which

is an acceptable option) and GIF (which should not be used at all). This method would

clearly be preferred for application icons, logos, or other graphics like those made use of in a

game.

To make use of an image resource, you merely require to incorporate your file to the

res/drawable/ directory of your project.

You can the refer it from your code or your XML layout. Whichever one you choose it is

termed making use of a resource ID, which is the file name without the extension of the file

type extension like my_image.png is referenced as my_image.

In other scenarios, you may want to take care of your image resource as a Drawable object.

To be able to achieve this, build a Drawable from the resource such as:

Resources res = mContext.getResources();

Drawable myImage = res.getDrawable(R.drawable.my_image);

Every singular resource in your project can sustain just a unique state, irrespective of the

number of various objects you may initiate for it.

For instance, if you initiate two Drawable objects from an equivalent image resource, then

alter a property (like the alpha) for one of the Drawables, then it will as well affect the other.

Thus, anytime you are handling a lot of examples of an image resource, rather than

unswervingly changing the Drawable, you ought to carry out a tween animation.

Example XML

The XML code below illustrates how to add a resource Drawable to an ImageView in the

XML layout (with a few red tints merely to offer fun).

<ImageView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:tint="#55ff0000"

android:src="@drawable/my_image"/>

 41

CREATING FROM RESOURCE XML: You ought to have at this stage be able to create a

User Interface. Therefore, you should know the strength and flexibility intrinsic in specifying

objects in XML.

produce, which is not at first reliant on variables specified by your application code or user

interaction, then specifying the Drawable in XML is an excellent option.

application, you ought to take into consideration the specification of the object in XML, as

you can at all times alter properties immediately it is initiated.

res/drawable/directory of your project and after that retrieve and initiate the object by calling

Resources.getDrawable(), transferring to it the resource ID of your XML file.

Any Drawable subcategory that supports the inflate() technique can be specified in XML and

started by your application. Each Drawable that supports XML inflation makes use of

particular XML characteristics that assist you to define the object properties. See the

category documentation for every Drawable subcategory for information on how to specify it

in XML.

Example: Below are a few XML that specifies a TransitionDrawable:

<transition xmlns:android="http://schemas.android.com/apk/res/android">

<item android:drawable="@drawable/image_expand">

<item android:drawable="@drawable/image_collapse">

</transition>

With this XML stored in the file res/drawable/expand_collapse.xml, the code will kick off the

TransitionDrawable and set it as the content of an ImageView:

Resources res = mContext.getResources();

TransitionDrawable transition = (TransitionDrawable)

res.getDrawable(R.drawable.expand_collapse);

ImageView image = (ImageView) findViewById(R.id.toggle_image);

image.setImageDrawable(transition);

At this point the transition can be run forward (for 1 second) with:

transition.startTransition(1000);

 42

SHAPE DRAWABLE:

Anytime you intend to draw a few 2D graphics dynamically, a ShapeDrawable object will

possibly be what you need to achieve this.

A ShapeDrawable, allows you c to draw as a program primeval shapes and design them in

any way you can think of.

A ShapeDrawable is an expansion of Drawable, that allows you to make use of it anywhere

a Drawable is should be used like for the background of a View, set with

setBackgroundDrawable().

Of course, you can as well draw your shape as its own customized View, to be incorporated

to your layout no matter the way it pleases you.

Due to the fact that ShapeDrawable possess its own draw() technique, you can produce a

subcategory of View that draws the ShapeDrawable during the View.onDraw() technique

See below the main expansion of the View category that draw a ShapeDrawable as a View:

public class CustomDrawableView extends View {

private ShapeDrawable mDrawable;

public CustomDrawableView(Context context) {

super(context);

int x = 10;

int y = 10;

int width = 300;

int height = 50;

mDrawable = new ShapeDrawable(new OvalShape());

mDrawable.getPaint().setColor(0xff74AC23);

mDrawable.setBounds(x, y, x + width, y + height);

}

protected void onDraw(Canvas canvas) {

mDrawable.draw(canvas);

}

}

 43

and the limits of the shape are set. If you do not set the limits, then the shape will not be

drawn, while if you fail to set the color, it will change to black color by default.

With the customized View specified, it can be drawn in any form that pleases you. With the

sample above, we can draw the shape as a program in an Activity:

CustomDrawableView mCustomDrawableView;

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

mCustomDrawableView = new CustomDrawableView(this);

setContentView(mCustomDrawableView);

}

If you wish to draw this customized drawable from the XML layout rather than from the

Activity, then the CustomDrawable category ought to override the View (Context,

characteristic Set) constructor which is invoked during the start of a View through inflation

from XML. After this incorporate a CustomDrawable factor to the XML, such as:

<com.example.shapedrawable.CustomDrawableView

android:layout_width="fill_parent"

android:layout_height="wrap_content"/>

The ShapeDrawable category such as a lot of other Drawable types in the

android.graphics.draw+able package permits you to specify a lot of properties of the

drawable with public techniques.

A few properties you may wish to alter are alpha transparency, color filter, dither, opacity

and color.

You can as well specify primordial drawable shapes with the use of XML.

NINE-PATCHDRAWABLE GRAPHIC: A NinePatchDrawable graphic is a bitmap image that

can be stretched, which Android will routinely adjust contain the contents of the View in

which you have put in it as the background.

One instance that shows the use of a NinePatch is the backgrounds used by typical Android

buttons buttons ought to stretch to contain strings of varying lengths.

The Draw 9-patch tool presents an exceptionally practical way to build your NinePatch

 44

pictures, with the use of a WYSIWYG graphics editor. It even increases warnings if the area

pixel duplication.

Example XML: Below is a few instance of sample layout XML that shows how to add a

NinePatch image to a group of buttons. The NinePatch image is stored in the form

res/drawable/my_button_background.9.png

<Button id="@+id/tiny"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignParentTop="true"

android:layout_centerInParent="true"

android:text="Tiny"

android:textSize="8sp"

android:background="@drawable/my_button_background"/>

<Button id="@+id/big"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_alignParentBottom="true"

android:layout_centerInParent="true"

android:text="Biiiiiiig text!"

android:textSize="30sp"

android:background="@drawable/my_button_background"/>

precisely about the text.

2.4 3D GRAPHICS

Almost every Android phone available in the market today has a graphics processing unit, or

GPU for short. As its name suggests, this is a hardware unit dedicated to handling

calculations that are usually related to 3D graphics. As an app developer, you can make use

of the GPU to create complex graphics and animations that run at very high frame rates.

 45

There are currently two different APIs you can use to interact with an Android device's GPU:

Vulkan and OpenGL ES. While Vulkan is available only on devices running Android 7.0 or

higher, OpenGL ES is supported by all Android versions.

In this block, we will try to understand and started with using OpenGL ES 2.0 in Android

apps.

Prerequisites:

 The latest version of Android Studio

 an Android device that supports OpenGL ES 2.0 or higher

 a recent version of Blender, or any other 3D modeling software

What Is OpenGL ES?

OpenGL, which is short for Open Graphics Library, is a platform-independent API that allows

you to create hardware-accelerated 3D graphics. OpenGL ES, short for OpenGL for

Embedded Systems, is a subset of the API.

OpenGL ES is a very low-level API. In other words, it doesn't offer any methods that allow

you to quickly create or manipulate 3D objects. Instead, while working with it, you are

expected to manually manage tasks such as creating the individual vertices and faces of 3D

objects, calculating various 3D transformations, and creating different types of shaders.

It is also worth mentioning that the Android SDK and NDK together allow you to write

OpenGL ES-related code in both Java and C.

In this Block, lets we understand, how to create 3D graphics using OpenGL in android.

Basic description of Underlying algorithm in step by step form:

1. Create a Project Graphics3d.

2. Put an image in res/drawable.

3. Create a custom view

 46

2.5 MULTIMEDIA

MediaPlayer overview: The Android multimedia framework includes support for playing

variety of common media types, so that you can easily integrate audio, video and images

into your applications. You can play audio or video from media files stored in your

application's resources (raw resources), from standalone files in the filesystem, or from a

data stream arriving over a network connection, all using MediaPlayer APIs.

This document shows you how to write a media-playing application that interacts with the

user and the system in order to obtain good performance and a pleasant user experience.

In android, by using MediaPlayer class we can easily fetch, decode and play both audio and

video files with minimal setup.

The android media framework provides a built in support for playing a variety of common

media types, such as audio or video. We have a multiple ways to play audio or video but the

most important component of media framework is MediaPlayer class.

Android MediaPlayer Class: In android, by using MediaPlayer class we can access audio or

video files from application (raw) resources, standalone files in file system or from a data

stream arriving over a network connection and play audio or video files with the multiple

playback options such as play, pause, forward, backward, etc.

resource (res/raw) directory.

MediaPlayer mPlayer = MediaPlayer.create(this, R.raw.baitikochi_chuste);

mPlayer.start();

The second parameter in create() method is the name of the song that we want to play from

our application resource directory (res/raw). In case if raw folder not exists in your

application, create a new raw folder under res directory and add a properly encoded and

formatted media files in it.

In case, if we want to play an audio from a URI that is locally available in the system, we

need to write the code like as shown below.

Uri myUri =; // initialize Uri here

MediaPlayer mPlayer = new MediaPlayer();

 47

mPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);

mPlayer.setDataSource(getApplicationContext(), myUri);

mPlayer.prepare();

mPlayer.start();

If we want to play an audio from a URL via HTTP streaming, we need to write the code like

as shown below.

String url = "http://........"; // your URL here

MediaPlayer mPlayer = new MediaPlayer();

mPlayer.setAudioStreamType(AudioManager.STREAM_MUSIC);

mPlayer.setDataSource(url);

mPlayer.prepare(); // might take long! (for buffering, etc)

mPlayer.start();

If you observe above code snippets, we create an instance of MediaPlayer class and added

required audio source, streaming type, audio file path, etc. to play an audio from our

application.

Apart from above methods, MediaPlayer class provides a different type of methods to

control audio and video files based on requirements.

Method Description

getCurrentPosition() It is used to get the current position of song in

milliseconds.

getDuration() It is used to get the total time duration of song in

milliseconds.

isPlaying() It returns true / false to indicate whether song playing or

not.

pause() It is used to pause the song playing.

setAudioStreamType() it is used to specify the audio streaming type.

setDataSource() It is used to specify the path of audio / video file to play.

setVolume() It is used to adjust media player volume either up /

down.

 48

seekTo(position) It is used to move song to particular position in

milliseconds.

getTrackInfo() It returns an array of track information.

start() It is used to start playing the audio / video.

stop() It is used to stop playing the audio / video.

reset() It is used to reset the MediaPlayer object.

release() It is used to releases the resources which are

associated with MediaPlayer object.

Table-6 Methods of MediaPlayer Class

Now we will see how to implement media playing application using MediaPlayer to play a

song or audio with multiple playback options, such as play, pause, forward, backward in

android application with examples.

2.6 LET US SUM UP

In this block we understand about Drawing 2D/3D Graphics, canvas, Draw animation into a

View object from your layout. and animation directly to a Canvas.

Methods: drawText(), drawRoundRect(), drawCircle(), drawRect(), drawBitmap(),

drawARGB()

and Drawing an animation with a View is the best option to draw simple graphics that do not

need to change dynamically and are not a part of a performance-intensive game.

2.7 CHECK YOUR PROGRESS

A. Android comes along with strong open-source API libraries which support customized 2D

and 3D graphics in addition to animations. (TRUE/FALSE)

B. A NinePatchDrawable graphic is a bitmap image that can be stretched. (TRUE/FALSE)

C. An Android device that supports OpenGL ES ____ or higher (1.0, 1.5, 2.0)

D. OpenGL ES is a very _____ level API (low, high)

 49

2.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. TRUE

B. TRUE

C. 2.0

D. low

2.9 FURTHER READING

 Android Application Development for Dummies by Donn Felker

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-13:

978-1118949528 ISBN-10: 9781118949528

 Android Programming by Nicolas Gramlich.

 Thinking in Java (4th Edition) 4th Edition by Bruce Eckel ISBN-13: 978-0131872486

ISBN-10: 0131872486 Android Programming for Beginners: Learn all the Java and

Android skills you need to start making powerful mobile applications ISBN-10:

1785883267 ISBN-13: 978-1785883262

 Learning Java by Building Android Games: Explore Java Through Mobile Game

Development ISBN-10: 1784398853 ISBN-13: 978-1784398859

 Beginning Android Application Development by Wei-Meng Lee

 Java: A Beginner's Guide, Sixth Edition 6th Edition by Herbert Schildt ISBN-13: 978-

0071809252 ISBN-10: 0071809252

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch

Guides) 3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano ISBN-13: 978-

0134706054 ISBN-10: 0134706056

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13: 978-

1118717370 ISBN-10: 1118717376

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn

Griffiths ISBN-13: 978-1449362188 ISBN-10: 1449362184

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York, 2009.

 50

2.10 ASSIGNMENTS

A. Write sort note on 2D & 3D Graphics.

B. Explain code of HOW TO DRAW 2D OBJECTS ON A CANVAS.

C. Write sort note on NINE-PATCHDRAWABLE GRAPHIC.

D. What Is OpenGL ES?

E. List out graphics types and explain each in detail.

F.

2.11 ACTIVITIES

 Create an android application using 2d or 3d animation-based game as per your

knowledge

 51

Unit 3: Drawing and Working
with Animation

Unit Structure

3.1. Learning Objectives

3.2. Introduction

3.3. Animation type

3.4. Animation Examples

3.5. Let us Sumup

3.6. Check your Progress

3.7. Check your Progress: Possible Answers

3.8. Further Reading

3.9. Assignment

3.10. Activities

3

 52

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the concept of drawing

 Get basic knowledge about animation of android

 Understand the type of animation using xml

 Be able to create dynamic or hybrid animation using xml library

3.2 INTRODUCTION

Android Drawing App are support to following things:

 Draw Users will be able to draw on a blank canvas (whiteboard).

 Erase Users will be able to erase what has been drawn.

 Undo Users will be able to undo and redo drawing paths.

 Color Users will be able to draw using a color of their choice from at least these colors:

black, dark gray, light gray, blue, red, and green, orange, yellow.

 Share Users will be able to capture a screen shot and email it to a friend.

Paint applications are become famous thanks to Microsoft Paint, well known as simply Paint

or Paintbrush. It was a simple computer graphics application included with all versions of

Microsoft Windows. In this chapter, you are going to discover how to create a Paint

Application for Android which will let users to draw on the screen with their fingers.

 Draw paths with fingers on the screen

 Normal mode

 Emboss mode

 Blur mode

 Clear option to remove all paths on the screen

Finger Path Object: The first step is to create a FingerPath Object to represent a path drawn

with the finger on the screen. Our FingerPath class will have several fields letting us to

 53

define:

 Colour of the path

 Emboss mode or no

 Blur mode or no

 Stroke width of the path

 Path object from the standard SDK representing the path drawn

In this unit we learnt drawing, 2d animation

3.3 ANIMATION AND TYPE

Android Animation is used to give the UI a rich look and feel. Animations in android apps

animations into our application.

Android Animation

Animation in android apps is the process of creating motion and shape change. The basic

ways of animation t

 Fade In Animation

 Fade Out Animation

 Cross Fading Animation

 Blink Animation

 Zoom In Animation

 Zoom Out Animation

 Rotate Animation

 Move Animation

 Slide Up Animation

 Slide Down Animation

 54

 Bounce Animation

 Sequential Animation

 Together Animation

Android Animation Example XML

We create a resource directory under the res folder names anim to keep all the xml files

containing the animation logic. Following is a sample xml file showing an android animation

code logic.

sample_animation.xml

<?xml version="1.0" encoding="utf-8"?>

<scale xmlns:android="http://schemas.android.com/apk/res/android"

 android:interpolator="@android:anim/accelerate_decelerate_interpolator"

 android:duration="300"

 android:fillAfter="true"

 android:fromXScale="0.0"

 android:fromYScale="0.0"

 android:toXScale="1.0"

 android:toYScale="1.0" />

android:interpolator : It is the rate of change in animation. We can define our own

interpolators using the time as the constraint. In the above xml code an inbuilt interpolator is

assigned

android:duration : Duration of the animation in which the animation should complete. It is

300ms here. This is generally the ideal duration to show the transition on the screen.

The start and end of the animation are set using:

android:fromTRANSFORMATION

android:toTRANSFORMATION

transformation : is the transformation that we want to specify. In our case we start with an x

and y scale of 0 and end with an x and y scale of 1

android:fillAfter : property specifies whether the view should be visible or hidden at the end

 55

it visible in the above code. If it sets to false, the element

changes to its previous state after the animation

android:startOffset : It is the waiting time before an animation starts. This property is

mainly used to perform multiple animations in a sequential manner

android:repeatMode : This is useful when you want the animation to be repeat

android:repeatCount : This defines number of repetitions on animation. If we set this value

to infinite then animation will repeat infinite times

3.4 ANIMATION EXAMPLES

wizard with own credentials,

Loading Animation when UI widget is clicked: Our aim is to show an animation when any

widget(lets say TextView) is clicked. For that we need to use the Animation Class. The xml

file that contains the animation logic is loaded using AnimationUtils class by calling

the loadAnimation() function. The below snippet shows this implementation.

Animation animation;

animation = AnimationUtils.loadAnimation(getApplicationContext(),

 R.anim.sample_animation);

To start the animation we need to call the startAnimation() function on the UI element as shown

in following : sampleTextView.startAnimation(animation);

Here we perform the animation on a textview component by passing the type of Animation

as the parameter.

Setting the Animation Listeners

This is only needed if we wish to listen to events like start, end or repeat. For this the activity

must implement AnimationListener and the following methods need to overridden.

onAnimationStart : This will be triggered once the animation started

onAnimationEnd : This will be triggered once the animation is over

onAnimationRepeat : This will be triggered if the animation repeats

 56

3.5 LET US SUM UP

In this block learned about animation class and methods Android Drawing and animation

types : Draw, Erase, Undo, Colour, Share, Draw paths with fingers on the screen, Normal

mode, Emboss mode, Blur mode, Emboss mode or no, Blur mode or no, Stroke width of the

path.

3.6 CHECK YOUR PROGRESS

A. _____: Users will be able to erase what has been drawn. (Erase/Draw)

B. android:interpolator means It is the rate of change in animation. (TRUE/FALSE)

C. android:duration means Duration of the animation in which the animation should

complete. (TRUE/FALSE)

D. ____________: This is useful when you want the animation to be repeat

(repeatMode,repeatCount)

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. Erase

B. TRUE

C. TRUE

D. RepeatMode

3.8 FURTHER READING

 Learning Java by Building Android Games: Explore Java Through Mobile Game

Development ISBN-10: 1784398853 ISBN-13: 978-1784398859

 Beginning Android Application Development by Wei-Meng Lee

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch Guides)

3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano ISBN-13: 978-0134706054

ISBN-10: 0134706056

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13: 978-

1118717370 ISBN-10: 1118717376

 57

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York, 2009.

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn Griffiths

ISBN-13: 978-1449362188 ISBN-10: 1449362184

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-13:

978-1118949528 ISBN-10: 9781118949528

3.9 ASSIGNMENTS

A. What is the thing support by Android Drawing? explain each in detail.

B. Write as sort note on Create Custom View.

C. List out animation type and explain each in detail.

D. Explain fade animation xml code in detail.

3.10 ACTIVITIES

 Create android application for all animation can apply on single or double object of

drawing or any image

 58

Block-3

Networking, Telephony and Location

 59

Unit 1: Android Networking, Web

and Telephony API

Unit Structure

1.1 Learning Objectives

1.2 Introduction

1.3 Checking Network Connection

1.4 Android NFC

1.5 Android WebView

1.6 Android - Wi-Fi

1.7 Overview of Android Telephony API

1.8 Let us sum up

1.9 Check your Progress

1.10 Check your Progress: Possible Answers

1.11 Further Reading

1.12 Assignment

1.13 Activities

1

 60

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Get fimiler about Android networking terminology

 Understand class method of android network states

 To gain experience about WAP and WebView components for accessing local or

external webpages

 Students will understand Android Telephony API and each methodology for

accessing it.

1.2 INTRODUCTION

Networking has played a critical role in Android apps since the very beginning of Android

retrieve data or perform other networking functions.

In the process, you will learn about the following:

 How to check your network connection status.

 How to perform network operations.

 How to leverage open source libraries to perform network operations.

 How to profile the network performance of your app.

Android lets your application connect to the internet or any other local network and allows

you to perform network operations.

A device can have various types of network connections. This chapter focuses on using

either a Wi-Fi or a mobile network connection.

Note: Update Note: This chapter is now up to date with the latest version of Android Studio

version 3.1.2, and uses Kotlin for app development.

Connected states are:

 State

 Connecting

 Disconnected

 Disconnecting

 61

 Suspended

 Unknown

1.3 CHECKING NETWORK CONNECTION

Lets understand and perform any network operations, you must first check that are you

connected to that network or internet e.t.c. For this android provides ConnectivityManager

class. You need to instantiate an object of this class by calling getSystemService() method.

ConnectivityManager check = (ConnectivityManager)

this.context.getSystemService(Context.CONNECTIVITY_SERVICE);

Once you instantiate the object of ConnectivityManager class, you can use

getAllNetworkInfo method to get the information of all the networks. This method returns an

array of Network Info. So, you have to receive it like this.

NetworkInfo[] info = check.getAllNetworkInfo();

The last thing you need to do is to check Connected State of the network. Its syntax is given

for (int i = 0; i<info.length; i++){

 if (info[i].getState() == NetworkInfo.State.CONNECTED){

 Toast.makeText(context, "Internet is connected

 Toast.LENGTH_SHORT).show();

 }

}

Apart from these connected states, there are other states a network can achieve. They are

listed as in introduction section.

Performing Network Operations:

After checking that you are connected to the internet, you can perform any network

operation. Here we are fetching the html of a website from a url.

Android provides HttpURLConnection and URL class to handle these operations. You need

to instantiate an object of URL class by providing the link of website. Its syntax is as follows:

 62

String link = "http://www.google.com";

URL url = new URL(link);

After that you need to call openConnection method of url class and receive it in a

HttpURLConnection object. After that you need to call the connect method of

HttpURLConnection class.

HttpURLConnection conn = (HttpURLConnection) url.openConnection();

conn.connect();

And the last thing you need to do is to fetch the HTML from the website. For this you will use

InputStream is = conn.getInputStream();

BufferedReader reader = new BufferedReader(new InputStreamReader(is,"UTF-8"));

String webPage = "",data="";

while ((data = reader.readLine()) != null){

 webPage += data + "\n";

}

Apart from this connect method, there are other methods available in HttpURLConnection

class. They are listed below :

Method Description

disconnect() This method releases this connection so

that its resources may be either reused or

closed

getRequestMethod() This method returns the request method

which will be used to make the request to

the remote HTTP server

getResponseCode() This method returns response code

returned by the remote HTTP server

setRequestMethod(String method) This method Sets the request command

which will be sent to the remote HTTP

 63

server

usingProxy() This method returns whether this

connection uses a proxy server or not

Table-7 Methods of HttpURLConnection Class

1.4 ANDROID - NFC

NFC stands for Near Field Communication, and as the name implies it provides a wireless

communication mechanism between two compatible devices. NFC is a short range wireless

technology having a range of 4cm or less for two devices to share data.

How It Works: Like Bluetooth and WiFi, and all manner of other wireless signals, NFC works

on the principle of sending information over radio waves. Through NFC data is send through

electromagnetic induction between two devices.

NFC works on the bases of tags , it allows you to share some amount of data between an

NFC tag and an android powered device or between two android powered devices. Tags

have various set of complexities. The Data stored in the tag can be written in a variety of

formats, but android APIs are based around a NFC standard called as NFC Data Exchange

Format (NDEF).

The transmission frequency for data across NFC is 13.56 megahertz, and data can be sent

at either 106, 212 or 424 kilobits per second, which is quick enough for a range of data

transfers from contact details to swapping pictures, songs and videos.

Three Modes of Operation

 Reader/Writer Mode: It allows the NFC device to read or write passive NFC tags.

 P2P mode: This mode allows NFC device to exchange data with other NFC peers.

 Card emulation mode: It allows the NFC device itself to act as an NFC card, so it can

be accessed by an external NFC reader.

How it works with Android : To get the permission to access NFC Hardware, add the

 64

following permission in your Android.Manifest file.

<uses-sdk android:minSdkVersion="10"/>

First thing to note is that not all android powered devices provide NFC technology. So to

make sure that your application shows up in google play for only those devices that have

NFC Hardware, add the following line in your Android.Manifest file.

<uses-feature android:name="android.hardware.nfc" android:required="true"/>

Android provides a android.nfc package for communicating with another device. This

package contains following classes:

Class Description

NdefMessage It represents an immutable NDEF Message.

NdefRecord It represents an immutable NDEF Record.

NfcAdapter It represents the local NFC adapter.

NfcEvent It wraps information associated with any NFC event.

NfcManager It is a high-level manager used to obtain an instance of a

NfcAdapter.

Tag It represents an NFC tag that has been discovered.

Table-8 Classes of android.nfc package

NFC tags system works in android with the help of some intent filters that are listed below:

Filters Features

ACTION_NDEF_DISCOVERED This intent is used to start an Activity when a tag

contains an NDEF payload.

ACTION_TECH_DISCOVERED This intent is used to start an activity if the tag

does not contain NDEF data, but is of known

technology.

ACTION_TAG_DISCOVERED This intent is started if no activities handle the

ACTION_NDEF_DISCOVERED or

 65

ACTION_TECH_DISCOVERED intents.

Table-9 NFC tags intent filters

To code an application that uses NFC technology is complex so don't use it in your app

unless necessary. The use of NFC is not common in devices but it is getting popular. Let's

see what is the future of this technology

Future Applications: With this technology growing day by day and due to introduction of

contact less payment systems this technology is getting a boom. A service known as Google

Wallet is already introduced in the US which purpose is to make our smartphones a viable

alternative to credit and transport cards.

1.5 ANDROID WEBVIEW

WebView is a view that display web pages inside your application. You can also specify

HTML string and can show it inside your application using WebView. WebView makes turns

your application to a web application.

In order to add WebView to your application, you have to add <WebView> element to your

<WebView xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/webview"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

/>

In order to use it, you have to get a reference of this view in Java file. To get a reference,

WebView browser = (WebView) findViewById(R.id.webview);

In order to load a web url into the WebView, you need to call a method loadUrl(String url) of

the WebView class, specifying the required url.

Its syntax is:

browser.loadUrl("http://www.baou.edu.in");

Apart from just loading url, you can have more control over your WebView by using the

 66

methods defined in WebView class. They are listed as follows

Method Description

canGoBack() This method specifies the WebView has a back

history item.

canGoForward() This method specifies the WebView has a forward

history item.

clearHistory() This method will clear the WebView forward and

backward history.

destroy() This method destroy the internal state of WebView.

findAllAsync(String find) This method find all instances of string and highlight

them.

getProgress() This method gets the progress of the current page.

getTitle() This method return the title of the current page.

getUrl() This method return the url of the current page.

Table-10 Methods of WebView class

If you click on any link inside the webpage of the WebView, that page will not be loaded

inside your WebView. In order to do that you need to extend your class from WebViewClient

and override its method. Its syntax is :

private class MyBrowser extends WebViewClient {

 @Override

 public boolean shouldOverrideUrlLoading(WebView view, String url) {

 view.loadUrl(url);

 return true;

 } }

1.6 ANDROID - WI-FI

Android allows applications to access to view the access the state of the wireless

connections at very low level. Application can access almost all the information of a wifi

connection.

 67

The information that an application can access includes connected network's link speed,IP

address, negotiation state, other networks information. Applications can also scan, add,

save, terminate and initiate Wi-Fi connections.

Android provides WifiManager API to manage all aspects of WIFI connectivity. We can

instantiate this class by calling getSystemService meth

WifiManager mainWifiObj;

mainWifiObj = (WifiManager) getSystemService(Context.WIFI_SERVICE);

In order to scan a list of wireless networks, you also need to register your

BroadcastReceiver. It can be registered using registerReceiver method with argument of

your receiver class object. Its syntax is given below

class WifiScanReceiver extends BroadcastReceiver {

 public void onReceive(Context c, Intent intent) {

 }

}

WifiScanReceiver wifiReciever = new WifiScanReceiver();

registerReceiver(wifiReciever,new
IntentFilter(WifiManager.SCAN_RESULTS_AVAILABLE_ACTION));

The wifi scan can be start by calling the startScan method of the WifiManager class. This

method returns a list of ScanResult objects. You can access any object by calling the get

List<ScanResult> wifiScanList = mainWifiObj.getScanResults();

String data = wifiScanList.get(0).toString();

Apart from just Scanning, you can have more control over your WIFI by using the methods

defined in WifiManager class. They are listed as follows

Method Description

addNetwork(WifiConfiguration config) This method add a new network

description to the set of configured

networks.

 68

createWifiLock(String tag) This method creates a new WifiLock.

disconnect() This method disassociate from the

currently active access point

enableNetwork(int netId, boolean

disableOthers)

This method allow a previously

configured network to be associated

with.

getWifiState() This method gets the Wi-Fi enabled state

isWifiEnabled() This method return whether Wi-Fi is

enabled or disabled.

setWifiEnabled(boolean enabled) This method enable or disable Wi-Fi.

updateNetwork(WifiConfiguration

config)

This method update the network

description of an existing configured

network.

Table-11 Methods of WifiManager class

1.7 OVERVIEW OF ANDROID TELEPHONY API

Provides APIs for monitoring the basic phone information, such as the network type and

connection state, plus utilities for manipulating phone number strings.

Syntax:

Telephony

public final class Telephony

extends Object

java.lang.Object

 android.provider.Telephony

The Telephony API provider contains data related to phone operation, specifically SMS and

MMS messages, Contact, access to the APN list, including the MMSC to use, and the

service state of network.

 69

Telephony Classes

AccessNetworkConstants Contains access network related constants.

AccessNetworkConstants.Access

NetworkType

AccessNetworkConstants.EutranB

and

Frenquency bands for EUTRAN.

AccessNetworkConstants.GeranB

and

Frequency bands for GERAN.

AccessNetworkConstants.UtranBa

nd

Frenquency bands for UTRAN.

AvailableNetworkInfo Defines available network information which includes

corresponding subscription id, network plmns and

corresponding priority to be used for network

selection by Opportunistic Network Service when

passed

through TelephonyManager#updateAvailableNetwork

s

CarrierConfigManager Provides access to telephony configuration values

that are carrier-specific.

CellIdentity CellIdentity represents the identity of a unique cell.

CellIdentityCdma CellIdentity is to represent a unique CDMA cell

CellIdentityGsm CellIdentity to represent a unique GSM cell

CellIdentityLte CellIdentity is to represent a unique LTE cell

CellIdentityNr Information to represent a unique NR(New Radio 5G)

cell.

CellIdentityTdscdma CellIdentity is to represent a unique TD-SCDMA cell

CellIdentityWcdma CellIdentity to represent a unique UMTS cell

CellInfo Immutable cell information from a point in time.

 70

CellInfoCdma A CellInfo representing a CDMA cell that provides

identity and measurement info.

CellInfoGsm A CellInfo representing a GSM cell that provides

identity and measurement info.

CellInfoLte A CellInfo representing an LTE cell that provides

identity and measurement info.

CellInfoNr A CellInfo representing an 5G NR cell that provides

identity and measurement info.

CellInfoTdscdma A CellInfo representing a TD-SCDMA cell that

provides identity and measurement info.

CellInfoWcdma A CellInfo representing a WCDMA cell that provides

identity and measurement info.

CellLocation Abstract class that represents the location of the

device.

CellSignalStrength Abstract base class for cell phone signal strength

related information.

CellSignalStrengthCdma Signal strength related information.

CellSignalStrengthGsm GSM signal strength related information.

CellSignalStrengthLte LTE signal strength related information.

CellSignalStrengthNr 5G NR signal strength related information.

CellSignalStrengthTdscdma Tdscdma signal strength related information.

CellSignalStrengthWcdma Wcdma signal strength related information.

IccOpenLogicalChannelResponse Response to

the TelephonyManager#iccOpenLogicalChannelcom

mand.

MbmsDownloadSession This class provides functionality for file download

over MBMS.

MbmsGroupCallSession This class provides functionality for accessing group

 71

call functionality over MBMS.

MbmsStreamingSession This class provides functionality for streaming media

over MBMS.

NeighboringCellInfo This class was deprecated in API level 29. This class

should not be used by any app targeting Android Q or

higher. Instead callers should use CellInfo.

NetworkScan The caller

ofTelephonyManager#requestNetworkScan(Network

ScanRequest, Executor,NetworkScanCallback) will

receive an instance of NetworkScan, which contains

a callback methodstopScan() for stopping the in-

progress scan.

NetworkScanRequest Defines a request to peform a network scan.

PhoneNumberFormattingTextWat

cher

Watches a TextView and if a phone number is

entered will format it.

PhoneNumberUtils Various utilities for dealing with phone number

strings.

PhoneStateListener A listener class for monitoring changes in specific

telephony states on the device, including service

state, signal strength, message waiting indicator

(voicemail), and others.

RadioAccessSpecifier Describes a particular radio access network to be

scanned.

ServiceState Contains phone state and service related

information.

SignalStrength Contains phone signal strength related information.

SmsManager Manages SMS operations such as sending data, text,

and pdu SMS messages.

SmsManager.FinancialSmsCallba callback for providing asynchronous sms messages

 72

ck for financial app.

SmsMessage A Short Message Service message.

SmsMessage.SubmitPdu

SubscriptionInfo A Parcelable class for Subscription Information.

SubscriptionManager SubscriptionManager is the application interface to

SubscriptionController and provides information

about the current Telephony Subscriptions.

SubscriptionManager.OnOpportun

isticSubscriptionsChangedListener

A listener class for monitoring changes

to SubscriptionInfo records of opportunistic

subscriptions.

SubscriptionManager.OnSubscript

ionsChangedListener

A listener class for monitoring changes

to SubscriptionInfo records.

SubscriptionPlan Description of a billing relationship plan between a

carrier and a specific subscriber.

SubscriptionPlan.Builder Builder for a SubscriptionPlan.

TelephonyManager Provides access to information about the telephony

services on the device.

TelephonyManager.CellInfoCallba

ck

Callback for providing asynchronous CellInfo on

request

TelephonyManager.UssdRespons

eCallback

Used to notify callers

ofTelephonyManager#sendUssdRequest(String,Ussd

ResponseCallback, Handler) when the network either

successfully executes a USSD request, or if there

was a failure while executing the request.

TelephonyScanManager Manages the radio access network scan requests

and callbacks.

TelephonyScanManager.Network

ScanCallback

The caller

ofTelephonyManager#requestNetworkScan(Network

ScanRequest, Executor,NetworkScanCallback) shoul

 73

d implement and provide this callback so that the

scan results or errors can be returned.

UiccCardInfo The UiccCardInfo represents information about a

currently inserted UICC or embedded eUICC.

VisualVoicemailService This service is implemented by dialer apps that

wishes to handle OMTP or similar visual voicemails.

VisualVoicemailService.VisualVoic

emailTask

Represents a visual voicemail event which needs to

be handled.

VisualVoicemailSms Represents the content of a visual voicemail SMS.

VisualVoicemailSmsFilterSettings Class to represent various settings for the visual

voicemail SMS filter.

VisualVoicemailSmsFilterSettings.

Builder

Builder class

for VisualVoicemailSmsFilterSettings objects.

For more detail about all class of telephony API:

https://developer.android.com/reference/android/telephony/package-summary

1.8 LET US SUM UP

In this block we learned about Checking Network Connection, Android NFC, Android

WebView,

Android - Wi-Fi, Android Telephony API and its individual classes and methods for access

each property

learned about connected states: State, Connecting, Disconnected, Disconnecting,

Suspended, Unknown

Methods: disconnect(), getRequestMethod(), getResponseCode(), setRequestMethod(String

method), usingProxy()

NFC : Near Field Communication

 74

1.9 CHECK YOUR PROGRESS

A. disconnect(): This method releases this connection so that its resources may be

either reused or closed (TRUE/FALSE)

B. usingProxy(): This method returns whether this connection uses a real server or not

(TRUE/FALSE)

C. NFC stands for ___________________

D. NDEF means : _________________

E. P2P mode: This mode allows NFC device to exchange data with other NFC peers.

(TRUE/FALSE)

F. Tag It represents an NFC tag that has been discovered. (TRUE/FALSE)

1.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. TRUE

B. FALSE

C. Near Field Communication

D. NFC Data Exchange Format

E. TRUE

F. TRUE

1.11 FURTHER READING

 Android Application Development for Dummies by Donn Felker

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-13:

978-1118949528 ISBN-10: 9781118949528

 Android Programming by Nicolas Gramlich.

 Thinking in Java (4th Edition) 4th Edition by Bruce Eckel ISBN-13: 978-0131872486

ISBN-10: 0131872486 Android Programming for Beginners: Learn all the Java and

Android skills you need to start making powerful mobile applications ISBN-10:

1785883267 ISBN-13: 978-1785883262

 Learning Java by Building Android Games: Explore Java Through Mobile Game

 75

Development ISBN-10: 1784398853 ISBN-13: 978-1784398859

 Beginning Android Application Development by Wei-Meng Lee

 Java: A Beginner's Guide, Sixth Edition 6th Edition by Herbert Schildt ISBN-13: 978-

0071809252 ISBN-10: 0071809252

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch

Guides) 3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano ISBN-13: 978-

0134706054 ISBN-10: 0134706056

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13: 978-

1118717370 ISBN-10: 1118717376

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn

Griffiths ISBN-13: 978-1449362188 ISBN-10: 1449362184

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York, 2009.

1.12 ASSIGNMENTS

A. Explain Android WebView and each method.

B. Explain Android - Wi-Fi in detail and list out each method of its.

C. Describe Telephony Classes in detail.

D. Write sort note on Android - NFC.

E. Explain how to Checking Network Connection in android phone using coding.

1.13 ACTIVITIES

 Create an android application for call/message functionality using telephony API

 76

Unit 2: Search

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Search Overview

2.4 Search View

2.5 Creating a Search Interface

2.6 Adding Recent Query Suggestions

2.7 Adding Custom Suggestions

2.8 Clear History From Apps & Chrome

2.9 Let us sum up

2.10 Further Reading

2.11 Assignment

2.12 Activities

2

 77

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the concept of searching method

 Student will be able to implement method of different type of search from list or

container

 To gain experience of implement search interface

 Understand the configuration and wizard for privacy and removing/clear search

history for apps or web-browser

2.2 INTRODUCTION

Android's built-in search features offer apps an easy way to provide a consistent search

experience for all users. There are two ways to implement search in your app depending on

the version of Android that is running on the device. This class covers how to add search

with SearchView, which was introduced in Android 3.0, while maintaining backward

compatibility with older versions of Android by using the default search dialog provided by

the system.

2.3 SEARCH OVERVIEW

Search is a core user feature on Android. Users should be able to search any data that is

available to them, whether the content is located on the device or the Internet. To help

create a consistent search experience for users, Android provides a search framework that

helps you implement search for your application.

The search framework offers two modes of search input: a search dialog at the top of the

screen or a search widget (SearchView) that you can embed in your activity layout. In either

case, the Android system will assist your search implementation by delivering search

queries to a specific activity that performs searches. You can also enable either the search

dialog or widget to provide search suggestions as the user types. Figure 1 shows an

example of the search dialog with optional search suggestions.

 78

Figure-23 Search dialog with custom search suggestions.

Once you've set up either the search dialog or the search widget, you can:

 Enable voice search

 Provide search suggestions based on recent user queries

 Provide custom search suggestions that match actual results in your application data

 Offer your application's search suggestions in the system-wide Quick Search Box

Note: The search framework does not provide APIs to search your data. To perform a

search, you need to use APIs appropriate for your data. For example, if your data is stored

in an SQLite database, you should use the android.database.sqlite APIs to perform

searches.

Also, there is no guarantee that a device provides a dedicated SEARCH button that invokes

the search interface in your application. When using the search dialog or a custom interface,

you must provide a search button in your UI that activates the search interface. For more

information, see Invoking the search dialog.

The following documents show you how to use Android's framework to implement search:

Creating a Search Interface: How to set up your application to use the search dialog or

search widget.

Adding Recent Query Suggestions: How to provide suggestions based on queries

previously used.

Adding Custom Suggestions: How to provide suggestions based on custom data from

 79

your application and also offer them in the system-wide Quick Search Box.

Searchable Configuration: A reference document for the searchable configuration file

(though the other documents also discuss the configuration file in terms of specific

behaviours).

2.4 SEARCH VIEW

Android SearchView provides user interface to search query submitted over search provider.

SearchView widget can be implemented over ToolBar/ActionBar or inside a layout.

SearchView is by default collapsible and set to be iconified using setIconifiedByDefault(true)

method of SearchView class. For making search field visible, SearchView uses

setIconifiedByDefault(false) method.

Methods of SearchView

 public boolean onQueryTextSubmit(String query): It searches the query on the

submission of content over SearchView editor. It is case dependent.

 public boolean onQueryTextChange(String newText): It searches the query at the

time of text change over SearchView editor.

2.5 CREATING A SEARCH INTERFACE

When you're ready to add search functionality to your application, Android helps you

implement the user interface with either a search dialog that appears at the top of the activity

window or a search widget that you can insert in your layout. Both the search dialog and the

widget can deliver the user's search query to a specific activity in your application. This way,

the user can initiate a search from any activity where the search dialog or widget is

available, and the system starts the appropriate activity to perform the search and present

results.

Other features available for the search dialog and widget include:

 Voice search

 Search suggestions based on recent queries

80

Search suggestions that match actual results in your application data

This guide shows you how to set up your application to provide a search interface that's

assisted by the Android system to deliver search queries, using either the search dialog or

the search widget.

Fundamentals of Search Interface

Figure-27 An application's search dialog

Before you begin, you should decide whether you'll implement your search interface using

the search dialog or the search widget. Both provide the same search features, but in

slightly different ways:

The search dialog is a UI component that's controlled by the Android system. When

activated by the user, the search dialog appears at the top of the activity, as shown in figure

5.

The Android system controls all events in the search dialog. When the user submits a query,

the system delivers the query to the activity that you specify to handle searches. The dialog

can also provide search suggestions while the user types.

 81

The search widget is an instance of SearchView that you can place anywhere in your layout.

By default, the search widget behaves like a standard EditText widget and doesn't do

anything, but you can configure it so that the Android system handles all input events,

delivers queries to the appropriate activity, and provides search suggestions (just like the

search dialog).

When the user executes a search from the search dialog or a search widget, the system

creates an Intent and stores the user query in it. The system then starts the activity that

you've declared to handle searches (the "searchable activity") and delivers it the intent. To

set up your application for this kind of assisted search, you need the following:

A searchable configuration: An XML file that configures some settings for the search

dialog or widget. It includes settings for features such as voice search, search suggestion,

and hint text for the search box.

A searchable activity: The Activity that receives the search query, searches your data, and

displays the search results.

A search interface, provided by either:

 The search dialog: By default, the search dialog is hidden, but appears at the top of the

screen when you call onSearchRequested() (when the user presses your Search button).

 SearchView widget: Using the search widget allows you to put the search box anywhere

in your activity. Instead of putting it in your activity layout, you should usually use

SearchView as an action view in the app bar.

The rest of this document shows you how to create the searchable configuration, searchable

activity, and implement a search interface with either the search dialog or search widget.

Creating a Searchable Configuration

The first thing you need is an XML file called the searchable configuration. It configures

certain UI aspects of the search dialog or widget and defines how features such as

suggestions and voice search behave. This file is traditionally named searchable.xml and

must be saved in the res/xml/ project directory.

 82

The searchable configuration file must include the <searchable> element as the root node

and specify one or more attributes.

For example:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

 android:label="@string/app_label"

 android:hint="@string/search_hint" >

</searchable>

The android:label attribute is the only required attribute. It points to a string resource, which

should be the application name. This label isn't actually visible to the user until you enable

search suggestions for Quick Search Box. At that point, this label is visible in the list of

Searchable items in the system Settings.

Though it's not required, we recommend that you always include the android:hint attribute,

which provides a hint string in the search box before users enter a query. The hint is

important because it provides important clues to users about what they can search.

The <searchable> element accepts several other attributes. However, you don't need most

attributes until you add features such as search suggestions and voice search. For detailed

information about the searchable configuration file, see the Searchable Configuration

reference document.

Creating a Searchable Activity

A searchable activity is the Activity in your application that performs searches based on a

query string and presents the search results.

When the user executes a search in the search dialog or widget, the system starts your

searchable activity and delivers it the search query in an Intent with the ACTION_SEARCH

action. Your searchable activity retrieves the query from the intent's QUERY extra, then

searches your data and presents the results.

 83

Because you may include the search dialog or widget in any other activity in your

application, the system must know which activity is your searchable activity, so it can

properly deliver the search query. So, you must first declare your searchable activity in the

Android manifest file.

Declaring a searchable activity

If you don't have one already, create an Activity that will perform searches and present

results. You don't need to implement the search functionality yet just create an activity that

you can declare in the manifest. Inside the manifest's <activity> element:

 Declare the activity to accept the ACTION_SEARCH intent, in an <intent-filter> element.

 Specify the searchable configuration to use, in a <meta-data> element.

For example:

<application ... >

 <activity android:name=".SearchableActivity" >

 <intent-filter>

 <action android:name="android.intent.action.SEARCH" />

 </intent-filter>

 <meta-data android:name="android.app.searchable"

 android:resource="@xml/searchable"/>

 </activity>

 ...

</application>

The <meta-data> element must include the android:name attribute with a value of

"android.app.searchable" and the android:resource attribute with a reference to the

searchable configuration file (in this example, it refers to the res/xml/searchable.xml file).

Performing a search

 84

Once you have declared your searchable activity in the manifest, performing a search in

your searchable activity involves three steps:

 Receiving the query

 Searching your data

 Presenting the results

Traditionally, your search results should be presented in a ListView, so you might want your

searchable activity to extend ListActivity. It includes a default layout with a single ListView

and provides several convenience methods for working with the ListView.

Receiving the query

When a user executes a search from the search dialog or widget, the system starts your

searchable activity and sends it a ACTION_SEARCH intent. This intent carries the search

query in the QUERY string extra. You must check for this intent when the activity starts and

extract the string. For example, here's how you can get the search query when your

searchable activity starts:

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.search);

 // Get the intent, verify the action and get the query

 Intent intent = getIntent();

 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {

 String query = intent.getStringExtra(SearchManager.QUERY);

 doMySearch(query);

 }

}

 85

The QUERY string is always included with the ACTION_SEARCH intent. In this example,

the query is retrieved and passed to a local doMySearch() method where the actual search

operation is done.

Searching your data

The process of storing and searching your data is unique to your application. You can store

and search your data in many ways, but this guide does not show you how to store your

data and search it. Storing and searching your data is something you should carefully

consider in terms of your needs and your data format. However, here are some tips you

might be able to apply:

If your data is stored in a SQLite database on the device, performing a full-text search (using

FTS3, rather than a LIKE query) can provide a more robust search across text data and can

produce results significantly faster. See sqlite.org for information about FTS3 and the

SQLiteDatabase class for information about SQLite on Android.

If your data is stored online, then the perceived search performance might be inhibited by

the user's data connection. You might want to display a spinning progress wheel until your

search returns. See android.net for a reference of network APIs and Creating a Progress

Dialog for information about how to display a progress wheel.

Presenting the results

Regardless of where your data lives and how you search it, we recommend that you return

search results to your searchable activity with an Adapter. This way, you can easily present

all the search results in a ListView. If your data comes from a SQLite database query, you

can apply your results to a ListView using a CursorAdapter. If your data comes in some

other type of format, then you can create an extension of BaseAdapter.

An Adapter binds each item from a set of data into a View object. When the Adapter is

applied to a ListView, each piece of data is inserted as an individual view into the list.

Adapter is just an interface, so implementations such as CursorAdapter (for binding data

from a Cursor) are needed. If none of the existing implementations work for your data, then

you can implement your own from BaseAdapter.

 86

You might want your searchable activity to extend ListActivity. You can then call

setListAdapter(), passing it an Adapter that is bound to your data. This injects all the search

results into the activity ListView.

For more help presenting your results in a list, see the ListActivity documentation.

Using the Search Dialog

The search dialog provides a floating search box at the top of the screen, with the

application icon on the left. The search dialog can provide search suggestions as the user

types and, when the user executes a search, the system sends the search query to a

searchable activity that performs the search. However, if you are developing your application

for devices running Android 3.0, you should consider using the search widget instead (see

Using the Search Widget section).

The search dialog is always hidden by default, until the user activates it. Your application

can activate the search dialog by calling onSearchRequested(). However, this method

doesn't work until you enable the search dialog for the activity.

To enable the search dialog, you must indicate to the system which searchable activity

should receive search queries from the search dialog, in order to perform searches. For

example, in the previous section about Creating a Searchable Activity, a searchable activity

named SearchableActivity was created. If you want a separate activity, named OtherActivity,

to show the search dialog and deliver searches to SearchableActivity, you must declare in

the manifest that SearchableActivity is the searchable activity to use for the search dialog in

OtherActivity.

To declare the searchable activity for an activity's search dialog, add a <meta-data> element

inside the respective activity's <activity> element. The <meta-data> element must include

the android:value attribute that specifies the searchable activity's class name and the

android:name attribute with a value of "android.app.default_searchable".

For example, here is the declaration for both a searchable activity, SearchableActivity, and

another activity, OtherActivity, which uses SearchableActivity to perform searches executed

from its search dialog:

 87

<application ... >

 <!-- this is the searchable activity; it performs searches -->

 <activity android:name=".SearchableActivity" >

 <intent-filter>

 <action android:name="android.intent.action.SEARCH" />

 </intent-filter>

 <meta-data android:name="android.app.searchable"

 android:resource="@xml/searchable"/>

 </activity>

 <!-- this activity enables the search dialog to initiate searches

 in the SearchableActivity -->

 <activity android:name=".OtherActivity" ... >

 <!-- enable the search dialog to send searches to SearchableActivity -->

 <meta-data android:name="android.app.default_searchable"

 android:value=".SearchableActivity" />

 </activity></application>

Because the OtherActivity now includes a <meta-data> element to declare which searchable

activity to use for searches, the activity has enabled the search dialog. While the user is in

this activity, the onSearchRequested() method activates the search dialog. When the user

executes the search, the system starts SearchableActivity and delivers it the

ACTION_SEARCH intent.

If you want every activity in your application to provide the search dialog, insert the above

<meta-data> element as a child of the <application> element, instead of each <activity>.

This way, every activity inherits the value, provides the search dialog, and delivers searches

to the same searchable activity. (If you have multiple searchable activities, you can override

the default searchable activity by placing a different <meta-data> declaration inside

individual activities.)

 88

With the search dialog now enabled for your activities, your application is ready to perform

searches.

Invoking the search dialog

Although some devices provide a dedicated Search button, the behavior of the button may

vary between devices and many devices do not provide a Search button at all. So when

using the search dialog, you must provide a search button in your UI that activates the

search dialog by calling onSearchRequested().

For instance, you should add a Search button in your Options Menu or UI layout that calls

onSearchRequested(). For consistency with the Android system and other apps, you should

label your button with the Android Search icon that's available from the Action Bar Icon

Pack.

You can also enable "type-to-search" functionality, which activates the search dialog when

the user starts typing on the keyboard the keystrokes are inserted into the search dialog.

You can enable type-to-search in your activity by calling

setDefaultKeyMode(DEFAULT_KEYS_SEARCH_LOCAL) during your activity's onCreate()

method.

The impact of the search dialog on your activity lifecycle

The search dialog is a Dialog that floats at the top of the screen. It does not cause any

change in the activity stack, so when the search dialog appears, no lifecycle methods (such

as onPause()) are called. Your activity just loses input focus, as input focus is given to the

search dialog.

If you want to be notified when the search dialog is activated, override the

onSearchRequested() method. When the system calls this method, it is an indication that

your activity has lost input focus to the search dialog, so you can do any work appropriate

for the event (such as pause a game). Unless you are passing search context data

(discussed below), you should end the method by calling the super class implementation.

For example:

 89

@Override

public boolean onSearchRequested() {

 pauseSomeStuff();

 return super.onSearchRequested();

}

If the user cancels search by pressing the Back button, the search dialog closes and the

activity regains input focus. You can register to be notified when the search dialog is closed

with setOnDismissListener() and/or setOnCancelListener(). You should need to register only

the OnDismissListener, because it is called every time the search dialog closes. The

OnCancelListener only pertains to events in which the user explicitly exited the search

dialog, so it is not called when a search is executed (in which case, the search dialog

naturally disappears).

If the current activity is not the searchable activity, then the normal activity lifecycle events

are triggered once the user executes a search (the current activity receives onPause() and

so forth, as described in the Activities document). If, however, the current activity is the

searchable activity, then one of two things happens:

By default, the searchable activity receives the ACTION_SEARCH intent with a call to

onCreate() and a new instance of the activity is brought to the top of the activity stack. There

are now two instances of your searchable activity in the activity stack (so pressing the Back

button goes back to the previous instance of the searchable activity, rather than exiting the

searchable activity).

If you set android:launchMode to "singleTop", then the searchable activity receives the

ACTION_SEARCH intent with a call to onNewIntent(Intent), passing the new

ACTION_SEARCH intent here. For example, here's how you might handle this case, in

which the searchable activity's launch mode is "singleTop":

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 90

 setContentView(R.layout.search);

 handleIntent(getIntent());

}

@Override

protected void onNewIntent(Intent intent) {

 setIntent(intent);

 handleIntent(intent);

}

private void handleIntent(Intent intent) {

 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {

 String query = intent.getStringExtra(SearchManager.QUERY);

 doMySearch(query);

 }

}

Compared to the example code in the section about Performing a Search, all the code to

handle the search intent is now in the handleIntent() method, so that both onCreate() and

onNewIntent() can execute it.

When the system calls onNewIntent(Intent), the activity has not been restarted, so the

getIntent() method returns the same intent that was received with onCreate(). This is why

you should call setIntent(Intent) inside onNewIntent(Intent) (so that the intent saved by the

activity is updated in case you call getIntent() in the future).

The second scenario using "singleTop" launch mode is usually ideal, because chances are

good that once a search is done, the user will perform additional searches and it's a bad

experience if your application creates multiple instances of the searchable activity. So, we

recommend that you set your searchable activity to "singleTop" launch mode in the

application manifest. For example:

 91

<activity android:name=".SearchableActivity"

 android:launchMode="singleTop" >

 <intent-filter>

 <action android:name="android.intent.action.SEARCH" />

 </intent-filter>

 <meta-data android:name="android.app.searchable"

 android:resource="@xml/searchable"/>

 </activity>

Passing search context data

In some cases, you can make necessary refinements to the search query inside the

searchable activity, for every search made. However, if you want to refine your search

criteria based on the activity from which the user is performing a search, you can provide

additional data in the intent that the system sends to your searchable activity. You can pass

the additional data in the APP_DATA Bundle, which is included in the ACTION_SEARCH

intent.

To pass this kind of data to your searchable activity, override the onSearchRequested()

method for the activity from which the user can perform a search, create a Bundle with the

additional data, and call startSearch() to activate the search dialog. For example:

@Override

public boolean onSearchRequested() {

 Bundle appData = new Bundle();

 appData.putBoolean(SearchableActivity.JARGON, true);

 startSearch(null, false, appData, false);

 return true;

 }

 92

Returning "true" indicates that you have successfully handled this callback event and called

startSearch() to activate the search dialog. Once the user submits a query, it's delivered to

your searchable activity along with the data you've added. You can extract the extra data

from the APP_DATA Bundle to refine the search. For example:

Bundle appData = getIntent().getBundleExtra(SearchManager.APP_DATA);

if (appData != null) {

 boolean jargon = appData.getBoolean(SearchableActivity.JARGON);}

Using the Search Widget

The SearchView widget is available in Android 3.0 and higher. If you're developing your

application for Android 3.0 and have decided to use the search widget, we recommend that

you insert the search widget as an action view in the app bar, instead of using the search

dialog (and instead of placing the search widget in your activity layout).

The search widget provides the same functionality as the search dialog. It starts the

appropriate activity when the user executes a search, and it can provide search suggestions

and perform voice search. If it's not an option for you to put the search widget in the Action

Bar, you can instead put the search widget somewhere in your activity layout.

Configuring the search widget

After you've created a searchable configuration and a searchable activity, as discussed

above, you need to enable assisted search for each SearchView. You can do so by calling

setSearchableInfo() and passing it the SearchableInfo object that represents your

searchable configuration.

You can get a reference to the SearchableInfo by calling getSearchableInfo() on

SearchManager.

For example, if you're using a SearchView as an action view in the app bar, you should

enable the widget during the onCreateOptionsMenu() callback:

 93

@Override

public boolean onCreateOptionsMenu(Menu menu) {

 // Inflate the options menu from XML

 MenuInflater inflater = getMenuInflater();

 inflater.inflate(R.menu.options_menu, menu);

 // Get the SearchView and set the searchable configuration

 SearchManager searchManager = (SearchManager)
getSystemService(Context.SEARCH_SERVICE);

 SearchView searchView = (SearchView)
menu.findItem(R.id.menu_search).getActionView();

 // Assumes current activity is the searchable activity

 searchView.setSearchableInfo(searchManager.getSearchableInfo(getComponentName()));

 searchView.setIconifiedByDefault(false); // Do not iconify the widget; expand it by default

 return true;

}

That's all you need. The search widget is now configured and the system will deliver search

queries to your searchable activity. You can also enable search suggestions for the search

widget.

search widget features

The SearchView widget allows for a few additional features you might want:

A submit button : By default, there's no button to submit a search query, so the user must

press the "Return" key on the keyboard to initiate a search. You can add a "submit" button

by calling setSubmitButtonEnabled(true).

Query refinement for search suggestions: When you've enabled search suggestions, you

usually expect users to simply select a suggestion, but they might also want to refine the

suggested search query. You can add a button alongside each suggestion that inserts the

 94

suggestion in the search box for refinement by the user, by calling

setQueryRefinementEnabled(true).

The ability to toggle the search box visibility: By default, the search widget is "iconified,"

meaning that it is represented only by a search icon (a magnifying glass), and expands to

show the search box when the user touches it. As shown above, you can show the search

box by default, by calling setIconifiedByDefault(false). You can also toggle the search widget

appearance by calling setIconified().

There are several other APIs in the SearchView class that allow you to customize the search

widget. However, most of them are used only when you handle all user input yourself,

instead of using the Android system to deliver search queries and display search

suggestions.

Using both the widget and the dialog: If you insert the search widget in the Action Bar as an

action view, and you enable it to appear in the Action Bar "if there is room" (by setting

android:showAsAction="ifRoom"), then there is a chance that the search widget will not

appear as an action view, but the menu item will appear in the overflow menu. For example,

when your application runs on a smaller screen, there might not be enough room in the

Action Bar to display the search widget along with other action items or navigation elements,

so the menu item will instead appear in the overflow menu. When placed in the overflow

menu, the item works like an ordinary menu item and does not display the action view (the

search widget).

To handle this situation, the menu item to which you've attached the search widget should

activate the search dialog when the user selects it from the overflow menu. In order for it to

do so, you must implement onOptionsItemSelected() to handle the "Search" menu item and

open the search dialog by calling onSearchRequested().

For more information about how items in the Action Bar work and how to handle this

situation, see the developer guide.

2.6 ADDING RECENT QUERY SUGGESTIONS

When using the Android search dialog or search widget, you can provide search

95

suggestions based on recent search queries. For example, if a user previously searched for

"puppies," then that query appears as a suggestion once he or she begins typing the same

query. Below Figure shows an example of a search dialog with recent query suggestions.

Figure-28 Search dialog with recent query suggestions.

Before you begin, you need to implement the search dialog or a search widget for basic

searches in your application. If you haven't, see Creating a Search Interface.

Recent query suggestions are simply saved searches. When the user selects one of the

suggestions, your searchable activity receives a ACTION_SEARCH intent with the

suggestion as the search query, which your searchable activity already handles (as

described in Creating a Search Interface).

To provide recent queries suggestions, you need to:

Implement a searchable activity, as described in Creating a Search Interface.

Create a content provider that extends SearchRecentSuggestionsProvider and declare it

in your application manifest.

Modify the searchable configuration with information about the content provider that

provides search suggestions.

Save queries to your content provider each time a search is executed.

Just as the Android system displays the search dialog, it also displays the search

suggestions below the dialog or search widget. All you need to do is provide a source from

which the system can retrieve suggestions.

When the system identifies that your activity is searchable and provides search suggestions,

the following procedure takes place as soon as the user begins typing a query:

The system takes the search query text (whatever has been typed so far) and performs a

 96

query to the content provider that contains your suggestions.

 Your content provider returns a Cursor that points to all suggestions that match the

search query text.

 The system displays the list of suggestions provided by the Cursor.

Once the recent query suggestions are displayed, the following might happen:

 If the user types another key, or changes the query in any way, the aforementioned steps

are repeated and the suggestion list is updated.

 If the user executes the search, the suggestions are ignored and the search is delivered

to your searchable activity using the normal ACTION_SEARCH intent.

 If the user selects a suggestion, an ACTION_SEARCH intent is delivered to your

searchable activity using the suggested text as the query.

The SearchRecentSuggestionsProvider class that you extend for your content provider

automatically does the work described above, so there's actually very little code to write.

Creating a Content Provider

The content provider that you need for recent query suggestions must be an implementation

of SearchRecentSuggestionsProvider. This class does practically everything for you. All you

have to do is write a class constructor that executes one line of code.

For example, here's a complete implementation of a content provider for recent query

suggestions:

public class MySuggestionProvider extends SearchRecentSuggestionsProvider {

 public final static String AUTHORITY = "com.example.MySuggestionProvider";

 public final static int MODE = DATABASE_MODE_QUERIES;

 public MySuggestionProvider() {

 setupSuggestions(AUTHORITY, MODE);

 }

}

The call to setupSuggestions() passes the name of the search authority and a database

mode. The search authority can be any unique string, but the best practice is to use a fully

qualified name for your content provider (package name followed by the provider's class

 97

name; for example, "com.example.MySuggestionProvider"). The database mode must

include DATABASE_MODE_QUERIES and can optionally include

DATABASE_MODE_2LINES, which adds another column to the suggestions table that

allows you to provide a second line of text with each suggestion. For example, if you want to

provide two lines in each suggestion:

public final static int MODE = DATABASE_MODE_QUERIES |

DATABASE_MODE_2LINES;

Now declare the content provider in your application manifest with the same authority string

used in your SearchRecentSuggestionsProvider class (and in the searchable configuration).

For example:

<application>

 <provider android:name=".MySuggestionProvider"

 android:authorities="com.example.MySuggestionProvider" />

 ...

</application>

Modifying the Searchable Configuration

To configure the system to use your suggestions provider, you need to add the

android:searchSuggestAuthority and android:searchSuggestSelection attributes to the

<searchable> element in your searchable configuration file. For example:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

 android:label="@string/app_label"

 android:hint="@string/search_hint"

 android:searchSuggestAuthority="com.example.MySuggestionProvider"

 android:searchSuggestSelection=" ?" >

</searchable>

The value for android:searchSuggestAuthority should be a fully qualified name for your

content provider that exactly matches the authority used in the content provider (the

 98

AUTHORITY string in the above example).

The value for android:searchSuggestSelection must be a single question mark, preceded by

a space (" ?"), which is simply a placeholder for the SQLite selection argument (which is

automatically replaced by the query text entered by the user).

Saving Queries

To populate your collection of recent queries, add each query received by your searchable

activity to your SearchRecentSuggestionsProvider. To do this, create an instance of

SearchRecentSuggestions and call saveRecentQuery() each time your searchable activity

receives a query. For example, here's how you can save the query during your activity's

onCreate() method:

@Override

public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 Intent intent = getIntent();

 if (Intent.ACTION_SEARCH.equals(intent.getAction())) {

 String query = intent.getStringExtra(SearchManager.QUERY);

 SearchRecentSuggestions suggestions = new SearchRecentSuggestions(this,

 MySuggestionProvider.AUTHORITY, MySuggestionProvider.MODE);

 suggestions.saveRecentQuery(query, null);

 }

}

The SearchRecentSuggestionsProvider constructor requires the same authority and

database mode declared by your content provider.

The saveRecentQuery() method takes the search query string as the first parameter and,

optionally, a second string to include as the second line of the suggestion (or null). The

second parameter is only used if you've enabled two-line mode for the search suggestions

with DATABASE_MODE_2LINES. If you have enabled two-line mode, then the query text is

also matched against this second line when the system looks for matching suggestions.

 99

Clearing the Suggestion Data

To protect the user's privacy, you should always provide a way for the user to clear the

recent query suggestions. To clear the query history, call clearHistory(). For example:

SearchRecentSuggestions suggestions = new SearchRecentSuggestions(this,

HelloSuggestionProvider.AUTHORITY, HelloSuggestionProvider.MODE);

 suggestions.clearHistory();

Execute this from your choice of a "Clear Search History" menu item, preference item, or

button. You should also provide a confirmation dialog to verify that the user wants to delete

their search history.

2.7 ADDING CUSTOM SUGGESTIONS

When using the Android search dialog or search widget, you can provide custom search

suggestions that are created from data in your application. For example, if your application is

a word dictionary, you can suggest words from the dictionary that match the text entered so

far. These are the most valuable suggestions, because you can effectively predict what the

user wants and provide instant access to it. Figure shows an example of a search dialog

with custom suggestions.

Once you provide custom suggestions, you can also make them available to the system-

wide Quick Search Box, providing access to your content from outside your application.

Before you begin with this guide to add custom suggestions, you need to have implemented

the Android search dialog or a search widget for searches in your application. If you haven't,

see Creating a Search Interface. You should also see the Content Providers documentation.

When the user selects a custom suggestion, the Android system sends an Intent to your

searchable activity. Whereas a normal search query sends an intent with the

ACTION_SEARCH action, you can instead define your custom suggestions to use

ACTION_VIEW (or any other intent action), and also include data that's relevant to the

selected suggestion. Continuing the dictionary example, when the user selects a suggestion,

your application can immediately open the definition for that word, instead of searching the

 100

dictionary for matches.

To provide custom suggestions, do the following:

 Implement a basic searchable activity, as described in Creating a Search Interface.

 Modify the searchable configuration with information about the content provider that

provides custom suggestions.

 Build a table (such as in an SQLiteDatabase) for your suggestions and format the table

with required columns.

 Create a Content Provider that has access to your suggestions table and declare the

provider in your manifest.

 Declare the type of Intent to be sent when the user selects a suggestion (including a

custom action and custom data).

 Just as the Android system displays the search dialog, it also displays your search

suggestions. All you need is a content provider from which the system can retrieve your

suggestions. If you're not familiar with creating content providers, read the Content

Providers developer guide before you continue.

When the system identifies that your activity is searchable and provides search suggestions,

the following procedure takes place when the user types a query:

 The system takes the search query text (whatever has been typed so far) and performs a

query to your content provider that manages your suggestions.

 Your content provider returns a Cursor that points to all suggestions that are relevant to

the search query text.

 The system displays the list of suggestions provided by the Cursor.

Once the custom suggestions are displayed, the following might happen:

 If the user types another key, or changes the query in any way, the above steps are

repeated and the suggestion list is updated as appropriate.

 If the user executes the search, the suggestions are ignored and the search is delivered

to your searchable activity using the normal ACTION_SEARCH intent.

 If the user selects a suggestion, an intent is sent to your searchable activity, carrying a

custom action and custom data so that your application can open the suggested content.

 101

Modifying the searchable configuration

To add support for custom suggestions, add the android:searchSuggestAuthority attribute to

the <searchable> element in your searchable configuration file. For example:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

 android:label="@string/app_label"

 android:hint="@string/search_hint"

 android:searchSuggestAuthority="com.example.MyCustomSuggestionProvider">

</searchable>

You might need some additional attributes, depending on the type of intent you attach to

each suggestion and how you want to format queries to your content provider. The other

optional attributes are discussed in the following sections.

Creating a Content Provider

Creating a content provider for custom suggestions requires previous knowledge about

content providers that's covered in the Content Provider developer guide. For the most part,

a content provider for custom suggestions is the same as any other content provider.

However, for each suggestion you provide, the respective row in the Cursor must include

specific columns that the system understands and uses to format the suggestions.

When the user starts typing into the search dialog or search widget, the system queries your

content provider for suggestions by calling query() each time a letter is typed. In your

implementation of query(), your content provider must search your suggestion data and

return a Cursor that points to the rows you have determined to be good suggestions.

Details about creating a content provider for custom suggestions are discussed in the

following two sections:

Handling the suggestion query

 How the system sends requests to your content provider and how to handle them

 102

 Building a suggestion table

 How to define the columns that the system expects in the Cursor returned with each

query

Handling the suggestion query: When the system requests suggestions from your content

provider, it calls your content provider's query() method. You must implement this method to

search your suggestion data and return a Cursor pointing to the suggestions you deem

relevant.

Here's a summary of the parameters that the system passes to your query() method (listed

in order):

uri

Always a content Uri, formatted as:

content://your.authority/optional.suggest.path/SUGGEST_URI_PATH_QUERY

The default behavior is for system to pass this URI and append it with the query text. For

example:

content://your.authority/optional.suggest.path/SUGGEST_URI_PATH_QUERY/puppies

The query text on the end is encoded using URI encoding rules, so you might need to

decode it before performing a search.

The optional.suggest.path portion is only included in the URI if you have set such a path in

your searchable configuration file with the android:searchSuggestPath attribute. This is only

needed if you use the same content provider for multiple searchable activities, in which

case, you need to disambiguate the source of the suggestion query.

 projection

 Always null

 selection

The value provided in the android:searchSuggestSelection attribute of your searchable

configuration file, or null if you have not declared the android:searchSuggestSelection

attribute. More about using this to get the query below.

selectionArgs: Contains the search query as the first (and only) element of the array if you

 103

have declared the android:searchSuggestSelection attribute in your searchable

configuration. If you have not declared android:searchSuggestSelection, then this parameter

is null. More about using this to get the query below.

sortOrder: Always null

The system can send you the search query text in two ways. The default manner is for the

query text to be included as the last path of the content URI passed in the uri parameter.

However, if you include a selection value in your searchable configuration's

android:searchSuggestSelection attribute, then the query text is instead passed as the first

element of the selectionArgs string array. Both options are summarized next.

Get the query in the Uri

By default, the query is appended as the last segment of the uri parameter (a Uri object). To

retrieve the query text in this case, simply use getLastPathSegment(). For example:

String query = uri.getLastPathSegment().toLowerCase();

This returns the last segment of the Uri, which is the query text entered by the user.

Get the query in the selection arguments

Instead of using the URI, you might decide it makes more sense for your query() method to

receive everything it needs to perform the look-up and you want the selection and

selectionArgs parameters to carry the appropriate values. In such a case, add the

android:searchSuggestSelection attribute to your searchable configuration with your SQLite

selection string. In the selection string, include a question mark ("?") as a placeholder for the

actual search query. The system calls query() with the selection string as the selection

parameter and the search query as the first element in the selectionArgs array.

For example, here's how you might form the android:searchSuggestSelection attribute to

create a full-text search statement:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

 android:label="@string/app_label"

 104

 android:hint="@string/search_hint"

 android:searchSuggestAuthority="com.example.MyCustomSuggestionProvider"

 android:searchSuggestIntentAction="android.intent.action.VIEW"

 android:searchSuggestSelection="word MATCH ?">

</searchable>

With this configuration, your query() method delivers the selection parameter as "word

MATCH ?" and the selectionArgs parameter as the search query. When you pass these to

an SQLite query() method, as their respective arguments, they are synthesized together (the

question mark is replaced with the query text). If you chose to receive suggestion queries

this way and need to add wildcards to the query text, append (and/or prefix) them to the

selectionArgs parameter, because this value is wrapped in quotes and inserted in place of

the question mark.

Another new attribute in the example above is android:searchSuggestIntentAction, which

defines the intent action sent with each intent when the user selects a suggestion. It is

discussed further in the section about Declaring an Intent for Suggestions.

Building a suggestion table

When you return suggestions to the system with a Cursor, the system expects specific

columns in each row. So, regardless of whether you decide to store your suggestion data in

an SQLite database on the device, a database on a web server, or another format on the

device or web, you must format the suggestions as rows in a table and present them with a

Cursor.

The system understands several columns, but only two of them are required:

_ID

A unique integer row ID for each suggestion. The system requires this in order to present

suggestions in a ListView.

SUGGEST_COLUMN_TEXT_1: The string that is presented as a suggestion.

The following columns are all optional (and most are discussed further in the following

sections):

SUGGEST_COLUMN_TEXT_2: A string. If your Cursor includes this column, then all

 105

suggestions are provided in a two-line format. The string in this column is displayed as a

second, smaller line of text below the primary suggestion text. It can be null or empty to

indicate no secondary text.

SUGGEST_COLUMN_ICON_1: A drawable resource, content, or file URI string. If your

Cursor includes this column, then all suggestions are provided in an icon-plus-text format

with the drawable icon on the left side. This can be null or zero to indicate no icon in this

row.

SUGGEST_COLUMN_ICON_2: A drawable resource, content, or file URI string. If your

Cursor includes this column, then all suggestions are provided in an icon-plus-text format

with the icon on the right side. This can be null or zero to indicate no icon in this row.

SUGGEST_COLUMN_INTENT_ACTION: An intent action string. If this column exists and

contains a value at the given row, the action defined here is used when forming the

suggestion's intent. If the element is not provided, the action is taken from the

android:searchSuggestIntentAction field in your searchable configuration. If your action is

the same for all suggestions, it is more efficient to specify the action using

android:searchSuggestIntentAction and omit this column.

SUGGEST_COLUMN_INTENT_DATA: A data URI string. If this column exists and contains

a value at the given row, this is the data that is used when forming the suggestion's intent. If

the element is not provided, the data is taken from the android:searchSuggestIntentData

field in your searchable configuration. If neither source is provided, the intent's data field is

null. If your data is the same for all suggestions, or can be described using a constant part

and a specific ID, it is more efficient to specify it using android:searchSuggestIntentData and

omit this column.

SUGGEST_COLUMN_INTENT_DATA_ID: A URI path string. If this column exists and

contains a value at the given row, then "/" and this value is appended to the data field in the

intent. This should only be used if the data field specified by the

android:searchSuggestIntentData attribute in the searchable configuration has already been

set to an appropriate base string.

 106

SUGGEST_COLUMN_INTENT_EXTRA_DATA: Arbitrary data. If this column exists and

contains a value at a given row, this is the extra data used when forming the suggestion's

intent. If not provided, the intent's extra data field is null. This column allows suggestions to

provide additional data that is included as an extra in the intent's EXTRA_DATA_KEY key.

SUGGEST_COLUMN_QUERY: If this column exists and this element exists at the given

row, this is the data that is used when forming the suggestion's query, included as an extra

in the intent's QUERY key. Required if suggestion's action is ACTION_SEARCH, optional

otherwise.

SUGGEST_COLUMN_SHORTCUT_ID: Only used when providing suggestions for Quick

Search Box. This column indicates whether a search suggestion should be stored as a

shortcut and whether it should be validated. Shortcuts are usually formed when the user

clicks a suggestion from Quick Search Box. If missing, the result is stored as a shortcut and

never refreshed. If set to SUGGEST_NEVER_MAKE_SHORTCUT, the result is not stored

as a shortcut. Otherwise, the shortcut ID is used to check back for an up to date suggestion

using SUGGEST_URI_PATH_SHORTCUT.

SUGGEST_COLUMN_SPINNER_WHILE_REFRESHING: only used when providing

suggestions for Quick Search Box. This column specifies that a spinner should be shown

instead of an icon from SUGGEST_COLUMN_ICON_2 while the shortcut of this suggestion

is being refreshed in Quick Search Box.

Some of these columns are discussed more in the following sections.

Declaring an Intent for Suggestions

When the user selects a suggestion from the list that appears below the search dialog or

widget, the system sends a custom Intent to your searchable activity. You must define the

action and data for the intent.

Declaring the intent action

The most common intent action for a custom suggestion is ACTION_VIEW, which is

appropriate when you want to open something, like the definition for a word, a person's

contact information, or a web page. However, the intent action can be any other action and

 107

can even be different for each suggestion.

Depending on whether you want all suggestions to use the same intent action, you can

define the action in two ways:

Use the android:searchSuggestIntentAction attribute of your searchable configuration file to

define the action for all suggestions.

For example:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

 android:label="@string/app_label"

 android:hint="@string/search_hint"

 android:searchSuggestAuthority="com.example.MyCustomSuggestionProvider"

 android:searchSuggestIntentAction="android.intent.action.VIEW" >

</searchable>

Use the SUGGEST_COLUMN_INTENT_ACTION column to define the action for individual

suggestions.

Add the SUGGEST_COLUMN_INTENT_ACTION column to your suggestions table and, for

each suggestion, place in it the action to use (such as "android.intent.action.VIEW").

You can also combine these two techniques. For instance, you can include the

android:searchSuggestIntentAction attribute with an action to be used with all suggestions

by default, then override this action for some suggestions by declaring a different action in

the SUGGEST_COLUMN_INTENT_ACTION column. If you do not include a value in the

SUGGEST_COLUMN_INTENT_ACTION column, then the intent provided in the

android:searchSuggestIntentAction attribute is used.

Declaring intent data

When the user selects a suggestion, your searchable activity receives the intent with the

action you've defined (as discussed in the previous section), but the intent must also carry

data in order for your activity to identify which suggestion was selected. Specifically, the data

should be something unique for each suggestion, such as the row ID for the suggestion in

your SQLite table. When the intent is received, you can retrieve the attached data with

getData() or getDataString().

 108

You can define the data included with the intent in two ways:

Define the data for each suggestion inside the SUGGEST_COLUMN_INTENT_DATA

column of your suggestions table.

Provide all necessary data information for each intent in the suggestions table by including

the SUGGEST_COLUMN_INTENT_DATA column and then populating it with unique data

for each row. The data from this column is attached to the intent exactly as you define it in

this column. You can then retrieve it with getData() or getDataString().

Fragment a data URI into two pieces: the portion common to all suggestions and the portion

unique to each suggestion. Place these parts into the android:searchSuggestintentData

attribute of the searchable configuration and the SUGGEST_COLUMN_INTENT_DATA_ID

column of your suggestions table, respectively.

Declare the piece of the URI that is common to all suggestions in the

android:searchSuggestIntentData attribute of your searchable configuration. For example:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

 android:label="@string/app_label"

 android:hint="@string/search_hint"

 android:searchSuggestAuthority="com.example.MyCustomSuggestionProvider"

 android:searchSuggestIntentAction="android.intent.action.VIEW"

 android:searchSuggestIntentData="content://com.example/datatable" >

</searchable>

Then include the final path for each suggestion (the unique part) in the

SUGGEST_COLUMN_INTENT_DATA_ID column of your suggestions table. When the user

selects a suggestion, the system takes the string from android:searchSuggestIntentData,

appends a slash ("/") and then adds the respective value from the

SUGGEST_COLUMN_INTENT_DATA_ID column to form a complete content URI. You can

then retrieve the Uri with getData().

 109

Add more data

If you need to express even more information with your intent, you can add another table

column, SUGGEST_COLUMN_INTENT_EXTRA_DATA, which can store additional

information about the suggestion. The data saved in this column is placed in

EXTRA_DATA_KEY of the intent's extra Bundle.

Handling the Intent

Now that you provide custom search suggestions with custom intents, you need your

searchable activity to handle these intents when the user selects a suggestion. This is in

addition to handling the ACTION_SEARCH intent, which your searchable activity already

does.

Here's an example of how you can handle the intents during your activity onCreate()

callback:

Intent intent = getIntent();

if (Intent.ACTION_SEARCH.equals(intent.getAction())) {

 // Handle the normal search query case

 String query = intent.getStringExtra(SearchManager.QUERY);

 doSearch(query);

} else if (Intent.ACTION_VIEW.equals(intent.getAction())) {

 // Handle a suggestions click (because the suggestions all use ACTION_VIEW)

 Uri data = intent.getData();

 showResult(data);

}

In this example, the intent action is ACTION_VIEW and the data carries a complete URI

pointing to the suggested item, as synthesized by the android:searchSuggestIntentData

string and SUGGEST_COLUMN_INTENT_DATA_ID column. The URI is then passed to the

local showResult() method that queries the content provider for the item specified by the

URI.

Rewriting the query text

If the user navigates through the suggestions list using the directional controls (such as with

a trackball or d-pad), the query text does not update, by default. However, you can

 110

temporarily rewrite the user's query text as it appears in the text box with a query that

matches the suggestion currently in focus. This enables the user to see what query is being

suggested (if appropriate) and then select the search box and edit the query before

dispatching it as a search.

You can rewrite the query text in the following ways:

Add the android:searchMode attribute to your searchable configuration with the

"queryRewriteFromText" value. In this case, the content from the suggestion's

SUGGEST_COLUMN_TEXT_1 column is used to rewrite the query text.

Add the android:searchMode attribute to your searchable configuration with the

"queryRewriteFromData" value. In this case, the content from the suggestion's

SUGGEST_COLUMN_INTENT_DATA column is used to rewrite the query text. This should

only be used with URI's or other data formats that are intended to be user-visible, such as

HTTP URLs. Internal URI schemes should not be used to rewrite the query in this way.

Provide a unique query text string in the SUGGEST_COLUMN_QUERY column of your

suggestions table. If this column is present and contains a value for the current suggestion,

it is used to rewrite the query text (and override either of the previous implementations).

Exposing search suggestions to Quick Search Box

Once you configure your application to provide custom search suggestions, making them

available to the globally accessible Quick Search Box is as easy as modifying your

searchable configuration to include android:includeInGlobalSearch as "true".

The only scenario in which additional work is necessary is when your content provider

demands a read permission. In which case, you need to add a special <path-permission>

element for the provider to grant Quick Search Box read access to your content provider.

For example:

<provider android:name="MySuggestionProvider"

 android:authorities="com.example.MyCustomSuggestionProvider"

 android:readPermission="com.example.provider.READ_MY_DATA"

 android:writePermission="com.example.provider.WRITE_MY_DATA">

 111

 <path-permission android:pathPrefix="/search_suggest_query"

 android:readPermission="android.permission.GLOBAL_SEARCH" />

</provider>

In this example, the provider restricts read and write access to the content. The <path-

permission> element amends the restriction by granting read access to content inside the

"/search_suggest_query" path prefix when the "android.permission.GLOBAL_SEARCH"

permission exists. This grants access to Quick Search Box so that it may query your content

provider for suggestions.

If your content provider does not enforce read permissions, then Quick Search Box can read

it by default.

Enabling suggestions on a device: When your application is configured to provide

suggestions in Quick Search Box, it is not actually enabled to provide suggestions in Quick

Search Box, by default. It is the user's choice whether to include suggestions from your

application in the Quick Search Box. To enable search suggestions from your application,

the user must open "Searchable items" (in Settings > Search) and enable your application

as a searchable item.

Each application that is available to Quick Search Box has an entry in the Searchable items

settings page. The entry includes the name of the application and a short description of what

content can be searched from the application and made available for suggestions in Quick

Search Box. To define the description text for your searchable application, add the

android:searchSettingsDescription attribute to your searchable configuration. For example:

<?xml version="1.0" encoding="utf-8"?>

<searchable xmlns:android="http://schemas.android.com/apk/res/android"

 android:label="@string/app_label"

 android:hint="@string/search_hint"

 android:searchSuggestAuthority="com.example.MyCustomSuggestionProvider"

 android:searchSuggestIntentAction="android.intent.action.VIEW"

 android:includeInGlobalSearch="true"

 android:searchSettingsDescription="@string/search_description" >

</searchable>

The string for android:searchSettingsDescription should be as concise as possible and state

 112

the content that is searchable. For example, "Artists, albums, and tracks" for a music

application, or "Saved notes" for a notepad application. Providing this description is

important so the user knows what kind of suggestions are provided. You should always

include this attribute when android:includeInGlobalSearch is "true".

Remember that the user must visit the settings menu to enable search suggestions for your

application before your search suggestions appear in Quick Search Box. As such, if search

is an important aspect of your application, then you might want to consider a way to convey

that to your users you might provide a note the first time they launch the app that instructs

them how to enable search suggestions for Quick Search Box.

Managing Quick Search Box suggestion shortcuts

Suggestions that the user selects from Quick Search Box can be automatically made into

shortcuts. These are suggestions that the system has copied from your content provider so

it can quickly access the suggestion without the need to re-query your content provider.

By default, this is enabled for all suggestions retrieved by Quick Search Box, but if your

suggestion data changes over time, then you can request that the shortcuts be refreshed.

For instance, if your suggestions refer to dynamic data, such as a contact's presence status,

then you should request that the suggestion shortcuts be refreshed when shown to the user.

To do so, include the SUGGEST_COLUMN_SHORTCUT_ID in your suggestions table.

Using this column, you can configure the shortcut behavior for each suggestion in one of the

following ways:

1. Have Quick Search Box re-query your content provider for a fresh version of the

suggestion shortcut.

Provide a value in the SUGGEST_COLUMN_SHORTCUT_ID column and the

suggestion is re-queried for a fresh version each time the shortcut is displayed. The

shortcut is quickly displayed with whatever data was most recently available until the

refresh query returns, at which point the suggestion is refreshed with the new

information. The refresh query is sent to your content provider with a URI path of

SUGGEST_URI_PATH_SHORTCUT (instead of SUGGEST_URI_PATH_QUERY).

The Cursor you return should contain one suggestion using the same columns as the

original suggestion, or be empty, indicating that the shortcut is no longer valid (in which

 113

case, the suggestion disappears and the shortcut is removed).

If a suggestion refers to data that could take longer to refresh, such as a network-based

refresh, you can also add the SUGGEST_COLUMN_SPINNER_WHILE_REFRESHING

column to your suggestions table with a value of "true" in order to show a progress

spinner for the right hand icon until the refresh is complete. Any value other than "true"

does not show the progress spinner.

2. Prevent the suggestion from being copied into a shortcut at all.

Provide a value of SUGGEST_NEVER_MAKE_SHORTCUT in the

SUGGEST_COLUMN_SHORTCUT_ID column. In this case, the suggestion is never

copied into a shortcut. This should only be necessary if you absolutely do not want the

previously copied suggestion to appear. (Recall that if you provide a normal value for the

column, then the suggestion shortcut appears only until the refresh query returns.)

3. Allow the default shortcut behavior to apply.

Leave the SUGGEST_COLUMN_SHORTCUT_ID empty for each suggestion that will not

change and can be saved as a shortcut.

If none of your suggestions ever change, then you do not need the

SUGGEST_COLUMN_SHORTCUT_ID column at all.

2.8 CLEAR HISTORY FROM APPS & CHROME

Delete Chrome browsing history

or some of your browsing history. Deleting your browsing history will take effect on all

Your history will be removed from Chrome. You can also delete your Google search history

separately from your account.

See your history

On your Android phone or tablet, open the Chrome app Chrome.

 114

1. At the top-right, tap More More and then History.

a. If your address bar is at the bottom, swipe up on the address bar. Tap History

History.

2. To visit a site, tap the entry.

a. To open the site in a new tab, touch and hold the entry. At the top-right, tap

More More and then Open in new tab.

b. To copy the site, touch and hold the entry. At the top-right, tap More More and

then Copy link.

Clear your history

On your Android phone or tablet, open the Chrome app Chrome.

1. At the top-right, tap More More and then History.

a. If your address bar is at the bottom, swipe up on the address bar. Tap History

History.

2. Tap Clear browsing data.

3. Next to 'Time range', select how much history you want to delete. To clear everything,

tap All time.

4. Check 'Browsing history'. Untick any other data that you don't want to delete.

5. Tap Clear data.

To delete your search history, learn about clearing activity saved in My Activity.

Delete an item from your history

You can delete certain parts of your history. To search for something specific, at the top-

right, tap Search.

On your Android phone or tablet, open the Chrome app Chrome.

1. At the top-right, tap More More and then History.

a. If your address bar is at the bottom, swipe up on the address bar. Tap History.

2. Find the entry that you want to delete.

3. To the right, tap Remove.

To delete multiple items, touch and hold an entry. Select other entries that you want to

 115

delete. Then, at the top-right, tap Remove.

Remove an image from New Tab page

To see the sites that you visit most, open a new tab. To remove an image, touch and hold it.

Then, select Remove.

What your history page shows

Your History page shows the web pages that you've visited on Chrome in the last 90 days. It

visited in Incognito mode or pages that you've already deleted from your browsing history.

If you're signed in to Chrome and syncing your history, then your History page shows web

2.9 LET US SUM UP

In this block we learned about Search techniques, Search View, Creating a Search

Interface, Adding Recent Query Suggestions, Adding Custom Suggestions, A searchable

configuration, A searchable activity, Clear History from Apps & chrome.

2.10 FURTHER READING

 Android Application Development for Dummies by Donn Felker

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-13:

978-1118949528 ISBN-10: 9781118949528

 Android Programming by Nicolas Gramlich.

 Thinking in Java (4th Edition) 4th Edition by Bruce Eckel ISBN-13: 978-0131872486

ISBN-10: 0131872486 Android Programming for Beginners: Learn all the Java and

Android skills you need to start making powerful mobile applications ISBN-10:

1785883267 ISBN-13: 978-1785883262

 Learning Java by Building Android Games: Explore Java Through Mobile Game

Development ISBN-10: 1784398853 ISBN-13: 978-1784398859

 Beginning Android Application Development by Wei-Meng Lee

 116

 Java: A Beginner's Guide, Sixth Edition 6th Edition by Herbert Schildt ISBN-13: 978-

0071809252 ISBN-10: 0071809252

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch Guides)

3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano ISBN-13: 978-0134706054

ISBN-10: 0134706056

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13: 978-

1118717370 ISBN-10: 1118717376

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn Griffiths

ISBN-13: 978-1449362188 ISBN-10: 1449362184

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York, 2009.

2.11 ASSIGNMENTS

A. Write a sort note on Search View.

B. How to use the Search Widget.

C. How to Configuring the search widget.

D. Explain the search widget features.

E. Discuss about Adding Recent Query Suggestions.

F. How to Handling the suggestion query explain in detail.

G. How to see history in phone.

H. Explain the steps of Clear your history from phone.

2.12 ACTIVITIES

 Create an android application for custom search from dynamic list

 117

Unit 3: Location and Mapping

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Location Data and Mapping overview

3.4 My Location layer

3.5 Adding Location-Based Services to Your Application

3.6 Configuring the GPS Location of the Emulator

3.7 Google Play services Location API

3.8 Get the last known location

3.9 Let us sum up

3.10 Check your Progress

3.11 Check your Progress: Possible Answers

3.12 Further Reading

3.13 Assignment

3.14 Activities

3

 118

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the concept of GEO Location & mapping

 know the permission and accessing rights of location

 to gain experience of implement google location API

 Be able to config (enable/disable) location service for apps and device and change

latitude and longitude from console

3.2 INTRODUCTION

android.location: Contains the framework API classes that define Android location-based

and related services.

Interfaces

GpsStatus.Listener This interface was deprecated in API level 24.

use GnssStatus.Callback instead.

GpsStatus.NmeaListener This interface was deprecated in API level 24.

use OnNmeaMessageListener instead.

LocationListener Used for receiving notifications from the

LocationManager when the location has changed.

OnNmeaMessageListener Used for receiving NMEA sentences from the

GNSS.

Table-12 Interfaces

Classes

Address A class representing an Address, i.e, a set of

Strings describing a location.

Criteria A class indicating the application criteria for

selecting a location provider.

 119

Geocoder A class for handling geocoding and reverse

geocoding.

GnssClock A class containing a GPS clock timestamp.

GnssMeasurement A class representing a GNSS satellite

measurement, containing raw and computed

information.

GnssMeasurementsEvent A class implementing a container for data

associated with a measurement event.

GnssMeasurementsEvent.Callback Used for receiving GNSS satellite

measurements from the GNSS engine.

GnssNavigationMessage A class containing a GNSS satellite

Navigation Message.

GnssNavigationMessage.Callback Used for receiving GNSS satellite Navigation

Messages from the GNSS engine.

GnssStatus This class represents the current state of the

GNSS engine.

GnssStatus.Callback Used for receiving notifications when GNSS

events happen.

GpsSatellite This class was deprecated in API level 24.

use GnssStatus and GnssStatus.Callback.

GpsStatus This class was deprecated in API level 24.

use GnssStatus and GnssStatus.Callback.

Location A data class representing a geographic

location.

LocationManager This class provides access to the system

location services.

LocationProvider An abstract superclass for location

providers.

 120

SettingInjectorService Dynamically specifies the summary (subtitle)

and enabled status of a preference injected

into the list of app settings displayed by the

system settings app

For use only by apps that are included in the

system image, for preferences that affect

multiple apps.

Table-13 Classes

3.3 LOCATION DATA AND MAPPING OVERVIEW

Location Data: One of the unique features of mobile applications is location awareness.

Mobile users bring their devices with them everywhere, and adding location awareness to

your app offers users a more contextual experience.

Code samples:

The ApiDemos repository on https://github.com/googlemaps/android-

samples/tree/master/ApiDemos/java includes samples that demonstrate the use of location

on a map:

 MyLocationDemoActivity: Using the My Location layer, including runtime permissions

 LocationSourceDemoActivity: Using a custom LocationSource

 CurrentPlaceDetailsOnMap: Finding the current location of an Android device and

displaying details of the place (business or other point of interest) at that location.

Working with location data

The location data available to an Android device includes the current location of the device

 pinpointed using a combination of technologies the direction and method of

movement, and whether the device has moved across a predefined geographical boundary,

or geofence.

 121

Depending upon the needs of your application, you can choose between several ways of

working with location data:

 The My Location layer provides a simple way to display a device's location on the map. It

does not provide data.

 The Google Play services Location API is recommended for all programmatic requests

for location data.

 The LocationSource interface allows you to provide a custom location provider.

Location permissions

If your app needs to access the user's location, you must request permission by adding the

relevant Android location permission to your app.

Android offers two location permissions: ACCESS_COARSE_LOCATION and

ACCESS_FINE_LOCATION. The permission you choose determines the accuracy of the

location returned by the API. You only need to request one of the Android location

permissions, depending on the level of accuracy you need:

 android.permission.ACCESS_COARSE_LOCATION Allows the API to use WiFi or

mobile cell data (or both) to determine the device's location. The API returns the location

with an accuracy approximately equivalent to a city block.

 android.permission.ACCESS_FINE_LOCATION Allows the API to determine as

precise a location as possible from the available location providers, including the Global

Positioning System (GPS) as well as WiFi and mobile cell data.

Add the permissions to the app manifest

Add one of the following permissions as a child of the <manifest> element in your Android

manifest. Either the coarse location permission:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myapp" >

 ...

 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>

 ...

</manifest>

 122

Or the fine location permission:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.myapp" >

 ...

 <uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>

 ...

</manifest>

Request runtime permissions

Android 6.0 (Marshmallow) introduces a new model for handling permissions, which

streamlines the process for users when they install and upgrade apps. If your app targets

API level 23 or later, you can use the new permissions model.

If your app supports the new permissions model and the device is running Android 6.0

(Marshmallow) or later, the user does not have to grant any permissions when they install or

upgrade the app. The app must check to see if it has the necessary permission at runtime,

and request the permission if it does not have it. The system displays a dialog to the user

asking for the permission.

For best user experience, it's important to request the permission in context. If location is

essential to the functioning of your app, then you should request the location permission at

app startup. A good way to do this is with a warm welcome screen or wizard that educates

users about why the permission is required.

If the app requires the permission for only part of its functionality, then you should request

the location permission at the time when the app performs the action that requires the

permission.

The app must gracefully handle the case where the user does not grant permission. For

example, if the permission is needed for a specific feature, the app can disable that feature.

If the permission is essential for the app to function, the app can disable all its functionality

and inform the user that they need to grant the permission.

The following code sample checks for permission using the Support library before enabling

the My Location layer:

 123

if(ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS_FINE_LOCATION)

 == PackageManager.PERMISSION_GRANTED) {

 mMap.setMyLocationEnabled(true);

} else {

 // Show rationale and request permission.

}

The following sample handles the result of the permission request by implementing the

ActivityCompat.OnRequestPermissionsResultCallback from the Support library:

@Override

public void onRequestPermissionsResult(int requestCode, String[] permissions, int[]
grantResults) {

 if (requestCode == MY_LOCATION_REQUEST_CODE) {

 if (permissions.length == 1 &&

 permissions[0] == Manifest.permission.ACCESS_FINE_LOCATION &&

 grantResults[0] == PackageManager.PERMISSION_GRANTED) {

 mMap.setMyLocationEnabled(true);

 } else {

 // Permission was denied. Display an error message.

 }

}

For more code samples and best practices for Android runtime permissions,

https://developer.android.com/preview/features/runtime-permissions.html

3.4 MY LOCATION LAYER

You can use the My Location layer and the My Location button to show your user their

current position on the map. Call mMap.setMyLocationEnabled() to enable the My Location

layer on the map.

Note: Before enabling the My Location layer, you must ensure that you have the required

runtime location permission.

The following sample shows a simple usage of the My Location layer:

 124

public class MyLocationDemoActivity extends FragmentActivity

 implements OnMyLocationButtonClickListener,

 OnMyLocationClickListener,

 OnMapReadyCallback {

 private GoogleMap mMap;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.my_location_demo);

 SupportMapFragment mapFragment =

 (SupportMapFragment) getSupportFragmentManager().findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 @Override

 public void onMapReady(GoogleMap map) {

 mMap = map;

 // TODO: Before enabling the My Location layer, you must request

 // location permission from the user. This sample does not include

 // a request for location permission.

 mMap.setMyLocationEnabled(true);

 mMap.setOnMyLocationButtonClickListener(this);

 mMap.setOnMyLocationClickListener(this);

 }

 @Override

 public void onMyLocationClick(@NonNull Location location) {

 Toast.makeText(this, "Current location:\n" + location, Toast.LENGTH_LONG).show();

 }

 @Override

 public boolean onMyLocationButtonClick() {

 Toast.makeText(this, "MyLocation button clicked", Toast.LENGTH_SHORT).show();

 // Return false so that we don't consume the event and the default behavior still occurs

 125

 // (the camera animates to the user's current position).

 return false;

 }

}

When the My Location layer is enabled, the My Location button appears in the top right

corner of the map. When a user clicks the button, the camera centers the map on the

current location of the device, if it is known. The location is indicated on the map by a small

blue dot if the device is stationary, or as a chevron if the device is moving.

The following screenshot shows the My Location button at top right and the My Location

blue dot in the center of the map:

Figure-29 My Location Button on Map

You can prevent the My Location button from appearing by calling

UiSettings.setMyLocationButtonEnabled(false).

Your app can respond to the following events:

 If the user clicks the My Location button, your app receives an

onMyLocationButtonClick() callback from the

GoogleMap.OnMyLocationButtonClickListener.

 If the user clicks the My Location blue dot, your app receives an onMyLocationClick()

callback from the GoogleMap.OnMyLocationClickListener.

 126

3.5 ADDING LOCATION-BASED SERVICES TO YOUR
APPLICATION

This becomes possible with the help of Google Play services, which facilitates adding

location awareness to your app with automated location tracking, geofencing, and activity

recognition.

how to use Location Services in your APP to get the current location, get periodic location

updates, look up addresses etc.

The Location Object

The Location object represents a geographic location which can consist of a latitude,

longitude, time stamp, and other information such as bearing, altitude and velocity. There

are following important methods which you can use with Location object to get location

specific information

Method Description

float distanceTo(Location dest) Returns the approximate distance in

meters between this location and the

given location.

float getAccuracy() Get the estimated accuracy of this

location, in meters.

double getAltitude() Get the altitude if available, in meters

above sea level.

float getBearing() Get the bearing, in degrees.

double getLatitude() Get the latitude, in degrees.

double getLongitude() Get the longitude, in degrees.

float getSpeed() Get the speed if it is available, in

meters/second over ground.

boolean hasAccuracy() True if this location has an accuracy.

 127

boolean hasAltitude() True if this location has an altitude.

boolean hasBearing() True if this location has a bearing.

boolean hasSpeed() True if this location has a speed.

void reset() Clears the contents of the location.

voidsetAccuracy(float

accuracy)

Set the estimated accuracy of this

location, meters.

void setAltitude(double altitude) Set the altitude, in meters above sea

level.

void setBearing(float bearing) Set the bearing, in degrees.

void setLatitude(double

latitude)

Set the latitude, in degrees.

void setLongitude(double

longitude)

Set the longitude, in degrees.

void setSpeed(float speed) Set the speed, in meters/second over

ground.

String toString() Returns a string containing a concise,

human-readable description of this object.

Table-14 Methods Used with Location object to get location specific information

Get the Current Location

To get the current location, create a location client which is LocationClient object, connect it

to Location Services using connect() method, and then call its getLastLocation() method.

This method returns the most recent location in the form of Location object that contains

latitude and longitude coordinates and other information as explained above. To have

location based functionality in your activity, you will hav

 GooglePlayServicesClient.ConnectionCallbacks

 GooglePlayServicesClient.OnConnectionFailedListener

These interfaces provide following important callback methods, which you need to

 128

 abstract void onConnected(Bundle connectionHint): This callback method is

called when location service is connected to the location client successfully. You will

use connect() method to connect to the location client.

 abstract void onDisconnected(): This callback method is called when the client is

disconnected. You will use disconnect() method to disconnect from the location client.

 abstract void onConnectionFailed(ConnectionResult result): This callback

method is called when there was an error connecting the client to the service.

Get the Updated Location

If you are willing to have location updates, then apart from above mentioned interfaces, you

will need to implement LocationListener interface as well. This interface provide following

 abstract void onLocationChanged(Location location): This callback method is used

for receiving notifications from the LocationClient when the location has changed.

Location Quality of Service

The LocationRequest object is used to request a quality of service (QoS) for location

updates from the LocationClient. There are following useful setter methods which you can

use to handle QoS. There are equivalent getter methods available which you can check in

Android official documentation.

Method Description

setExpirationDuration(long

millis)

Set the duration of this request, in milliseconds.

setExpirationTime(long millis) Set the request expiration time, in millisecond

since boot.

setFastestInterval(long millis) Explicitly set the fastest interval for location

updates, in milliseconds.

setInterval(long millis) Set the desired interval for active location

updates, in milliseconds.

 129

setNumUpdates(int

numUpdates)

Set the number of location updates.

setPriority(int priority) Set the priority of the request.

Table-15 Setter methods to handle QoS

Now for example, if your application wants high accuracy location it should create a location

request with setPriority(int) set to PRIORITY_HIGH_ACCURACY and setInterval(long) to 5

seconds. You can also use bigger interval and/or other priorities like

PRIORITY_LOW_POWER for to request "city" level accuracy or

PRIORITY_BALANCED_POWER_ACCURACY for "block" level accuracy.

Displaying a Location Address

Once you have Location object, you can use Geocoder.getFromLocation() method to get an

address for a given latitude and longitude. This method is synchronous, and may take a long

time to do its work, so you should call the method from the doInBackground() method of an

AsyncTask class.

The AsyncTask must be subclassed to be used and the subclass will override

doInBackground(Params...) method to perform a task in the background and

onPostExecute(Result) method is invoked on the UI thread after the background

computation finishes and at the time to display the result. There is one more important

method available in AyncTask which is execute(Params... params), this method executes

the task with the specified parameters.

3.6 CONFIG THE GPS LOCATION INTO EMULATOR USING
PLUGINS

If you developed an Android app with Android Studio you can send one GPS position using

the Android Device Emulator.

 130

Figure-32 Android Device Monitor

 Once you have launched the app you are developing in the Android emulator, you have to

launch the Android Device Emulator, insert both location points (longitude and latitude) and

press the

GPS

Figure-33 Android Device Emulator

But if you want to simulate a route made with your device, with a lot of coordinates, you

have to install one plugin, in particular th Mock Location Plugin

First, you have to install the plugin in Android Studio.

 131

Figure-34 Setting

Then you have to

Figure-35 Plug-in

 132

Figure-36 Install Plug-in

You have to confirm the download and installation process.

Figure-37 ConfirmationDialog

button.

 133

Figure-38 Restart Android Studio

You have to confirm the restart

Figure-39 Restart Confirmation Dialog

Now you have the plugin installed in the Android Studio.

Once you have launched the app you are developing in the Android emulator, you have to

 134

Figure-40 Launch GPS Emulator

Then you have to configure:

 And you have to click

coordinates.

 135

 Figure-41 Click Start GPS Emulation

 Figure-42 Sending Emulated co-ordinates

 136

This way you can config GPS Location into emulator. For more detail you can refer

http://developer.android.com.

3.7 GOOGLE PLAY SERVICES LOCATION API

Android Location Using Google Play Services : we will learn how to use Google Play

services API to retrieve your mobile location with example app.

Why introducing Google Play Location Services?

What are the advantages of Google Play Location Services over the default Android

Location API?

out Location Using Google

Play Services.

Need for introducing Google Play Location Services

The Google Location Services API, part of Google Play Services, provides a more powerful,

high-level framework that automates tasks such as location provider choice and power

cation API. Currently, Google provides 5

user states which are In Vehicle, On Bicycle, On Foot, Still, and Tilting, which are good

Another feature it provides is Geofencing API that is used to notify a user entering or exiting

a particular area.

The above advantages clearly indicate why Google Location Services API(also known as

provides the best accuracy based on our needs.

 137

Android has an independent update roll-out feature that lies in the hands of the smartphone

manufacturer. Google has less control over it and hence decided to shift to a new API

instead.

There are few important classes that are used to get the location:

 LocationRequest : A data object that contains quality of service parameters for requests

to the FusedLocationProviderApi. LocationRequest objects are used to request a quality

of service for location updates from the FusedLocationProviderApi.

 FusedLocationProviderApi : The main entry point for interacting with the fused location

provider. The methods must be used in conjunction with a GoogleApiClient client which

 com.google.android.gms.location.LocationListener : The LocationListener interface is

used for receiving notifications from the FusedLocationProviderApi when the location has

changed. The method onLocationChanged is invoked if the LocationListener has been

registered with the location client using the requestLocationUpdates(GoogleApiClient,

LocationRequest, LocationListener) or requestLocationUpdates(GoogleApiClient,

LocationRequest, LocationListener, Looper) methods.

3.8 GET THE LAST KNOWN LOCATION

Using the Google Play services location APIs, your app can request the last known location

of the user's device. In most cases, you are interested in the user's current location, which is

usually equivalent to the last known location of the device.

Specifically, use the fused location provider to retrieve the device's last known location. The

fused location provider is one of the location APIs in Google Play services. It manages the

underlying location technology and provides a simple API so that you can specify

requirements at a high level, like high accuracy or low power. It also optimizes the device's

use of battery power.

This lesson shows you how to make a single request for the location of a device using the

getLastLocation() method in the fused location provider.

 138

Set up Google Play services

To access the fused location provider, your app's development project must include Google

Play services. Download and install the Google Play services component via the SDK

Manager and add the library to your project. For details, see the guide to Setting Up Google

Play Services.

Specify app permissions

Apps that use location services must request location permissions. Android offers two

location permissions: ACCESS_COARSE_LOCATION and ACCESS_FINE_LOCATION.

The permission you choose determines the accuracy of the location returned by the API. If

you specify ACCESS_COARSE_LOCATION, the API returns a location with an accuracy

approximately equivalent to a city block.

This lesson requires only coarse location. Request this permission with the uses-permission

element in your app manifest, as the following code snippet shows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.google.android.gms.location.sample.basiclocationsample" >

 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>

</manifest>

Create location services client

In your activity's onCreate() method, create an instance of the Fused Location Provider

Client as the following code snippet shows.

private FusedLocationProviderClient fusedLocationClient;

// ..

@Override

protected void onCreate(Bundle savedInstanceState) {

 // ...

 139

 fusedLocationClient = LocationServices.getFusedLocationProviderClient(this);

}

Get the last known location

Once you have created the Location Services client you can get the last known location of a

user's device. When your app is connected to these you can use the fused location

provider's getLastLocation() method to retrieve the device location. The precision of the

location returned by this call is determined by the permission setting you put in your app

manifest, as described in the Specify App Permissions section of this document.

To request the last known location, call the getLastLocation() method. The following code

snippet illustrates the request and a simple handling of the response:

fusedLocationClient.getLastLocation()

 .addOnSuccessListener(this, new OnSuccessListener<Location>() {

 @Override

 public void onSuccess(Location location) {

 // Got last known location. In some rare situations this can be null.

 if (location != null) {

 // Logic to handle location object

 }

 }

 });

The getLastLocation() method returns a Task that you can use to get a Location object with

the latitude and longitude coordinates of a geographic location. The location object may be

null in the following situations:

 Location is turned off in the device settings. The result could be null even if the last

location was previously retrieved because disabling location also clears the cache.

 The device never recorded its location, which could be the case of a new device or a

device that has been restored to factory settings.

 Google Play services on the device has restarted, and there is no active Fused Location

Provider client that has requested location after the services restarted. To avoid this

situation, you can create a new client and request location updates yourself. For more

information, see Receiving Location Updates.

 140

Using above code, you can retrieve your last location form google server, which Is you

visited recently also call as know about your last location .

3.9 LET US SUM UP

In this block we learned about Location Data and Mapping view in layout using components,

My Location layer, Adding and accessing Location-Based Services to user defined

Application, Configuring the GPS Location of the Emulator using command prompt or

external plugins, Google Play services Location API, Get the last known location from

application

3.10 CHECK YOUR PROGRESS

A. Criteria: A class indicating the application criteria for selecting a location provider.

(TRUE/FALSE)

B. GnssStatus.Callback Used for receiving notifications when data class representing a

geographic location. (TRUE/FALSE)

C. double getAltitude(): Get the altitude if available, in meters above sea level.

(TRUE/FALSE)

D. GooglePlayServicesClient.ConnectionCallbacks is ___________. (Interface, Class)

3.11 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. TRUE

B. FALSE

C. TRUE

D. Interface

3.12 FURTHER READING

 Android Application Development for Dummies by Donn Felker

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-13:

978-1118949528 ISBN-10: 9781118949528

 141

 Android Programming by Nicolas Gramlich.

 Thinking in Java (4th Edition) 4th Edition by Bruce Eckel ISBN-13: 978-0131872486

ISBN-10: 0131872486 Android Programming for Beginners: Learn all the Java and

Android skills you need to start making powerful mobile applications ISBN-10:

1785883267 ISBN-13: 978-1785883262

 Learning Java by Building Android Games: Explore Java Through Mobile Game

Development ISBN-10: 1784398853 ISBN-13: 978-1784398859

 Beginning Android Application Development by Wei-Meng Lee

 Java: A Beginner's Guide, Sixth Edition 6th Edition by Herbert Schildt ISBN-13: 978-

0071809252 ISBN-10: 0071809252

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch

Guides) 3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano ISBN-13: 978-

0134706054 ISBN-10: 0134706056

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13: 978-

1118717370 ISBN-10: 1118717376

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn

Griffiths ISBN-13: 978-1449362188 ISBN-10: 1449362184

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York, 2009.

3.13 ASSIGNMENTS

A. Write a sort note on Location Quality of Service.

B. Explain my Location layer in detail.

C. Describe Location Data in detail.

D. Write sort note on Location permissions.

E. Write a step of Config the GPS Location into Emulator using plugins.

3.14 ACTIVITIES

 Create an android application for show your current location with 1 km radius are

circle on google location map

 142

Unit 4: Communication, Identity,
Sync and Social Media

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 Account Contacts

4.4 Authentication and Synchronization

4.5 The Bluetooth Communication Protocol Stack

4.6 Using Bluetooth in Android Applications

4.7 Social media integration with android apps

4.8 Let us sum up

4.9 Check your Progress

4.10 Check your Progress: Possible Answers

4.11 Further Reading

4.12 Assignment

4.13 Activities

4

 143

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the concept of context and account contact management

 Will be able to perform Authentication and Synchronization with account

 will know the concept of Bluetooth communication pattern

 Will be able to integrate social media services and API

4.2 INTRODUCTION

About Contact for communication one of the primary data types that is stored and used (and

reused) in Android is contact data. This consists of the various pieces of information

associated with a contact name, phone number, email, and so on. In Android 3.2 (API

level 8), contact data was significantly expanded (allowing access to multiple accounts and

support for aggregation of similar contacts). In earlier chapters we covered the use of

content providers and Android database classes, so we will not cover that preliminary

material in this chapter. Instead, we will focus on the use of the Contacts content provider.

4.3 ACCOUNT CONTACTS

To access the account contacts the following permissions must be provided in the manifest:

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

<uses-permission android:name="android.permission.READ_CONTACTS" />

<uses-permission android:name="android.permission.WRITE_CONTACTS" />

Within an Activity, we can use the managedQuery method to query the Contacts

Contract.Contacts data and return a Cursor for our use:

private Cursor getContacts() {

Uri uri = ContactsContract.Contacts.CONTENT_URI;

String[] projection = new String[] {

ContactsContract.Contacts._ID,

ContactsContract.Contacts.LOOKUP_KEY,

ContactsContract.Contacts.DISPLAY_NAME

};

 144

String selection = null;

String[] selectionArgs = null;

String sortOrder = ContactsContract.Contacts.DISPLAY_NAME +

" COLLATE LOCALIZED ASC";

return managedQuery(uri, projection, selection, selectionArgs, sortOrder);

}

For complete information on the columns and constants available in the Contacts

Contract.Contacts class, refer to the developer documentation at

http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html.

Constants for the contacts table, which contains a record per aggregate of raw contacts

representing the same person.

 Operations

 Insert:

A Contact cannot be created explicitly. When a raw contact is inserted, the provider will

first try to find a Contact representing the same person. If one is found, the raw contact's

RawContacts#CONTACT_ID column gets the _ID of the aggregate Contact. If no match

is found, the provider automatically inserts a new Contact and puts its _ID into the

RawContacts#CONTACT_ID column of the newly inserted raw contact.

 Update:

Only certain columns of Contact are modifiable:

ContactsContract.ContactOptionsColumns.STARRED,

ContactsContract.ContactOptionsColumns.CUSTOM_RINGTONE,

ContactsContract.ContactOptionsColumns.SEND_TO_VOICEMAIL. Changing any of

these columns on the Contact also changes them on all constituent raw contacts.

 Delete:

Be careful with deleting Contacts! Deleting an aggregate contact deletes all constituent

raw contacts. The corresponding sync adapters will notice the deletions of their

respective raw contacts and remove them from their back end storage.

Query:

 145

 If you need to read an individual contact, consider using CONTENT_LOOKUP_URI

instead of CONTENT_URI.

 If you need to look up a contact by the phone number, use

PhoneLookup#CONTENT_FILTER_URI, which is optimized for this purpose.

 If you need to look up a contact by partial name, e.g. to produce filter-as-you-type

suggestions, use the CONTENT_FILTER_URI URI.

 If you need to look up a contact by some data element like email address, nickname, etc,

use a query against the ContactsContract.Data table. The result will contain contact ID,

name etc.

Once we have the Cursor, we can load it within a SimpleCursorAdapter and have it display

the specific data fields we

String[] fields = new String[] {

ContactsContract.Data.DISPLAY_NAME

};

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,

R.layout.contact,

cursor,

fields,

new int[] {R.id.name});

// get the listview

ListView contactlist = (ListView) findViewById(R.id.contactlist);

// set the adapter and let it render

contactlist.setAdapter(adapter);

Here is the layout that contains the ListView (referenced as R.id.contactlist):

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="#fff"

>

<ListView android:id="@+id/contactlist"

 146

android:layout_width="fill_parent"

android:layout_height="wrap_content"

/>

</LinearLayout>

Here is the contact layout (referenced as R.layout.contact) used for the SimpleCursor

Adapter:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:background="#fff"

>

<TextView android:id="@+id/name"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textColor="#000"

android:textSize="25sp"

android:padding="5dp"

/>

</LinearLayout>

Here we delete a contact by providing the Cursor and the position within the Cursor to

delete:

private void deleteContact(Cursor cursor, int position) {

cursor.moveToPosition(position);

long id = cursor.getLong(0);

String lookupkey = cursor.getString(1);

Uri uri = ContactsContract.Contacts.getLookupUri(id, lookupkey);

String[] selectionArgs = null;

String where = null;

ContentResolver cr = getContentResolver();

cr.delete(uri, where, selectionArgs);

 147

}

To add a contact in this example we construct a collection of ContentProvider Operations

and batch-apply them. Note that we first insert the new contact and then add the phone

information should it be available (as it is in this case). To do the inserts, we generate an

insert-specific ContentProviderOperation by creating a ContentProviderOperation.Builder

with the SimpleCursorContentProviderOperation .newInsert() method and then building with

the build() method:

String accountNameWeWant = "SpecialAccount";

String phone = "8885551234";

String name = "Bob";

String accountname = null;

String accounttype = null;

Account[] accounts = AccountManager.get(this).getAccounts();

// find the account we want. if we don't find it we use 'null' - the default

for(Account account : accounts) {

if(account.equals(accountNameWeWant)) {

accountname = account.name;

accounttype = account.type;

break;

}

}

ArrayList<ContentProviderOperation> ops =

new ArrayList<ContentProviderOperation>();

ops.add(ContentProviderOperation.newInsert

(ContactsContract.RawContacts.CONTENT_URI)

.withValue(ContactsContract.RawContacts.ACCOUNT_TYPE, accountname)

.withValue(ContactsContract.RawContacts.ACCOUNT_NAME, accounttype)

.build());

// create the new contact

ops.add(

ContentProviderOperation.newInsert(ContactsContract.Data.CONTENT_URI)

.withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)

.withValue(ContactsContract.Data.MIMETYPE,

ContactsContract.CommonDataKinds.StructuredName.CONTENT_ITEM_TYPE)

 148

.withValue(ContactsContract.CommonDataKinds.StructuredName.DISPLAY_NAME, name)

.build());

// if there is a phone num we add it

if(phone.getText() != null

&& phone.getText().toString().trim().length() > 0) {

ops.add(ContentProviderOperation.newInsert

(ContactsContract.Data.CONTENT_URI)

.withValueBackReference(ContactsContract.Data.RAW_CONTACT_ID, 0)

.withValue(ContactsContract.Data.MIMETYPE,

ContactsContract.CommonDataKinds.Phone.CONTENT_ITEM_TYPE)

.withValue(ContactsContract.CommonDataKinds.Phone.NUMBER,

phone)

.withValue(ContactsContract.CommonDataKinds.Phone.TYPE,

ContactsContract.CommonDataKinds.Phone.TYPE_HOME)

.build());

}

try {

getContentResolver().applyBatch(ContactsContract.AUTHORITY, ops);

} catch (Exception e) {

e.printStackTrace();

}

4.4 AUTHENTICATION AND SYNCHRONIZATION

Starting with Android 2.0 (API level 5), it is possible to write custom sync providers to

integrate with system contacts, calendars, and so forth. Synchronizing with a remote service

at this time is unfortunately a precarious endeavour, as any misstep at particular points can

literally cause the Android system to crash and reboot (with very little indication as to what

was done incorrectly). Hopefully, as Android evolves, synchronizing will become easier and

less tricky. For now, the process consists of two parts authentication (Account

Authenticator) and synchronization (Sync Provider). Before diving into the details of the two

parts, we would like to note that the examples we provide here have two components a

server side and the Android client side. The server side that we use is a basic web service

that accepts specific GET requests and responds back with a JSON-formatted response.

The relevant GET URI as well as the example response are provided within each section.

 149

The source that comes with this book includes the full server-side source for completeness.

The other thing to note is that in the example we provide, we choose to sync up with the

account contacts. This is not the only thing with which you can sync up. You can sync up

with any content provider you have access to, or even to application-specific stored data.

4.4.1 AUTHENTICATION

To get the client to authenticate with a remote server using the Android Account

Authenticator system, three pieces must be put into place:

 A service that is triggered by the android.accounts.AccountAuthenticator intent and that,

in its onBind method, returns a subclass of AbstractAccountAuthenticator

 An activity that prompts the user to enter her credentials

 An XML file describing how your account should look when displayed to the user

4.4.2 SYNCHRONIZATION

a service

that is registered to listen for an android.content.SyncAdapter intent and that returns an

AbstractThreadedSyncAdapter extended class on the onBind() method, an XML descriptor

describing the structure of the data that is to be viewed and synced, and a class extending

the AbstractThreadedSyncAdapter that handles the actual sync. For our example, we wish

to sync up with contact information for the account that we described in the preceding

section. Do note that contact information is not the only information with which you can sync

up. You can sync up with any content provider you have access to, or even to application-

specific stored data.

The following permissions are indicated in the manifest:

<uses-permission android:name="android.permission.GET_ACCOUNTS" />

<uses-permission android:name="android.permission.READ_CONTACTS" />

<uses-permission android:name="android.permission.WRITE_CONTACTS" />

<uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />

<uses-permission android:name="android.permission.USE_CREDENTIALS" />

<uses-permission android:name="android.permission.MANAGE_ACCOUNTS" />

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission.WRITE_SETTINGS" />

<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />

 150

<uses-permission android:name="android.permission.READ_SYNC_STATS" />

<uses-permission android:name="android.permission.READ_SYNC_SETTINGS" />

<uses-permission android:name="android.permission.WRITE_SYNC_SETTINGS" />.

4.5 THE BLUETOOTH COMMUNICATION PROTOCOL STACK

Bluetooth: Bluetooth was the nickname for King Harald of Denmark. The following article on

a variety of information about Bluetooth, including the possibly apocryphal assertion that a

runic stone erected in honor of Harald states:

 Harald Christianized the Danes

 Harald controlled Denmark and Norway

 Harald thinks notebooks and cellular phones should communicate seamlessly

Bluetooth classes in your applications, we will create a

utility for connecting to and transferring data to and from Bluetooth devices. This code is

based on the Bluetooth Chat example in the Android SDK. It has been generalized to cover

more applications of Bluetooth, and it has been modified to make it easier to adapt to your

purposes.

APIs, and how you can use the code for application-specific purposes, including as a

diagnostic tool for Bluetooth development.

First we will learn more about how Bluetooth works, and how it is implemented in Android.

The Bluetooth Protocol Stack

This section takes a look at the standards and protocols that make up the Bluetooth protocol

stack. These protocols and standards are what characterize Bluetooth: the kinds of data

Bluetooth is designed to move, how many devices can be connected at the same time,

latency, and so on.

 151

Bluetooth has emerged as a separate form of networking because it is

devices and to carry data at a maximum of approximately three megabits per second. The

connected devices must be close to one another: within about 10 meters. Bluetooth

operates at very low power levels, in milliwatts. That means very small batteries can last a

long time: a Bluetooth headset with a tiny, lightweight battery can last for hours of talking

about as long as the much larger battery in your mobile handset can last, because the

mobile radio signal must be able to reach a relatively distant antenna.

Figure-46 Android Bluetooth protocol stack

The kinds of devices for which Bluetooth is useful include low and medium data-rate devices

such as keyboards, mice, tablets, printers, speakers, headphones, and headsets, and the

mobile and personal computing devices those peripheral devices may want to talk to.

Bluetooth also supports connections among PCs and mobile handsets.

Bluetooth-specific protocols and adopted protocols

One useful way of thinking about the Bluetooth protocol stack is to separate it into Bluetooth-

 152

protocols that run on top of Bluetooth. Taken together,

Bluetooth and the adopted protocols can be dauntingly complex, but if you temporarily set

aside the fact that large, complex protocols such as OBEX and TCP/IP run on top of

tandable. Therefore, we will start with the lower layers of

Bluetooth and emphasize how these layers shape how you can make use of Bluetooth.

Another useful mental model of Bluetooth is that it replaces serial ports. This means the

lower layers of Bluetooth emulate, and enable you to manage, a virtual set of serial cables

between peripherals. This is the type of Bluetooth protocol we will be using. This, in turn,

enables us to use the simple java.io classes InputStream and Output Stream to read and

write data.

4.6 USING BLUETOOTH IN ANDROID APPLICATIONS

Using Bluetooth in Android means using classes that were designed to encapsulate the way

Bluetooth works in the Android operating system: the BlueZ stack provides ways to

enumerate devices, listen for connections, and use connections; the java.io package

provides classes for reading and writing data; and the Handler and Message classes provide

a way to bridge between the threads that manage Bluetooth input and output and the user

 look at the code and how these classes are used.

can do for applications that need to build simple connections to nearby devices.

The first step in trying out this Bluetooth application is to pair your handset with a PC. Then

you need a program that monitors what the PC has received via Bluetooth to see that what

Start the program under the debugger if you want to set some breakpoints and step through

it, especially the parts of the application that open and accept connections. You can create

the connection from your PC, using the Blueman applet in Linux, or from the app. Once the

connection is created, start hcidump in a terminal to see that what you typed into the app is

received by the PC. Use the following flags to show only the content of the Bluetooth

connection:

 <<blutooth Connection Windows or linux>>

 153

4.7 SOCIAL MEDIA INTEGRATION WITH ANDROID APPS

Social Network Integration with Android and in this section, we will Learn, how to users

authenticate into your app using

 Facebook

 Twitter,

and see how to make posts to both social networks.

Many mobile apps require a user to create an account or to sign up for a service in order to

lways the best user experience.

So how can you overcome this when building your app? To give users a seamless

experience, you can give them the ability to sign in to your app with just a single tap of a

button, using one of their social networking accounts, e.g., Facebook or Twitter.

your Android app to allow them to log in and also share posts from your app into their social

networking account.

Next, open Android Studio 3.1.3 or later, and choose Open an existing Android Studio

project from the welcome screen or File > Open form the menu. Open the folder root folder

of the BAOUSocialMedia starter project.

update to Facebook or a tweet to Twitter.

screen for the app:

Connecting With Facebook

create an app to get a Facebook App ID.

Creating a Facebook App ID on Developers Portal & Setting Up

 154

Go to the Facebook Developers Portal : https://developers.facebook.com/apps/ (log in with

your Facebook account if needed).

create a Facebook

Figure-47 Create new app id

Enter <<Your Name>> in the Display Name field and enter your email address in the

Contact Email field, then click Create App ID. Facebook will prompt you with a captcha

dialog; complete the request and click Submit.

Facebook will then direct you to another page:

 155

Figure-48 Set Up using Facebook account

Click on Set Up on the Facebook Login component. Then, from the new page containing the

platform options, select Android.

the steps to build your Android project:

Figure-49 Steps to build android project screen

At this point, you will skip steps 1 and 2 because they have already been completed for you

 156

Step 1: includes downloading the Facebook SDK, and

Step 2: tells you how to import it into the project. Here, Gradle will be used to sync the

Facebook SDK rather than manually downloading the SDK, which you can see in the app

module build.gradle file:

 implementation 'com.facebook.android:facebook-login:[4,5)'

com.baousocial.socialapps.MainActivity.

Click on Save and then Continue (you may need to also confirm that your app is not yet in

the Play Store).

Step 4: you need to create a Development Key Hash and also a Release Key Hash if your

app is live. A key hash is a 28-character-long string, which Facebook uses to verify the

communication between your app and Facebook.

A key hash can be generated by typing the following command in the terminal:

For Mac and Linux:

keytool -exportcert -alias androiddebugkey -keystore ~/.android/debug.keystore |

openssl sha1 -binary | openssl base64

For Windows:

Things are not that simple here. First, you need to have keytool from the JDK, Secondly, get

the openssl library here.

keytool -exportcert -alias androiddebugkey -keystore

"C:\Users\USERNAME\.android\debug.keystore" |

"PATH_TO_OPENSSL_LIBRARY\bin\openssl" sha1 -binary |

"PATH_TO_OPENSSL_LIBRARY\bin\openssl" base64

 157

Finally, after generating your Key Hash, paste it in the section provided in the fourth step.

Click Save then Continue.

Figure-50 Enter Application package name

Step 5: on Single Sign On,

want want to set it to Yes, but, for now, leave it set to No and click on Save, then Next.

 158

Figure-51 Screen to enable single sign on

Step 6: open up strings.xml in the app/res/values folder, and paste the following after

updating the placeholders with the values provided by Facebook:

<string name="facebook_app_id">Your-App-ID</string>

<string name="fb_login_protocol_scheme">fbYour-App-ID</string>

Then, open AndroidManifest.xml and add the permission for accessing the Internet:

<uses-permission android:name="android.permission.INTERNET"/>

Additionally, under the application tag, paste the needed Facebook meta-data and activities:

 <meta-data android:name="com.facebook.sdk.ApplicationId"

 android:value="@string/facebook_app_id"/>

 <activity android:name="com.facebook.FacebookActivity"

 android:configChanges=

 "keyboard|keyboardHidden|screenLayout|screenSize|orientation"

 android:label="@string/app_name" />

 <activity

 android:name="com.facebook.CustomTabActivity"

 android:exported="true">

 <intent-filter>

 <action android:name="android.intent.action.VIEW" />

 <category android:name="android.intent.category.DEFAULT" />

 159

 <category android:name="android.intent.category.BROWSABLE" />

 <data android:scheme="@string/fb_login_protocol_scheme" />

 </intent-filter>

 </activity>

4.8 LET US SUM UP

In this block we learned about Account Contacts accessing, Authentication and

Synchronization, The Bluetooth Communication Protocol Stack, Using Bluetooth in Android

Applications, Android Bluetooth protocol stack, protocols, Social media Facebook and twitter

integration with android apps

4.9 CHECK YOUR PROGRESS

A. About Contact for communication one of the primary data types that is stored and used

(and reused) in Android is contact data. (TRUE/FALSE)

B. Authentication and Synchronization Starting with Android ____ and API level ___.

(2.0&5, 1.5&4)

C. Bluetooth: Bluetooth was the nickname for King Harald of Denmark. (TRUE/FALSE)

D. FULL form PAN:____________

E. Bluetooth connected devices must be close to one another: within about _____ meters

(5,10,15)

4.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. TRUE

B. 2.0&5

C. TRUE

D. Personal Area Network

E. 10

 160

4.11 FURTHER READING

 Android Application Development for Dummies by Donn Felker

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-13:

978-1118949528 ISBN-10: 9781118949528

 Android Programming by Nicolas Gramlich.

 1785883267 ISBN-13: 978-1785883262

 Learning Java by Building Android Games: Explore Java Through Mobile Game

Development ISBN-10: 1784398853 ISBN-13: 978-1784398859

 Beginning Android Application Development by Wei-Meng Lee

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch Guides)

3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano ISBN-13: 978-0134706054

ISBN-10: 0134706056

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13: 978-

1118717370 ISBN-10: 1118717376

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn Griffiths

ISBN-13: 978-1449362188 ISBN-10: 1449362184

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York, 2009.

4.12 ASSIGNMENTS

A. Write a sort note on Account Contacts.

B. Write a step for Social media integration with android apps.

C. Explain the BtConsoleActivity class & The DeviceListActivity class in detail.

D. Discuss about Bluetooth and related I/O classes.

E. Describe Bluetooth-specific protocols and adopted protocols.

F. Explain the Bluetooth Protocol Stack in detail with diagram.

4.13 ACTIVITIES

 Create an android application for established connection with Bluetooth device

 Create an android application for share a post on Facebook or twitter using social

connectivity class

 161

Block-4

Sensor And

Hardware Programming

 162

Unit 1: Sensors

Unit Structure

1.1 Learning Objectives

1.2 Introduction

1.3 Identifying Sensors And Sensor Capabilities

1.4 Motion Sensor

1.5 Environmental Sensors

1.6 Position Sensors

1.7 Let us sum up

1.8 Check your Progress

1.9 Check your Progress: Possible Answers

1.10 Further Reading

1.11 Assignment

1.12 Activities

1

163

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to develop application by using sensor

and hardware programming:

 Identify the hardware based and software based sensors

 Sensor based programming using Android

 Sensor support of android device based application

 Different types of Sensors utilization

1.2 INTRODUCTION

Most Android-fuelled gadgets have equipped with diversified sensors that

determine movement, introduction, and different natural conditions or gestures.

Generally the occupied sensors are supply crude information with high correctness

and precision. It also helpful to gadget development based on screen three-

dimensional or need to alter screen in the adjacent condition almost to a gadget. For

e.g. for deriving complex consumer signals and movements diversion is tractable by

readings from a gadget's gravity sensor. Other examples like tilt, shake, turn, or

swing. In like manner, a environmental based weather tracking application may

utilize a gadget's temperature sensor and stickiness sensor to ascertain and report

the dew point, or a movement application may utilize the geomagnetic field sensor

and accelerometer to report a compass bearing.

The major categories of android sensors are as follow.

Figure-52 Android Sensors Categories

Motion Sensors

Environmental Sensors

Position Sensors

 164

The gadget sensor accessibility with gaining basic sensor related information

is utilized via the Android Sensor Framework (ASF) in android. The few of classes

and interfaces from ASF supports for play out a wide variety of sensor-related

undertakings. Some of the basic task which is utilizes the sensor system.

 Identify the sensors availability on a device.

 Confine the capability characteristics of each supported sensor like its most

extreme range, maker, control necessities, and goals.

 Secure simple sensor information and characterize the base rate at which you

gain sensor information.

 Register and unregister sensor event listener that screen sensor changes.

Motion sensors

o These sensors measure speeding up powers and rotational powers along three

axes. This classification incorporates accelerometers, gravity sensors, gyroscope

(from android 4.0), and rotational vector sensors.

Environmental sensors

o These sensors measure different natural parameters, for example, encompassing

air temperature and power, light, and moistness. This classification incorporates

indicators, photometers, and thermometers.

Position sensors

o These sensors measure the physical position of a gadget. This class preamble

sensors and magnetometers.

The ASF (Android Sensor Framework) enables the developer to use many

types of sensors which are of two types. Some of are hardware centric and some of

are software centric. The Hardware centric sensors are substantial components

generally resides in device. These sensors are gain the data by quantifying the

environmental properties such as acceleration, geomagnetic field strength, or

angular adjustment. The software centric sensors are mimic hardware based

sensors. It gains data some time from hardware based sensors and sometimes from

the virtual sensors or artificial sensors. Mostly the android devices have every type of

sensors. Almost have accelerometer and a magnetometer but some of have

 165

barometers or thermometers. The following Table-16 shows the sensor types

supported by android.

Sensor Type Description Common

Uses

TYPE_ACCELEROMETE

R

Hardw

are

Measures the acceleration force

in m/s2 that is applied to a device

on all three physical axes (x, y,

and z), including the force of

gravity.

Motion

detection

(shake, tilt,

etc.).

TYPE_AMBIENT_TEMP

ERATURE

Hardw

are

Measures the ambient room

temperature in degrees Celsius

(°C). See note below.

Monitoring

air

temperatur

es.

TYPE_GRAVITY Softwa

re or

Hardw

are

Measures the force of gravity in

m/s2 that is applied to a device on

all three physical axes (x, y, z).

Motion

detection

(shake, tilt,

etc.).

TYPE_GYROSCOPE Hardw

are

Measures a device's rate of

rotation in rad/s around each of

the three physical axes (x, y, and

z).

Rotation

detection

(spin, turn,

etc.).

TYPE_LIGHT Hardw

are

Measures the ambient light level

(illumination) in lx.

Controlling

screen

brightness.

TYPE_LINEAR_ACCELE

RATION

Softwa

re or

Hardw

are

Measures the acceleration force

in m/s2 that is applied to a device

on all three physical axes (x, y,

and z), excluding the force of

gravity.

Monitoring

acceleratio

n along a

single axis.

TYPE_MAGNETIC_FIEL Hardw Measures the ambient Creating a

 166

D are geomagnetic field for all three

compass.

TYPE_ORIENTATION Softwa

re

Measures degrees of rotation that

a device makes around all three

physical axes (x, y, z). As of API

level 3 you can obtain the

inclination matrix and rotation

matrix for a device by using the

gravity sensor and the

geomagnetic field sensor in

conjunction with

the getRotationMatrix()method.

Determinin

g device

position.

TYPE_PRESSURE Hardw

are

Measures the ambient air

pressure in hPa or mbar.

Monitoring

air

pressure

changes.

TYPE_PROXIMITY Hardw

are

Measures the proximity of an

object in cm relative to the view

screen of a device. This sensor is

typically used to determine

whether a handset is being held

up to a person's ear.

Phone

position

during a

call.

TYPE_RELATIVE_HUMI

DITY

Hardw

are

Measures the relative ambient

humidity in percent (%).

Monitoring

dewpoint,

absolute,

and

relative

humidity.

TYPE_ROTATION_VEC

TOR

Softwa

re or

Hardw

Measures the orientation of a

device by providing the three

elements of the device's rotation

Motion

detection

and

 167

Table-16 Sensor types [1]

The android.hardware package has following classes and interfaces.

 SensorManager: You can utilize this class to make an occurrence of the sensor

administration. This class gives different strategies to getting to and posting

sensors, enlisting and unregistering sensor event listener, and securing

introduction data. This class additionally gives a few sensor constants that are

utilized to report sensor precision, set information securing rates, and adjust

sensors.

 Sensor : You can utilize this class to make an occurrence of a particular sensor.

This class gives different strategies that let you decide a sensor's abilities.

 SensorEvent : The framework utilizes this class to make a sensor event object,

which gives data about a sensor event. A sensor occasion object incorporates

the accompanying data: the crude sensor information, the kind of sensor that

created the occasion, the exactness of the information, and the timestamp for the

occasion.

 SensorEventListener : You can utilize this interface to make two callback

strategies that get warnings (sensor occasions1) when sensor esteems change or

when sensor exactness changes.

are vector. rotation

detection.

TYPE_TEMPERATURE Hardw

are

Measures the temperature of the

device in degrees Celsius (°C).

This sensor implementation

varies across devices and this

sensor was replaced with

the TYPE_AMBIENT_TEMPERA

TURE sensor in API Level 14

Monitoring

temperatur

es.

 168

1.3 IDENTIFYING SENSORS AND SENSOR CAPABILITIES

Create an object of the SensorManager class by calling the factory method

getSystemService() method by passing the SENSOR_SERVICE as an argument.

Example:

SensorManager sManager;

sManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);

Listing sensors supported by device:

Example:

List<Sensor> dSensors = sManager.getSensorList(Sensor.TYPE_ALL);

Determine existence of specific type of sensor on a device:

getDefaultSensor() requires the type of sensor for checking existence as a

parameter.

Example:

if (sManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD) != null){

 // Success! There's a magnetometer.

Toast.makeText(getApplicationContext(),"Its
Magnetometer...",Toast.LENGTH_SHORT).show();

} else {

 // Failure! No magnetometer.

Toast.makeText(getApplicationContext(),"Not available
Magnetometer...",Toast.LENGTH_SHORT).show();

}

Monitoring Sensor Events

The sensor raw data monitoring will be implemented by two call back methods which

need SensorEventListener with onAccuracyChanged() and onSensorChanged()

interface. The android call these methods when following action will be occur.

onAccuracyChanged() with respective sensor value gives accuracy information

which has constants like SENSOR_STATUS_ACCURACY_LOW,

 169

SENSOR_STATUS_ACCURACY_MEDIUM,

SENSOR_STATUS_ACCURACY_HIGH, SENSOR_STATUS_UNRELIABLE.

 Sensor give the new value: This change invoked by onSensorChanged()

interface with respective SensorEvent. This event has actually new data with

timestamp information.

 EXAMPLE:

Use the onSensorChanged() method for monitoring light sensor data which display

in TextView.

public class SensorActivity extends Activity implements SensorEventListener {
 private SensorManager sensorManager;
 private Sensor mLight;
 @Override
 public final void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);
 mLight = sensorManager.getDefaultSensor(Sensor.TYPE_LIGHT);
 }

 @Override
 public final void onAccuracyChanged(Sensor sensor, int accuracy) {
 // Code to perform when sensor accuracy changed.
 }
 @Override
 public final void onSensorChanged(SensorEvent event) {
 // The light sensor returns a single value.
 // Many sensors return 3 values, one for each axis.
 float lux = event.values[0];
 // Do something with this sensor value.
 }
 @Override
 protected void onResume() {
 super.onResume();
 sensorManager.registerListener(this, mLight,
SensorManager.SENSOR_DELAY_NORMAL);
//The default delay is specified when the registerListener() method is invoked.
 }
 @Override
 protected void onPause() {
 super.onPause();

 170

 sensorManager.unregisterListener(this);
 }
}

Runtime Sensor Detection

The sensor specification required to check at runtime like which sensors are

activated and those values are also important for runtime than Sensor framework

provides the runtime sensor detection and disable or enabling features as

appropriately required.

EXAMPLE:

private SensorManager sensorManager;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

if (sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE) != null){

 // Success! There's a pressure sensor.

} else {

 // Failure! No pressure sensor.

}

Specific sensor configurations using Google Play filters

The Google Play Store targeted applications consume this feature. The <uses-

feature> elements in your manifest file to filter your application from devices that do

not have the appropriate sensor configuration for your application.

EXAMPLE:

<uses-feature android:name="android.hardware.sensor.accelerometer"

 android:required="true" />

1.4 MOTION SENSORS

The Motion sensors are useful for monitoring device movement, such as tilt, shake,

rotation, or swing. The sensors' possible architectures vary by sensor type:

 The gravity, linear acceleration, rotation vector, significant motion, step counter,

and step detector sensors are either hardware-based or software-based.

 The accelerometer and gyroscope sensors are always hardware-based.

 171

The below Table-17 shows the Motion Sensors supported in sensor.

Sensor Sensor event data Description Units of

measure

TYPE_ACCELE

ROMETER

SensorEvent.values[0] Acceleration force

along the x axis

(including gravity).

m/s2

SensorEvent.values[1] Acceleration force

along the y axis

(including gravity).

SensorEvent.values[2] Acceleration force

along the z axis

(including gravity).

TYPE_ACCELE

ROMETER_UNC

ALIBRATED

SensorEvent.values[0] Measured acceleration

along the X axis without

any bias compensation.

m/s2

SensorEvent.values[1] Measured acceleration

along the Y axis without

any bias compensation.

SensorEvent.values[2] Measured acceleration

along the Z axis without

any bias compensation.

SensorEvent.values[3] Measured acceleration

along the X axis with

estimated bias

compensation.

SensorEvent.values[4] Measured acceleration

along the Y axis with

estimated bias

compensation.

SensorEvent.values[5] Measured acceleration

along the Z axis with

estimated bias

 172

compensation.

TYPE_GRAVITY SensorEvent.values[0] Force of gravity along

the x axis.

m/s2

SensorEvent.values[1] Force of gravity along

the y axis.

SensorEvent.values[2] Force of gravity along

the z axis.

TYPE_GYROSC

OPE

SensorEvent.values[0] Rate of rotation around

the x axis.

rad/s

SensorEvent.values[1] Rate of rotation around

the y axis.

SensorEvent.values[2] Rate of rotation around

the z axis.

TYPE_GYROSC

OPE_UNCALIBR

ATED

SensorEvent.values[0] Rate of rotation (without

drift compensation)

around the x axis.

rad/s

SensorEvent.values[1] Rate of rotation (without

drift compensation)

around the y axis.

SensorEvent.values[2] Rate of rotation (without

drift compensation)

around the z axis.

SensorEvent.values[3] Estimated drift around

the x axis.

SensorEvent.values[4] Estimated drift around

the y axis.

SensorEvent.values[5] Estimated drift around

the z axis.

TYPE_LINEAR_

ACCELERATIO

N

SensorEvent.values[0] Acceleration force

along the x axis

(excluding gravity).

m/s2

SensorEvent.values[1] Acceleration force

 173

along the y axis

(excluding gravity).

SensorEvent.values[2] Acceleration force

along the z axis

(excluding gravity).

TYPE_ROTATIO

N_VECTOR

SensorEvent.values[0] Rotation vector

component along the x

Unitless

SensorEvent.values[1] Rotation vector

component along the y

SensorEvent.values[2] Rotation vector

component along the z

SensorEvent.values[3] Scalar component of

the rotation vector

TYPE_SIGNIFIC

ANT_MOTION

N/A N/A N/A

TYPE_STEP_C

OUNTER

SensorEvent.values[0] Number of steps taken

by the user since the

last reboot while the

sensor was activated.

Steps

TYPE_STEP_D

ETECTOR

N/A N/A N/A

Table-17 Motion Sensor Support [1]

 The Gravity Sensor: This sensor supports a three dimensional vector for

indication of the direction and magnitude of gravity. It also useful for deriving

space orientation related to specific device.

EXAMPLE:

private SensorManager sensorManager;

 174

private Sensor sensor;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor = sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY);

 The Linear Accelerometer: Generally this sensor used for gesture detection. It

provides three-dimensional vector with acceleration along each device axis,

excluding gravity.

EXAMPLE:

private SensorManager sensorManager;
private Sensor sensor;
sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);
sensor =
sensorManager.getDefaultSensor(Sensor.TYPE_LINEAR_ACCELERATION);

 The sensor provides acceleration data by calculating following.

 linear acceleration = acceleration - acceleration due to gravity

 The Rotation Vector Sensor: It characterizes the orientation of the device as a

combination of an angle and an axis, in which the device has rotated through an

angle around an axis (x, y, or z).

EXAMPLE:

private SensorManager sensorManager;
private Sensor sensor;
sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);
sensor =
sensorManager.getDefaultSensor(Sensor.TYPE_ROTATION_VECTOR);

 The Significant Motion Sensor: This sensor invoked and disable it by them self.

It invoked when significant motion is detected and then it disables itself. This

sensors are might be lead to change user location so its generally used for

walking, biking, or sitting in a moving car.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

private TriggerEventListener triggerEventListener;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

 175

sensor =
sensorManager.getDefaultSensor(Sensor.TYPE_SIGNIFICANT_MOTION);

triggerEventListener = new TriggerEventListener() {

 @Override

 public void onTrigger(TriggerEvent event) {

 // Do work

 }

};

 The Step Counter Sensor: It provides the number of steps taken by the user

since the last reboot while the sensor was activated. The step counter has more

latency (up to 10 seconds) but more accuracy than the step detector sensor.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_COUNTER);

 The Step Detector Sensor: This sensor fire an event each time the user takes a

step. The latency is expected to be below 2 seconds.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

ssensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor = sensorManager.getDefaultSensor(Sensor.TYPE_STEP_DETECTOR);

1.5 POSITION SENSORS

There are two type of sensors are available in android to get the position of the

device: the geomagnetic field sensor and the accelerometer. It also supports

proximity sensor which determine how close the face of a device is to an object and

give binary value like near or far. The geomagnetic field sensor and proximity sensor

are hardware based.

 176

The following Table-18 shows the support of position sensors in android.

Sensor Sensor event

data

Description Units of

measure

TYPE_GAME_

ROTATION_VE

CTOR

SensorEvent.valu

es[0]

Rotation vector component

Unitless

SensorEvent.valu

es[1]

Rotation vector component

SensorEvent.valu

es[2]

Rotation vector component

TYPE_GEOMA

GNETIC_ROTA

TION_VECTOR

SensorEvent.valu

es[0]

Rotation vector component

Unitless

SensorEvent.valu

es[1]

Rotation vector component

SensorEvent.valu

es[2]

Rotation vector component

TYPE_MAGNE

TIC_FIELD

SensorEvent.valu

es[0]

Geomagnetic field strength

along the x axis.

SensorEvent.valu

es[1]

Geomagnetic field strength

along the y axis.

SensorEvent.valu

es[2]

Geomagnetic field strength

along the z axis.

TYPE_MAGNE

TIC_FIELD_UN

CALIBRATED

SensorEvent.valu

es[0]

Geomagnetic field strength

(without hard iron calibration)

along the x axis.

SensorEvent.valu

es[1]

Geomagnetic field strength

(without hard iron calibration)

along the y axis.

SensorEvent.valu Geomagnetic field strength

 177

es[2] (without hard iron calibration)

along the z axis.

SensorEvent.valu

es[3]

Iron bias estimation along

the x axis.

SensorEvent.valu

es[4]

Iron bias estimation along

the y axis.

SensorEvent.valu

es[5]

Iron bias estimation along

the z axis.

TYPE_ORIENT

ATION1

SensorEvent.valu

es[0]

Azimuth (angle around the z-

axis).

Degrees

SensorEvent.valu

es[1]

Pitch (angle around the x-

axis).

SensorEvent.valu

es[2]

Roll (angle around the y-

axis).

TYPE_PROXIM

ITY

SensorEvent.valu

es[0]

Distance from object.2 Cm

Table-18 Position Sensor Support [1]

 The Game Rotation Vector Sensor: It is identical to the Rotation vector sensor

just except it does not use the geomagnetic field. Therefore the Y axis does not

point north but instead to some other reference. That reference is allowed to drift

by the same order of magnitude as the gyroscope drifts around the Z axis.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor = sensorManager.getDefaultSensor(
Sensor.TYPE_GAME_ROTATION_VECTOR);

 The Geomagnetic Rotation Vector Sensor: It is same as Rotation vector

sensor, but it uses a magnetometer instead of a gyroscope. The accuracy of this

 178

sensor is lower than the normal rotation vector sensor, but the power

consumption is reduced. Only use this sensor if you want to collect some rotation

information in the background without draining too much battery. This sensor is

most useful when used in conjunction with batching.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor =
sensorManager.getDefaultSensor(Sensor.TYPE_GEOMAGNETIC_ROTATION_
VECTOR);

 The Geomagnetic Field Sensor: This sensor monitor changes in the earth's

magnetic field.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);

 The Uncalibrated Magnetometer: It is same as the geomagnetic field sensor,

but it never apply the hard iron calibration to the magnetic field. Factory

calibration and temperature compensation are still applied to the magnetic field.

The uncalibrated magnetometer is useful to handle bad hard iron estimations.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor =
sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD_UNCALIB
RATED);

 179

 The Proximity Sensor: The proximity sensor returns two value near or far the

object from device.

EXAMPLE:

private SensorManager sensorManager;

private Sensor sensor;

sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

sensor = sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);

 Device Orientation Calculation

There are three types of orientation is available: Azimuth (degrees of rotation

about the -z axis), Pitch (degrees of rotation about the x axis) and Roll (degrees

of rotation about the y axis).

EXAMPLE:

private SensorManager sensorManager;

// Rotation matrix based on current readings from accelerometer and
magnetometer.

final float[] rotationMatrix = new float[9];

SensorManager.getRotationMatrix(rotationMatrix, null,

 accelerometerReading, magnetometerReading);

// Express the updated rotation matrix as three orientation angles.

final float[] orientationAngles = new float[3];

SensorManager.getOrientation(rotationMatrix, orientationAngles);

1.6 ENVIRONMENTAL SENSORS

The sensor framework of android supports four types of sensor that monitor

environmental properties like relative ambient humidity, illuminance, ambient

pressure, and ambient temperature. These all sensors are hardware-based. With the

exception of the light sensor, it use to control screen brightness, environment

sensors are not always available on devices. So it is important to verify before use it

in programming.

Sensor Sensor event

data

Units of

measure

Data description

 180

TYPE_AMBIENT_TE
MPERATURE

event.values[0] °C Ambient air
temperature.

TYPE_LIGHT event.values[0] lx Illuminance.
TYPE_PRESSURE event.values[0] hPa or mbar Ambient air

pressure.
TYPE_RELATIVE_H
UMIDITY

event.values[0] % Ambient relative
humidity.

TYPE_TEMPERATU
RE

event.values[0] °C Device
temperature.1

Table-19 Environmental Sensor Support [1]

 The Light, Pressure, And Temperature Sensors: The raw data you acquire

from the light, pressure, and temperature sensors usually requires no calibration,

filtering, or modification, which makes them some of the easiest sensors to use.

EXAMPLE:

public class SensorActivity extends Activity implements SensorEventListener {

 private SensorManager sensorManager;

 private Sensor pressure;

 @Override

 public final void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 // Get an instance of the sensor service, and use that to get an instance of

 // a particular sensor.

 sensorManager = (SensorManager)
getSystemService(Context.SENSOR_SERVICE);

 pressure = sensorManager.getDefaultSensor(Sensor.TYPE_PRESSURE);

 }

@Override

 public final void onAccuracyChanged(Sensor sensor, int accuracy) {

 // Do something here if sensor accuracy changes.

 }

 @Override

 public final void onSensorChanged(SensorEvent event) {

 float millibarsOfPressure = event.values[0];

 // Do something with this sensor data.

 }

 181

 @Override

 protected void onResume() {

 // Register a listener for the sensor.

 super.onResume();

 sensorManager.registerListener(this, pressure,
SensorManager.SENSOR_DELAY_NORMAL);

 }

 @Override

 protected void onPause() {

 // Be sure to unregister the sensor when the activity pauses.

 super.onPause();

 sensorManager.unregisterListener(this);

 }

}

1.7 LET US SUM UP

This chapter focus on the different types of sensor support in android device. It also

helps to utilize the sensor capability through programming in android.

1.8 CHECK YOUR PROGRESS

Discuss in brief:

1. What is Sensor? Explain android.hardware package in detail.

2. How to identify the sensors and its services supported in android device?

3. Explain Motion Sensors in details.

4. What is Position Sensor? Explain in detail.

5. What is the use of Environmental Sensor? Discuss in detail.

Fill in the blanks.

1. ____________ is responsible for sensor administrations.

2. ____________ method is used to instantiate the SensorManager class.

3. ____________ method is used to get the information regarding sensor

information changed.

4. The _____________ and ____________ sensors are always hardware-

based.

 182

5. ___________________ sensor supports a three dimensional vector for

indication of the direction and magnitude of gravity.

6. ___________________ sensor characterizes the orientation of the device as

a combination of an angle and an axis.

7. ___________________ sensor determine how close the face of a device is

to an object and give binary value like near or far.

8. ___________________ environment based sensor is not hardware based.

MCQ:

1. Gravity Sensor is Hardware based or software based?

A. Hardware

B. Software

C. Hardware or Software

D. None

2. The default data delay is suitable for monitoring typical screen orientation

changes and uses a delay of ------------- microseconds.

A. 200,000

B. 20000

C. 2000

D. none

1.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Discuss in brief:

1. Refer 1.2 in block 4.

2. Refer 1.3 in block 4.

3. Refer 1.4 in block 4.

4. Refer 1.6 in block 4.

5. Refer 1.5 in block 4.

Fill in the blanks.

1. SensorManager.

2. getSystemService().

 183

3. onSensorChanged() OR onAcuracyChanged().

4. accelerometer , gyroscope.

5. gravity.

6. Rotation Vector.

7. Proximity.

8. Light.

MCQ:

1. C

2. A

1.10 FURTHER READING

The chapter provides the brief knowledge regarding sensor based application

development in android. For gaining detail view refer the Sensors Details(

https://developer.android.com/guide/topics/sensors).

1.11 ASSIGNMENT

 Perform the following practice as programming point of view.

1. Create simple application for sensor identification of current device.

2. Create android application for giving the message if any raw information or

accuracy based changes on sensor.

1.12 ACTIVITIES

 Study the sensors support in android in detail.

 184

Unit 2: NFC

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 How NFC Work?

2.4 NFC VS Bluetooth

2.5 The Tag Dispatch System

2.6 Let us sum up

2.7 Check your Progress

2.8 Check your Progress: Possible Answers

2.9 Further Reading

2.10 Assignments

2.11 Activities

2

 185

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to learn the importance of NFC. It also

helpful to get knowledge about how it works?:

 Identify the NFC Enabled Device

 NFC differ with Bluetooth

 The tag system for NFC based Application

 Sample Code for NFC Message

2.2 INTRODUCTION

Near Field Communication (NFC) is set of short-run remote advancements,

ordinarily requiring a separation of 4cm or less to start an association. NFC enables

you to share little payloads of information between a NFC tag and an Android

controlled gadget, or between two Android powered gadgets.

Android powered gadgets with NFC bust up with three principle methods of

activity: RW mode, Peer to Peer Mode and Card emulation mode. The RW mode

enables NFC to perform Read/Write on NFC Tag. Peer to Peer mode enable NFC to

communicate with different NFC. The Card emulation mode allows NFD to work as

NDC Card. and additionally compose aloof NFC labels and stickers.

Do you have NFC?

Not all telephones and tablets have NFC. Does yours? How would you check

if it's there? One route is to check underneath the backplate and search for any little

print or different pieces of information. On certain Samsung telephones, for example,

you'll see "Close Field Communication" imprinted on the battery pack. Nonetheless,

this just applies to more established telephones, as most of more up to date models

don't have a removable back.

186

Figure-53 Android NFC Confirmation

Contingent upon your gadget, these two choices could be situated in an alternate

envelope. On the off chance that you can't discover them by going to Settings >

More, open up the setting menu, tap the inquiry symbol on top, and type in NFC. In

the event that your telephone has it, the NFC alternative will appear.

2.3 HOW NFC WORK?

Much the same as Bluetooth and WiFi, and all way of different remote signs,

NFC deals with the rule of sending data over radio waves. It is another standard for

remote information advances. This implies gadgets must hold fast to specific details

so as to speak with one another appropriately. The innovation utilized in NFC

depends on RFID (Radio-recurrence recognizable proof), which utilized

electromagnetic acceptance so as to transmit data.

This denotes the one noteworthy distinction among NFC and Bluetooth/WiFi.

The previous can be utilized to incite electric flows inside aloof parts just as simply

send information. This implies inactive gadgets don't require their own capacity

supply. They can rather be powered by the electromagnetic field delivered by a

functioning NFC part when it comes into range. Shockingly, NFC innovation does not

order enough inductance to charge our cell phones, however QI charging depends

on a similar guideline.

The transmission recurrence for information crosswise over NFC is 13.56

megahertz. You can send information at either 106, 212, or 424 kilobits for each

second. That is fast enough for a scope of information exchanges from contact

subtleties to swapping pictures and music.

 187

To figure out what kind of data will be traded between gadgets, the NFC

standard right now has three particular methods of activity. Maybe the most widely

recognized use in cell phones is the distributed mode. This permits two NFC-

empowered gadgets to trade different snippets of data between one another. In this

mode the two gadgets switch between dynamic when sending information and

detached while accepting.

RW mode, then again, is a single direction information transmission. The

dynamic gadget, conceivably your cell phone, interfaces up with another gadget so

as to peruse data from it. NFC advert labels utilize this mode. The last method of

activity is card imitating. The NFC gadget can work as an intensive or contactless

entry permit which permit open data transmission with NFC tag using self protocol

stack.

2.4 NFC VS BLUETOOTH

 Bluetooth and NFC share a few highlights, both being types of remote

communication between gadgets over short distance. NFC is constrained to a

distance of around 4CM while Bluetooth can reach more than 30FT. While it

might appear that Bluetooth is prevalent in such manner.

 NFC innovation consumes little power when contrasted with Bluetooth.

 The device which has Close proximity connected through NFC must be useful in

crowded locations to prevent interference caused when other devices are present

and trying to communicate. Bluetooth may have trouble dealing with interference

when trying to send signals between two devices, especially when several other

devices are in close proximity.

 Another advantage of NFC innovation comes in its convenience. Bluetooth

expects clients to physically set up associations among cell phones and takes a

few seconds. NFC interfaces consequently in a small amount of a second, so

quick it appears to be prompt. In spite of the fact that the clients must be near

each other to utilize NFC innovation, it is quicker and simpler to set up than a

Bluetooth association.

 Bluetooth does at present offer a more extended signals associating for

communication and exchanges. NFC innovation has exploited this and can

 188

associate two gadgets immediately, at that point turn the signals over to

Bluetooth so the administrator can move further away without separating the

association.

 The most recent advancement in Bluetooth innovation, Bluetooth Low Energy

(BLE), is focused at low power utilization and uses even less power than NFC. As

the innovation expands, Bluetooth and NFC innovation may keep on cooperating,

depending on one another to enable clients to meet their information

transmission needs.

The Android framework API supports these features so for more advances, including

a discussion of working with non-NDEF data have two major use cases when

working with NDEF data in Android:

 Reading NDEF data from an NFC tag [Handled with handled with the tag

dispatch system]

 Beaming NDEF messages from one device to another with Android Beam

2.5 THE TAG DISPATCH SYSTEM

Android provides a special tag dispatch system that analyzes scanned NFC tags,

parses them, and tries to locate applications that are interested in the scanned data.

It does this by:

 Parsng the NFC tag and figuring out the MIME type or a URI that identifies the

data payload in the tag.

 Encapsulating the MIME type or URI and the payload into intent.

 Starts an activity based on the intent

NDEF message

 3-bit TNF (Type Name Format): Indicates how to interpret the variable length type

field.

Type Name Format

(TNF)

Mapping

TNF_ABSOLUTE_URI URI based on the type field.

TNF_EMPTY Falls back to ACTION_TECH_DISCOVERED.

 189

TNF_EXTERNAL_TYP

E

URI based on the URN in the type field. The URN is

encoded into the NDEF type field in a shortened

form: <domain_name>:<service_name>. Android maps

this to a URI in the

form:vnd.android.nfc://ext/<domain_name>:<service_nam

e>.

TNF_MIME_MEDIA MIME type based on the type field.

TNF_UNCHANGED Invalid in the first record, so falls back

to ACTION_TECH_DISCOVERED.

TNF_UNKNOWN Falls back to ACTION_TECH_DISCOVERED.

TNF_WELL_KNOWN MIME type or URI depending on the Record Type

Definition (RTD), which you set in the type field. See Table

2 for more information on available RTDs and their

mappings.

Table-20 TNFs Mapping [1]

 Variable Length Type: Describes the type of the record. If using

TNF_WELL_KNOWN, use this field to specify the Record Type Definition (RTD).

Record Type Definition (RTD) Mapping

RTD_ALTERNATIVE_CARRIER Falls back

to ACTION_TECH_DISCOVERED.

RTD_HANDOVER_CARRIER Falls back

to ACTION_TECH_DISCOVERED.

RTD_HANDOVER_REQUEST Falls back

to ACTION_TECH_DISCOVERED.

RTD_HANDOVER_SELECT Falls back

to ACTION_TECH_DISCOVERED.

RTD_SMART_POSTER URI based on parsing the payload.

RTD_TEXT MIME type of text/plain.

RTD_URI URI based on payload.

Table-21 RTDs Mapping [1]

 Variable length ID: A unique identifier for the record. This field is not used often,

but if you need to uniquely identify a tag, you can create an ID for it.

 190

 Variable length payload The actual data payload that you want to read or write.

An NDEF message can contain multiple NDEF records, so don't assume the full

payload is in the first NDEF record of the NDEF message.

NFC access in the Android manifest

<uses-permission android:name="android.permission.NFC" />

<uses-sdk android:minSdkVersion="10"/>

<uses-feature android:name="android.hardware.nfc" android:required="true" />

Filter for NFC intents

To begin your application when a NFC label that you need to deal with is examined,

your application can channel for one, two, or every one of the three of the NFC

intents. Be that as it may, you more often desire to channel for the

ACTION_NDEF_`DISCOVERED for the most control of when your application

begins. The ACTION_TECH_DISCOVERED intent is a fallback for

ACTION_NDEF_DISCOVERED when no applications channel for

ACTION_NDEF_DISCOVERED or for when the payload isn't NDEF. Filtering for

ACTION_TAG_DISCOVERED is typically excessively broad of a classification to

channel on. Numerous applications will channel for ACTION_NDEF_DISCOVERED

or ACTION_TECH_DISCOVERED before ACTION_TAG_DISCOVERED, so your

application has a low likelihood of beginning. ACTION_TAG_DISCOVERED is just

accessible if all else fails for applications to channel for in the situations where no

different applications are introduced to deal with the ACTION_NDEF_DISCOVERED

or ACTION_TECH_DISCOVERED goal.

ACTION_NDEF_DISCOVERED

<intent-filter>

 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:mimeType="text/plain" />

</intent-filter>

EXAMPLE:

 191

The following example filters for a URI in the form of http://baou.edu.in/index.html.

<intent-filter>

 <action android:name="android.nfc.action.NDEF_DISCOVERED"/>

 <category android:name="android.intent.category.DEFAULT"/>

 <data android:scheme="http"

 android:host=" baou.edu.in "

 android:pathPrefix="/index.html" />

</intent-filter>

ACTION_TECH_DISCOVERED

The following sample defines all of the technologies. You can remove the ones that

you do not need. Save this file (you can name it anything you wish) in the <project-

root>/res/xml folder.

<resources xmlns:xliff="urn:oasis:names:tc:xliff:document:1.2">

 <tech-list>

 <tech>android.nfc.tech.IsoDep</tech>

 <tech>android.nfc.tech.NfcA</tech>

 <tech>android.nfc.tech.NfcB</tech>

 <tech>android.nfc.tech.NfcF</tech>

 <tech>android.nfc.tech.NfcV</tech>

 <tech>android.nfc.tech.Ndef</tech>

 <tech>android.nfc.tech.NdefFormatable</tech>

 <tech>android.nfc.tech.MifareClassic</tech>

 <tech>android.nfc.tech.MifareUltralight</tech>

 </tech-list>

</resources>

In AndroidManifest.xml file, specify the resource file that you just created in the

<meta-data> element inside the <activity> element like in the following example:

<activity>

...

<intent-filter>

 <action android:name="android.nfc.action.TECH_DISCOVERED"/>

</intent-filter>

 192

<meta-data android:name="android.nfc.action.TECH_DISCOVERED"

 android:resource="@xml/nfc_tech_filter" />

...

</activity>

ACTION_TAG_DISCOVERED

To filter for ACTION_TAG_DISCOVERED use the following intent filter:

<intent-filter>

 <action android:name="android.nfc.action.TAG_DISCOVERED"/>

</intent-filter>

Intents can contain the following extras depending on the tag that was scanned:

 EXTRA_TAG (required): A Tag object representing the scanned tag.

 EXTRA_NDEF_MESSAGES (optional): An array of NDEF messages parsed

from the tag. This extra is mandatory on ACTION_NDEF_DISCOVERED

intents.

 EXTRA_ID (optional): The low-level ID of the tag.

2.6 LET US SUM UP

This chapter focus on NFC feature in detail. NFC is one of the advance technology

supported in devices. So this chapter gives information about the working

mechanism of NFC, identification of NFC enabled device and NDEF messaging

system. It also gives information regarding the features and advances in NFC than

Bluetooth.

2.7 CHECK YOUR PROGRESS

Discuss in brief:

1. Differentiate NFC VS Bluetooth.

2. Discuss NDEF message in detail.

3. Explain Tag Dispatch System.

 193

Fill in the blanks.

1. NFC stands for _____________________________.

2. The transmission recurrence for information crosswise over NFC is _______

megahertz.

3. NFC is constrained to a distance of around ___ CM.

4. BLE stands for ____________________________.

5. ____________________ permission require for accessing NFC.

MCQ:

1. NDEF stands for:

A. NFC Data Exchange Format

B. NFC Data Exchange Field

C. Near Data Exchange Format

D. NFC Data Enable Format

2. Which mode of NFC allows Read or/and write to NFC tag?

A. RW mode

B. Peer to Peer Mode

C. Card Emulation Mode

D. All above

2.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Discuss in brief:

1. Refer 2.3 in block 4.

2. Refer 2.4 in block 4.

3. Refer 2.5 in block 4.

Fill in the blanks.

1. Near Field Communication.

2. 13.56 megahertz.

3. 4 CM.

4. Bluetooth Low Energy.

5. android.permission.NFC.

 194

MCQ:

1. A

2. A

2.9 FURTHER READING

This chapter gives information and practically implementation of NDEF message. For

further more details refer NFC Detail

(https://developer.android.com/guide/topics/connectivity/nfc/).

2.10 ASSIGNMENT

1. Create android application to generate NDEF sample message.

2.11 ACTIVITIES

 Study NDF in brief.

 195

Unit 3: Speech, Gestures And
Accessibility

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Speech Recognizer

3.4 Gesture Recognizer

3.5 Accessibility

3.6 Let us sum up

3.7 Check your Progress

3.8 Check your Progress: Possible Answers

3.9 Further Reading

3.10 Assignments

3.11 Activities

3

 196

3.1 LEARNING OBJECTIVES

This chapter is focus on the mobility options. It also focuses on other device

specification oriented feature utilisation based application development. By this

chapter following should be understand easily.

 Use of Speech Recognition and develop simple speech to text application

 Learn common gestures, identification of gestures

 Perform the task related to gestures.

 Achieve the more usage of android application using accessibility feature

3.2 INTRODUCTION

The Speech to Text type applications and settings supports options for the

scalable app development, which TalkBack uses in recently Google app. The

Gesture Recognition is supported by android in different types of common gesture

recognition. Magnification gestures support the user to magnify portions of the

screen by tapping three times. Font and display-size settings can be used to enlarge

the default system text or all app elements. The Accessibility is also support the

versatile app development. It enables the usage of the application.

3.3 SPEECH RECOGNIZER

The android provides the facility to convert speech to text using

SpeechRecognizer class. The object of this class cannot be created directly instead

of it just call the method to create the object by following way.

SpeechRecognizer mSpeechRecognizer =
SpeechRecognizer.createSpeechRecognizer(Context).

This API is not much useful for continuous speech stream recognition

because it consume a lot amount of battery and bandwidth. To use this feature

android require to get the permission in manifest file as stated below.

<uses-permission android:name="android.permission.RECORD_AUDIO" />

 197

3.4 GESTURE RECOGNIZER

A "touch motion" happens when a client places at least one fingers on the

touch screen, and your application recognize that as touch as a specific gesture.

There are correspondingly two stages to motion identification:

Assemble information about touch events. Check the information for it meets

the criteria for any of the motions your application supports.

We know the listener for gesture recognition. the GestureDetectorCompat and

MotionEventCompat classes are in the Support Library. Support Library classes

where conceivable to give similarity gadgets running Android 1.6 and higher.

The onTouchEvent() on the View that got the touch listener. For each

arrangement of touch listener (position, size, estimate, expansion of another finger,

and so forth.) that is at last recognized as a signal, onTouchEvent() is terminated a

few times.The signal begins when the client first contacts the screen, proceeds as

the framework tracks the situation of the client's finger(s), and finishes by catching

the last call of the client's fingers leaving the screen.

All through this cooperation, the MotionEvent conveyed to onTouchEvent()

gives the subtleties of each communication. Your application can utilize the

information given by the MotionEvent to decide whether a motion it thinks about

occurred.

EXAMPLE:

Create touch event for Activity

For this override the onTouchEvent() Method with MotionEvent. Use the

getActionMasked() to extract the action which is user performed from the event

parameter.

public class MainActivity extends Activity {

...

// This example shows an Activity, but you would use the same approach if

// you were subclassing a View.

@Override

public boolean onTouchEvent(MotionEvent event){

 198

 int action = MotionEventCompat.getActionMasked(event);

 switch(action) {

 case (MotionEvent.ACTION_DOWN) :

 Log.d(DEBUG_TAG,"Action was DOWN");

 return true;

 case (MotionEvent.ACTION_MOVE) :

 Log.d(DEBUG_TAG,"Action was MOVE");

 return true;

 case (MotionEvent.ACTION_UP) :

 Log.d(DEBUG_TAG,"Action was UP");

 return true;

 case (MotionEvent.ACTION_CANCEL) :

 Log.d(DEBUG_TAG,"Action was CANCEL");

 return true;

 case (MotionEvent.ACTION_OUTSIDE) :

 Log.d(DEBUG_TAG,"Movement occurred outside bounds " +

 "of current screen element");

 return true;

 default :

 return super.onTouchEvent(event);

 }

}

Create touch events for any single view

For this create any view which object we want to refer with setOnTouchListener()

method.

View myView = findViewById(R.id.my_view);

myView.setOnTouchListener(new OnTouchListener() {

 public boolean onTouch(View v, MotionEvent event) {

 // ... Respond to touch events

 return true;

 }

});

 199

Detect Common Gestures

Android provides the GestureDetector class for detecting common gestures. Some

of the gestures it supports include onDown(), onLongPress(), onFling(), and so on.

You can use GestureDetector in conjunction with the onTouchEvent() method

described above.

public class MainActivity extends Activity implements

 GestureDetector.OnGestureListener,

 GestureDetector.OnDoubleTapListener {

 private static final String DEBUG_TAG = "Gestures";

 private GestureDetectorCompat mDetector;

 // Called when the activity is first created.

 @Override

 public void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 // Instantiate the gesture detector with the

 // application context and an implementation of

 // GestureDetector.OnGestureListener

 mDetector = new GestureDetectorCompat(this,this);

 // Set the gesture detector as the double tap

 // listener.

 mDetector.setOnDoubleTapListener(this);

 }

 @Override

 public boolean onTouchEvent(MotionEvent event){

 if (this.mDetector.onTouchEvent(event)) {

 return true;

 }

 return super.onTouchEvent(event);

 }

 @Override

 public boolean onDown(MotionEvent event) {

 Log.d(DEBUG_TAG,"onDown: " + event.toString());

 return true;

 200

 }

 @Override

 public boolean onFling(MotionEvent event1, MotionEvent event2,

 float velocityX, float velocityY) {

 Log.d(DEBUG_TAG, "onFling: " + event1.toString() + event2.toString());

 return true;

 }

 @Override

 public void onLongPress(MotionEvent event) {

 Log.d(DEBUG_TAG, "onLongPress: " + event.toString());

 }

 @Override

 public boolean onScroll(MotionEvent event1, MotionEvent event2, float distanceX,

 float distanceY) {

 Log.d(DEBUG_TAG, "onScroll: " + event1.toString() + event2.toString());

 return true;

 }

 @Override

 public void onShowPress(MotionEvent event) {

 Log.d(DEBUG_TAG, "onShowPress: " + event.toString());

 }

 @Override

 public boolean onSingleTapUp(MotionEvent event) {

 Log.d(DEBUG_TAG, "onSingleTapUp: " + event.toString());

 return true;

 }

 @Override

 public boolean onDoubleTap(MotionEvent event) {

 Log.d(DEBUG_TAG, "onDoubleTap: " + event.toString());

 return true;

 }

 @Override

 public boolean onDoubleTapEvent(MotionEvent event) {

 Log.d(DEBUG_TAG, "onDoubleTapEvent: " + event.toString());

 201

 return true;

 }

 @Override

 public boolean onSingleTapConfirmed(MotionEvent event) {

 Log.d(DEBUG_TAG, "onSingleTapConfirmed: " + event.toString());

 return true;

 }

}

3.5 ACCESSIBILITY

The accessibility features are supported in Android Studio 2.2 and higher. This features

generally used for device customization which improves applications usage and versatility.

The Android Accessibility Feature Set

 Spoken analysis: The TalkBack work enables the client to collaborate with their

gadget utilizing contact and spoken input. The TalkBack monitor every client

activity and gives spoken alarms and warnings.

 Select to speak Select as far as possible the verbally expressed input capacity to

just client chose things on the screen, perusing or portraying them so anyone

might hear.

 Switch access For clients with constrained versatility, Switch Access gives an

option in contrast to the touchscreen. This empowers the client to rather utilize a

switch, console, or mouse.

 Voice directions If utilizing a touchscreen is troublesome, the Voice Access

application enables clients to control their gadget utilizing spoken directions. This

component can be utilized to open applications, explore, and alter writings hands

free. Voice Access is at present just accessible as a beta discharge in English as

it were.

 BrailleBack: The BrailleBack highlight enables individuals to interface a

refreshable braille show to an Android gadget through Bluetooth. BrailleBack can

likewise be coordinated with TalkBack for a consolidated discourse and braille

understanding.

 202

The useful accessibility options available in android device are Screen display size

and font size, Gestures Magnification, Color and Contrast Option and Captions.

3.6 LET US SUM UP

This chapter is focus on the Speech recognition, Gesture recognition and

accessibility features of android. It also describe the ways to create application

based on these features.

3.7 CHECK YOUR PROGRESS

Discuss in brief:

1. Explain in brief about Speech Recognition.

2. Explain in brief about Gesture Recognition.

3. Discuss about detecting common gestures in detail.

4. Explain The Android Accessibility Feature Set in brief.

Fill in the blanks.

1. The android provides the facility to convert speech to text using

__________________ class.

2. __________________ permission is required for speech stream recognition.

3. The _______________ method on the View that got the touch occasions.

4. ___________________ method is used to extract the action perform by the user

the event parameter.

5. _____________________ class used for detecting common gestures.

MCQ:

1. In android, audio based error constant is:

A. ERROR_AUDIO

B. ERROR_VIDEO

C. ERROR_CLIENT

D. ERROR_NETWORK

2. Which is the proper way to create instance of SpeechRecognizer class?

A. SpeechRecognizer sr=new SpeechRecognizer();

 203

B. SpeechRecognizer sr= createSpeechRecognizer(this);

C. SpeechRecognizer mSpeechRecognizer =

SpeechRecognizer.createSpeechRecognizer(this);

D. SpeechRecognizer mSpeechRecognizer =

SpeechRecognizer.createSpeechRecognizer();

3. When user touch finger on mobile screen which event invoked?

A. onTouchEvent()

B. MotionEvent

C. setOnTouchListener()

D. ClickEvent

3.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Discuss in brief:

1. Refer 3.3 of Block 4.

2. Refer 3.4 of Block 4.

3. Refer 3.4 of Block 4.

4. Refer 3.5 of Block 4.

Fill in the blanks.

1. SpeechRecognizer.

2. android.permission.RECORD_AUDIO.

3. onTouchEvent().

4. getActionMasked().

5. GestureDetector.

MCQ:

1. A

2. C

3. B

3.9 FURTHER READING

 204

This chapter focus on different device based features utilization in application using

Speech, Gesture and accessibility. For detail study refer link

(https://developer.android.com/).

3.10 ASSIGNMENTS

1. Create android application for Speech to Text conversion. Take text using

speech input method and make it reverse.

2. Create android application to recognise common gesture perform by user.

3.11 ACTIVITIES

 Study advance device based features in detail.

 205

Unit 4: The Android Native
Development Kit (NDK)

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 NDK Integration

4.4 Create android NDK Project

4.5 Summarization of NDK Project

4.6 Let us sum up

4.7 Check your Progress

4.8 Check your Progress: Possible Answers

4.9 Further Reading

4.10 Assignments

4.11 Activities

4

 206

4.1 LEARNING OBJECTIVES

This chapter is focus on NDK related application development using android. It

provides the learning of following feature:

 NDK Integration

 Common library support

 Sample code for NDK project

4.2 INTRODUCTION

This chapter is focus on NDK related application development using android

by configuring NDK in android studio. It is really helpful to reuse native application

code in android application development.

4.3 THE ANDROID NATIVE DEVELOPMENT KIT (NDK)

Native Development Kit (NDK) is the set of tools which provides a way to use

C and C++ with android and access of physical components like sensors, touch

inputs... etc. NDK is most appropriately useful for extra performance achievement

with low latency and computationally more intensive application development. Its

major importance to reuse own developed libraries of C or C++ languages. Android

supports NDK builds for referring existing projects. For developing new NDK project

use CMake.

Steps for NDK Downloading and Configuration

 Use following tools support: NDK, CMake & LLDB.

 Click on SDK Tools -> Enable support of LLDB, CMake, and NDK. If not

installed than install it. Apply OK - > After Installation Click Finish

4.4 CREATE NEW NDK PROJECT

Create new project creating any other Android Studio project

 In the wizard, select the Native C++ project type

 207

 Than Clicking on Next focus on Customize C++ Support section of the

wizard, you can customize your project with the C++ Standard field. Use the

drop-down list to select which standardization of C++ you want to use.

Selecting Toolchain Default uses the default CMake setting.

 Finish

Now in IDE select Android view. You can see the src/main/cpp/ directory which

include native-lib.cpp and CMakeLists.txt.

The is native-lib.cpp sample C++ source file.

Android Studio creates a CMake build script, CMakeLists.txt, and places it in your

4.5 SUMMARISATION OF WHEN RUN THE APPLICATION

 Gradle calls upon your external build script, CMakeLists.txt.

 CMake follows commands in the build script to compile a C++ source file,

native-lib.cpp, into a shared object library and names it libnative-lib.so, which

Gradle then packages into the APK.

 During runtime, the app's MainActivity loads the native library using

available to the app.

 MainActivity.onCreate() calls stringFromJNI(), which returns "Hello from C++",

and uses it to update the TextView.

4.6 LET US SUM UP

This chapter focus on NDK Build feature which enable user to develop native API

based application.

4.7 CHECK YOUR PROGRESS

Discuss in brief:

1. Explain NDK integration in brief.

 208

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Discuss in brief:

1. Refer 4.3 of Block 4.

2. Refer 4.4 of Block 4.

4.9 FURTHER READING

This Material can be refer the following links:

1. Official Google Android Developer Help: developer.android.com

2. https://www.simplifiedcoding.net

3. Docand' Reference Series Android 4 Available Services: Andrew K-Fox ACM

BOOK Nov 2013 - API19 - Volume 4 ISBN:1494228262 9781494228262

4. http://www.andrious.com/

5. android.magicer.xyz

6. stackoverflow.com

7. www.android-doc.com

8. androidbox.me

9. https://codelabs.developers.google.com/codelabs/android-studio-cmake/#0

4.10 ASSIGNMENTS

1. Create android application to perform NDK based application to display Hello

Word!

4.11 ACTIVITIES

 Study NDK in more detail.

2. Write the steps to create simple NDK project in android.

 209

Block-5

Publishing Android Application

 210

Unit 1: Deploying Android
Application to the World

Unit Structure

1.1 Learning Objectives

1.2 Introduction

1.3 Deploying Android Application (Developer Console)

1.4 Published Manually

1.5 Self-Publishing Your Application

1.6 Let us sum up

1.7 Check your Progress

1.8 Check your Progress: Possible Answers

1.9 Further Reading

1.10 Assignments

1.11 Activities

1

 211

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the play store account creation and steps

 Generate authorises apps using wizard (ready for publish)

 Version control management of play store console

 Published apps with permission control and privacy policy

1.2 INTRODUCTION

Android application publishing is a process that makes your Android applications

available to users. Infect, publishing is the last phase of the Android application

development process.

In Android generate two type of APK:

 Signed Apk

 Unsigned/Build Apk

Figure-55 Android Development Life Cycle (Published Signed Apk)

 212

Once you developed and fully tested your Android Application, you can start selling

or distributing free using Google Play (A famous Android marketplace). You can

also release your applications by sending them directly to users or by letting users

download them from your own website.

You can check a detailed publishing process at Android official website, but this

book chapter will take you through simple steps to launch your application on

Google Play.

1.3 DEPLOYING ANDROID APPLICATION (DEVELOPER
CONSOLE)

Publish Android apps to google play store:

Have you seen new updates in Google Play Store for uploading your app? Nothing

to worry! This blog gives insight on changes in the uploading process and publishing

your Android app to the Play Store https://play.google.com/apps/publish/. I will be

driving through the detailed steps that you would need for uploading the latest

version of your app.

Generate a signed .apk file from Android Studio

 using latest Android Studio 3.X & build gradle 3.X.X. I would recommend using

the latest version of Android Studio.

Step & Activity:

1. Regression Testing Before you publish your application, you need to make sure

that its meeting the basic quality expectations for all Android apps, on all of the

devices that you are targeting. So, perform all the required testing on different

devices including phone and tablets.

2. Application Rating When you will publish your application at Google Play, you will

have to specify a content rating for your app, which informs Google Play users of

its maturity level. Currently available ratings are (a) Everyone (b) Low maturity (c)

Medium maturity (d) High maturity.

3. Targeted Regions Google Play lets you control what countries and territories

where your application will be sold. Accordingly, you must take care of setting up

 213

time zone, localization or any other specific requirement as per the targeted

region.

4. Application Size Currently, the maximum size for an APK published on Google

Play is 50 MB. If your app exceeds that size, or if you want to offer a secondary

download, you can use APK Expansion Files, which Google Play will host for free

on its server infrastructure and automatically handle the download to devices.

5. SDK and Screen Compatibility It is important to make sure that your app is

designed to run properly on the Android platform versions and device screen

sizes that you want to target.

6. Application Pricing Deciding whether you app will be free or paid is important

because, on Google Play, free app's must remain free. If you want to sell your

application then you will have to specify its price in different currencies.

7. Promotional Content It is a good marketing practice to supply a variety of high-

quality graphic assets to showcase your app or brand. After you publish, these

appear on your product details page, in store listings and search results, and

elsewhere.

8. Build and Upload release-ready APK. The release-ready APK is what you you will

upload to the Developer Console and distribute to users. You can check

complete detail on how to create a release-ready version of your app: Preparing

for Release.

9. Finalize Application Detail Google Play gives you a variety of ways to promote

your app and engage with users on your product details page, from colourful

graphics, screen shots, and videos to localized descriptions, release details, and

links to your other apps. So you can decorate your application page and provide

as much as clear crisp detail you can provide.

Export Android Application Process

Before exporting the apps, you must some of tools

 Dx tools (Dalvik executable tools): It going to convert .class file to .dex file.

it has useful for memory optimization and reduce the boot-up speed time

 214

 AAPT (Android assistance packaging tool):it has useful to convert .Dex file

to.Apk

 APK (Android packaging kit): The final stage of deployment process is

called as .apk.

Figure -56 Android Application Development Process

You will need to export your application as an APK (Android Package) file before you

upload it Google Play marketplace.

To export an application, just open that application project in Android studio and

steps to export your application

Figure 57 Android Studio signed APK Manu

 215

Next select, Generate Signed APK option as shown in the above screen shot and

then click it so that you get following screen where you will choose Create new

keystore to store your application.

Figure-58 Select option for Android Apps Build or Direct APK

Figure-19 Insert Credential for then KeyStore and application Path

 216

Enter your key store path,key store password,key alias and key password to protect

your application and click on Next button once again. It will display following screen

Once you filled up all the information,like app destination,build type and flavours

click finish button While creating an application it will show as below

Finally, it will generate your Android Application as APK formate File which will be

uploaded at Google Play marketplace.

Google Play Registration

The most important step is to register with Google Play using Google Play

Marketplace. You can use your existing google ID if you have any otherwise you can

create a new Google ID and then register with the marketplace. You will have

following screen to accept terms and condition.

Figure-60 Google Play Console

 217

You can use Continue to payment button to proceed to make a payment of $25 as a

registration fee and finally to complete your account detail.

Once you are a registered user at Google Play, you can upload release-ready

APK for your application and finally you will complete application detail using

application detail page as mentioned in step 9 of the above-mentioned checklist.

Important step

is not signed with these signatures then while uploading a .apk file, it will give you an

error. If you are unable to select the V1 & V2 checkboxes then you need to update

your Android Studio and build gradle. After this step, it will generate a signed .apk file

which is good to go to Play Store.

Figure-61 Sign into Google play console using your Google developer account, Select your existing

application

Figure-

 218

1. Here you can see all of your app releases based on the environment like

Production, Beta & Alpha. As per your need, you can go to the respective

environment to upload your Android build.

.

2.

Figure-63 Click on create Release

3. If you are

 Store listing to update your app

information. This looks like below:

 219

Figure-64 Store listing to update your app information

Figure-65 App information

 220

Figure-66 App information

Figure-67 Contact Details

 221

4. Now you will need to upload your signed .apk file

Figure-68 Upload .apk file

5. Browse your .apk file, it will get uploaded & it will display below information.

Figure-69 Information of .apk file

6. This gives you details about your app version code, Google API levels etc

mentioned in AndroidManifest.xml file. This defines support for minimum

Android OS version for your app. The version compatibility depends upon the

Google API version that you are using in your project. For example, if you are

using Google API 18 then that means your app will be available to download

on Android devices which has Android OS version 4.3 & above.

 222

7. Retain your existing builds to have rollback compatibility

Figure-70 .apk retain

8. Once you upload your latest build, it will display existing APKs to deactivate. If

you want to retain your existing build then you need to

choose option. This will give you option to rollback if something

goes wrong with your latest build.

9. Enter Release Name and in this release

 223

Figure-71 Release Information

10. Once all details are filled, click

11. This will open a screen where it will ask you to check all details (if you need

12. You can also view the device compatibility of your app and choose different

options

Figure-72 Device Compatibility

How much time does it take to have your app live on play store?

app. The Google app review is an automatic process where it runs your app build on

different OS version with different devices. You will also get an automatic test report

from Google if you are subscribed to email notifications. This review process takes

around 1-hour time. If you are publishing your app for the first time then it takes

around 3-4 hours before users can view your app on play store.

Pre-launch report email for Google

Figure-73 Pre-launch report email for Google

Notification email when your app is live on Play Store

 224

Figure-74 Notification email when your app is live on Play Store

This is it! Your Android app will be live on play store. Hope you got some pointers on

the publishing app process.

1.4 PUBLISHED MANUALLY

Signing Your App Manually

You do not need Android Studio to sign your app. You can sign your app from the

command line using standard tools from the Android SDK and the JDK.

 Generate a private key using keytool

 $ keytool -genkey -v -keystore my-release-key.keystore

 -alias alias_name -keyalg RSA -keysize 2048 -validity 10000

 Compile your app in release mode to obtain an unsigned APK

 Sign your app with your private key using jarsigner

 $ jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1

 -keystore my-release-key.keystore my_application.apk alias_name

 $ jarsigner -verify -verbose -certs my_application.apk

 Align the final APK package using zipalign.

 $ zipalign -v 4 your_project_name-unaligned.apk your_project_name.apk

 225

1.5 SELF-PUBLISHING YOUR APPLICATION

You can distribute Android applications directly from a website, server, or email. The

self-publishing method is most appropriate for vertical market applications, content

companies developing mobile marketplaces, and big-brand websites wanting to drive

users to their branded Android applications. It can also be a good way to get beta

feedback from end users.

Although self-distribution is perhaps the easiest method of application distribution, it

might also be the hardest to market, protect, and make money in. The only

requirement for self-distribution is to have a place to host the application package

file. There are downsides to self-distribution. The Google Play licensing service will

not be available to help you protect your application from piracy. In addition, Google

 app Billing service is not available to apps outside Google Play; therefore,

you will have

Figure-75 D lication

 226

to manage the billing aspects yourself. Furthermore, end users must configure their

devices to allow packages from unknown sources. This setting is found under the

 above Figure. This

option is not available on all consumer devices in the market.

After that, the final step the user must take is to enter the URL of the application

package into the Web browser on the handset and download the file (or click a link to

it). When the file is downloaded, the standard Android install process occurs, asking

the user to confirm the permissions and, optionally, confirm an update or

replacement of an existing application if a version is already installed.

1.6 LET US SUM UP

In this block we learned about create play store account and Deploying Android

Application (Developer Console), Published Manually or using wizard, Self-

Publishing Your Application.

1.7 CHECK YOUR PROGRESS

A. Only _________ APK published on google play store (Signed/Unsigned/Build)

B. Application Rating When you will publish your application at Google account.

(TRUE/FALSE)

C. The maximum size for an APK published on Google Play is ____

MB(40,50,60)

D. APK STANDS FOR: _______________

E. Full form AAPT: _______________

1.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. Signed

B. False

C. 50

D. Android packaging kit

E. Android assistance packaging tool

1.9 FURTHER READING

 227

 Android Application Development for Dummies by Donn Felker.

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author)

ISBN-13: 978-1118949528 ISBN-10: 9781118949528.

Burnette.

 Android Programming by Nicolas Gramlich.

 Thinking in Java (4th Edition) 4th Edition by Bruce Eckel ISBN-13: 978-

0131872486 ISBN-10: 0131872486 Android Programming for Beginners:

Learn all the Java and Android skills you need to start making powerful mobile

applications ISBN-10: 1785883267 ISBN-13: 978-1785883262.

 Beginning Android Application Development by Wei-Meng Lee.

 Java: A Beginner's Guide, Sixth Edition 6th Edition by Herbert Schildt ISBN-

13: 978-0071809252 ISBN-10: 0071809252.

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd

Ranch Guides) 3rd Edition by Bill Phillips , Chris Stewart , Kristin Marsicano

ISBN-13: 978-0134706054 ISBN-10: 0134706056.

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-

13: 978-1118717370 ISBN-10: 1118717376.

 Head First Android Development: A Brain-Friendly Guide 1st Edition by Dawn

Griffiths ISBN-13: 978-1449362188 ISBN-10: 1449362184.

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York,

2009.

1.10 ASSIGNMENTS

A. Write a step for how to register on google play console.

B. List out steps of export singed APK using android 3.X.X.

C. Explain how to published android apps manually.

1.11 ACTIVITIES

 Try to published your innovative conceptual android application on google

play store

 228

Unit 2: Selling your Android
application

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Selling your Android application

2.4 Publishing Platform

2.5 Let us sum up

2.6 Check your Progress

2.7 Check your Progress: Possible Answers

2.8 Further Reading

2.9 Assignments

2.10 Activities

2

 229

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

 Understand the concept of apps selling structure and e-commerce platform

 able sell signed APK to multiple digital content selling website

 understand revenue model of apps selling

 explore the apps selling country wise

2.2 INTRODUCTION

Where to Sell Your Android App

A lot of Android developers and users alike assume that Google's Android Market is

the only place to download free and paid apps for the platform. This is not the case;

there are dozens of app stores out there. Some markets have wider or narrower

coverage than others, but each has its place, along with benefits and drawbacks that

developers need to be aware of. So you've developed an Android app -- now let's

discuss what your options are for publishing it in today's market.

Sellers: Sell your mobile apps. Receive cash for transferring your app to the new

owner or selling your source code.

Buyers: Buy the rights to quality mobile applications. Contact sellers directly and

buy mobile apps and source code.

You can sell your app in 2 ways

 Sell your app after making it live on play store

 Sell the source code of your app

Option 1 - If you choose this option, you will have to follow these steps:

 Buy a developer licence from Google ($25 onetime)

 Upload your app to play store (this involves some sub steps as generating a

signed apk, creating a play store listing etc. Just Google for these)

 230

 Market your app and get at lease 26k active users(if you want a decent amount

for your app, please make sure you market it online like crazy for a couple of

months to reach at least 26k active devices mark)

There's a good site called as we purchase apps .Com Google it out. They buy your

apps directly and escrow you the amount) you will have to transfer them all the

assets of your app (like graphics, logos, source code, signing key etc)

Option 2- If your app does something really unique, you can sell the source code

itself. I personally am not aware of any online service which sells the source. So,

you'll have to research a bit online

2.3 SELLING YOUR ANDROID APPLICATION

Google's Android Market

Google's Android Market is still the most popular and well-supported app store for

Android apps. With a robust application catalogue of Android titles and millions of

downloads a day, this is where most developers sell their apps -- for good cause.

The Android Market has fairly light curation compared to other app stores and

platforms, and includes various compelling features for developers, including market

filters, easy bug tracking and smooth upgrade support. Currently, developers get 70

percent of the application revenue but they also have to have a paid developer

account with a reasonable one-time authentication fee of $25. Recently, a Web store

version of the Android Market went live, with many new and compelling features for

users and developers alike.

Note: In fact, the Android device operating system restricts the applications that can

be installed on an Android device, by default, to only those from this market. In order

to enable downloads from other sources, the user must adjust the settings at the

operating system level. Certain carriers, such as AT&T, have removed this feature,

thus providing the Android Market with exclusive access to their users.

Handango, GetJar and the Other App Superstores

There are a number of big app stores we like to call "app superstores." These one-

stop shops carry apps for multiple mobile platforms and normally sport an application

 231

catalog containing tens or hundreds of thousands of app titles with downloads in the

hundreds of millions and billions. Amongst the most popular of these are GetJar and

Handango. Both have been around a long time, have several hundred thousand

apps, support many platforms, and have international reach.

The Amazon Appstore opened its virtual doors only a few months ago, but it did so

with great fanfare and a pretty amazing track record for digital media distribution with

a lot of loyal users. Right off the bat, they've featured exciting exclusive applications,

incentivized users to try their store through a popular Free Paid App of the Day

program, and made waves with their initial success. Unlike the Android Market, the

Amazon Appstore features curation, deals, and a higher level of organization.

Additionally, Amazon has a great feature that allows users to test apps before

downloading them using a browser-based emulator. Currently, developers get 70

percent of the application revenue, but they also have to have a paid developer

account with a fee of $99 a year.

2.4 PUBLISHING PLATFORM

Top Apps to Sell (and Buy) Stuff

For more detail you can refer each portal website.

 232

2.5 LET US SUM UP

In this block we learned about Selling Android application methods and platforms,

Publishing Platforms and revenue model of each

2.6 CHECK YOUR PROGRESS

A. Google developer cosole fees is ________$ one time. (20,25,30)

2.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

A. 25

2.8 FURTHER READING

 Professional Android 4th Edition by Reto Meier (Author), Ian Lake (Author) ISBN-

13: 978-1118949528 ISBN-10: 9781118949528.

 Android Programming: The Big Nerd Ranch Guide (3rd Edition) (Big Nerd Ranch

Guides) 3rd Edition by Bill Phillips, Chris Stewart, Kristin Marsicano ISBN-13:

978-0134706054 ISBN-10: 0134706056.

 Android Programming: Pushing the Limits 1st Edition by Erik Hellman ISBN-13:

978-1118717370 ISBN-10: 1118717376.

 Pro Android by Sayed Y. Hashimi and Satya Komatineni, Springer, New York,

2009.

2.9 ASSIGNMENTS

A. Where you can sell your android apps.

B. List out android apps selling platform.

C. Write a sort note on The Amazon Appstore.

D. How Google's Android Market functioning.

2.10 ACTIVITIES

 Make comparative analysis table of each platform for sell android application.

