BAOU
g Education
%. for All
”

aq:

Dr.Babasaheb Ambedkar Open University

(Established by Government of Gujarat)

PGDMAD-202

Cross Platform Mobile Application Development

) Cross Platform
Mobile Application Development

ZAONES

Cross Platform
Mobile Application

. Development

Dr. Babasaheb Ambedkar Open University

Expert Committee

Prof. (Dr.) Nilesh Modi (Chairman)
Professor and Director, School of Computer Science,

Dr. Babasaheb Ambedkar Open University, Ahmedabad

Prof. (Dr.) Ajay Parikh (Member)
Professor and Head, Department of Computer Science

Guijarat Vidyapith, Ahmedabad

Prof. (Dr.) Satyen Parikh (Member)
Dean, School of Computer Science and Application

Ganpat University, Kherva, Mahesana

Prof. M. T. Savaliya (Member)
Associate Professor and Head, Computer Eng. Department

Vishwakarma Engineering College, Ahmedabad

Dr. Himanshu Patel (Member Secretary)

Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Course Writer

Dr. Ankit R. Bhavsar

Assistant Professor, Faculty of Computer Application & Information Technology

GLS University, Ahmedabad

Mr. Nirav Suthar

Assistant Professor, Faculty of Computer Application & Information Technology

GLS University, Ahmedabad

Mr. Pratik Maniar

Subject Reviewer

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Editors

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

June 2019, © Dr. Babasaheb Ambedkar Open University

ISBN-978-81-940577-6-5

All rights reserved. No part of this work may be reproduced in any form by mimeograph or
any other means, without written permission from the Dr. Babasaheb Ambedkar Open

University.

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad

Dr. Babasaheb
gﬁgoun Ambedkar Open

Mo, M University

SpuERles

PGDMAD-202

Cross Platform Mobile Application Development

Block-1: Scenario of Mobile Application

Development

UNIT-1 Cross Platform Mobile Application Development 02
Unit-2 Basic of Development Environment-Angular 16
Unit-3 Basic of Development Environment-IONIC 29
Block-2: Working with Angular

UNIT-1 Introduction to Angular 41
Unit-2 The Basic of Angular 57
Unit-3 Introduction to MVC 77
Unit-4 Angular Directives 96
Unit-5 Working with Forms 112
Block-3: Working With IONIC

UNIT-1 Setting Up the Environment for IONIC 134
Unit-2 Developing First Mobile Application 146
Unit-3 Typescript 167
Block-4: Advance of IONIC

UNIT-1 lonic Ul Controls 183
Unit-2 Advanced Components 203
Unit-3 Advanced Topics in IONIC 223

Block-1
Scenario of Mobile Application

Development

Unit 1: Cross Platform Mobile
Application Development

1

Unit Structure

1.1 Learning Objectives

1.2 Introduction

1.3 Mobile Application Development

1.4 Native Mobile Application Development

1.5 Cross Platform (Hybrid) Mobile Application Development
1.6 Basic Requirement For The Cross Platform Mobile Application Development
1.7 Letus sumup

1.8 Check your Progress

1.9 Check your Progress: Possible Answers

1.10 Further Reading

1.11 Assignments

1.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:
e Android OS app development environment
e iOS app development environment
¢ Window Phone app development environment
¢ Native mobile application development concept
e Concept of BYOD
e Cross platform (Hybrid) mobile application development concept
e Tools / Framework available for the cross platform mobile application
development

1.2 INTRODUCTION

As per the survey by the leading statistics portal (sttista.com), in 2019 the
number of smart phone users is forecasted to reach 4.68 billion and will cross cross
5 billion at the end of the year 2019. This number represents 66 percentage of world
population. It shows the use of smart phone is growing rapidly. The applications play

a prominent role in smart phone’s growth.

The increasing popularity of smart phone is rooted with mobile applications.
The massive number of mobile applications is available for different mobile operating
systems. By using applications, the smart phone helps their user to do many things.
They can set alarms, get reminders, find location, do online shopping, booking and
many more. More than five million apps are available on leading app store till the
end of the year 2018. This statistics declare by the leading statistics portal —
statista.com. As per the portal total 2.1million apps available on android play store
and 2 million apps available on apple’s app store. Remaining apps are available on
window store, Amazon store and BlackBerry World.

When creating apps for different smart phone’s operating systems, more time
is required for programming because each mobile platform is based on a different
programming language. This means that companies must use different experts to
develop applications for each platform. To overcome the said problem, we need to

develop hybrid mobile application. The hybrid mobile application development

supports developers to build applications for multiple mobile platforms at the same
time. In this book we will learn hybrid mobile application development using IONIC.
This unit discuss about the basic of mobile platform environment. We will also learn
the native mobile application development and cross platform (hybrid) mobile

application environment.

1.3 MOBILE APPLICATION DEVELOPMENT

1.3.1 ANDROID

1.3.1.1 Development Environment

Android is an open source operating system. It is based on Linux
operating system. Android was developed by Open Handset Alliance (OHA)
led by Google. The vision is to provide a robust and open source environment
for wireless platform. Android provide a uniform approach for its developer. It
means android developer needs to develop mobile applications for the
android and their applications able to run on any device powered by Android.

The Android platform is itself complete, open and free for the mobile

platform.

Complete: The android developers take a comprehensive approach to
develop secure operating system called Android. On the top of this they
provide robust software framework that allows for rich mobile application

development environment.

Open: The android is an open source platform. Neither application
developers nor device manufactures need to take any license for the android

platform.

Free: The android applications are free to develop. There is no licensing,

membership, testing fees for the android platform.

Android applications are developed in Java language using the
Android Software Development Kit (SDK). The first beta version of the SDK
was released by Google in 2007. The first commercial version, Andorid 1.0
was released in 2008. There after various versions like Cupcake, Donut,

Eclair, Froyo, Gingerbread, Honeycomb, Ice Cream Sandwich, Jelly Bean,

1.3.2

KitKat, Lollipop, Marshmallow, Nougat, Android Oreo were published. The

latest version of Android is “Android 9.0: Android Pie”.

Android application development is supported by the following
operating system:
» Microsoft Window XP and later version
» Mac OS X 10.5.8 and later version with Intel chip
» Linux including GNU C library 2.7 and later

1.3.1.2 Tools and Technology for Android App Development

The tools that required developing Android applications are freely
available on internet. We can download the tools and set up the Android
application development environment. The detail installation steps are not
scope of this book so we are not discussing it in detail. The following tools we
need to install before starting the Android application programming.

» Java JDK 6

» Android SDK

» Android Studio or Eclipse

» Android Development Tools (ADT)

iOS
1.3.2.1 Development Envirement For iOS

The iOS is the mobile operating system developed by the Apple
Company. It is developed to support company’s own devices like iPhone,
iPad, iPod Touch and Appel TV. The iOS is derived from the OS X. The OS

X is the operating system used in Apple computers.

The iOS, earlier known as iPhone OS, is a mobile operating system for
Apple mobile. The first version of the iOS was released in 2007 with the name
‘iPhone OS”. It was officially renamed as “iOS” in 2010. The most recent

stable release, iOS 12.2 was released on March 2019.

The iOS SDK (Software Development Kit) is used to develop iOS
applications. The iOS SDK was developed by Apple Company. The iOS SDK

is a free download for the only Mac operating system users. It is not available
for the Microsoft Window operating system users. The SDK contains sets that
give developers access to various functions and services of iOS devices,
such as hardware and software attributes. The iOS SDK clubbed with Xcode
IDE.

1.3.2.2 Tools And Technology For iOS

The tools that required developing iOS application is Xcode. The
Xcode is an integrated development environment (IDE) for iOS. It contains
software development tools developed by Apple for developing application for
iOS. The Xcode helps developers to write iOS applications using

programming languages such as Objective-C and Swift.

Objective-C is a general-purpose and object-oriented programming
language. It was the main programming language supported by Apple for the
iOS operating systems. The Objective —c was originally developed in the
1980 then Apple used it for its NeXTSTEP operating system, from where iOS

are derived.

The Swift is the general purpose and compile programming language.
It was developed by the Apple Company for iOS in 2014. The Swift is
designed to work with Apple’s Coca touch frameworks. The Coca touch is a
user interface framework for building applications that run on iOS. The latest
version of Swift is “Swift 4.1 released in March 2018. Swift is an alternative to
the Objective-C language that employs modern programming-language

theory concepts with simpler syntax.

1.3.3 WINDOW PHONE
1.3.3.1 Development Environment For Windows Phone

The Window phone is an operating system developed by the Microsoft.
The latest version of Window phone is “Window 10 Mobile” released in 2015.
The Window 10 Mobile is the successor of “Window Phone 8.1”. The Window
10 Mobile operating system is available commercially with Lumia brand smart

phones from 2015. The aim of Window 10 Mobile is to provide new universal

application platform that allows one application to run on multiple Window 10

devices such as personal computes and mobile

The Window Phone platform never achieved any significant degree of
popularity or market share in comparison to Android or iOS. By 2017,
Microsoft had already begun to depreciate Windows 10 Mobile, having
discontinued active development due to a lack of user and developer interest
in the platform. Windows 10 Mobile will be deemed to end-of-life on
December 2019.

1.4 NATIVE MOBILE APPLICATION DEVELOPMENT

1.4.1 DEFINATION

A native mobile application is “a smart phone application this is coded in a
specific programming language for specific mobile operating system”. A native
mobile application development is specific for a mobile operating system or device.
That means before actual development of mobile application, developer needs to
finalize that on which mobile operating system or device it will be executed. Native
application is built for the use on a particular mobile operating system, it has the
ability to use device specific hardware or software. Native apps work with the
device's OS in the way that enables them to perform faster and more flexibly than
alternative application types. Native applications can be either installed on the
specific mobile by default or downloaded from Mobile OS specific app store. Figure-

1 shows the native mobile application development approach.

Mobile Application

4

Application Framework

|

M obile Operating System

M obile Device

Figure-1 Native Mobile Application Development Approach

A native app is specially made and coded for a specific mobile platform in its
native programming language. The Swift and Objective —C language are used to
develop mobile applications that are supported by the iOS (Apple) phone. The Java
or Kotlin language is used to develop mobile applications that run on the android OS
based mobile. The C# language is for Window 10 Phone. These all are the example

of native mobile application development.

1.4.2 BYOD STRATEGY

The native mobile application development bring the trend of BYOD (Bring
Your Own Device). The BYOD refers to the policy of permitting employees to bring
their own mobile device to their workplace. The company needs to provide access
privilege to access company information and application on their mobile. We can find
many companies that provide mobile application to their employ through which they
can share company information. This kind of mobile applications mostly runs on
specific mobile operating system. Here it is compulsory that company employees

have mobile devices that have same mobile operating system.

The BYOD has some advantages. Employees can be more productive by
adopting BYOD strategy in companies. The BYOD increases employee’s
satisfaction and job satisfaction. The main disadvantage of adopting the BYOD in
the company is that they need to develop same application for the multiple mobile
operating system. The illegal way of information discloser is second disadvantage to

adopting BYOD strategy.

1.4.3 ADVANTAGES AND DISADVANTAGES OF NATIVE MOBILE
APPLICATION

Advantages
» The developers code the application for the specific mobile OS. So it runs
smoothly over it.
» Native applications achieve higher marks in speeds and performance.
» In native apps, the look n feel and experience are much than other types
of mobile app.
» Native apps offer fast access to inbuilt device utilities like the camera,

GPS, calendar, microphone, and other functions of the smartphone.

Disadvantages
» Native apps need more time to develop. Creating and implementing the
design for every device takes more development time.
» Developers usually have specialization in a single platform. To develop a
native app, we need as many development teams as the platforms on
which we want the app to be created. Multiple development teams imply

multiple budgets.

1.5 CROSS PLATFORM (HYBRID) MOBILE APPLICATION
DEVELOPMENT

1.5.1 DEFINATION

‘A mobile application which can be developed for multiple platform by using
single codebase is called cross platform mobile application.” Here multiple platforms
stand for the any mobile operating system or devices. A cross platform mobile
application also called Hybrid mobile application. Hybrid mobile application

development is required some specialized code.

A hybrid application is created as a single app for the use on multiple
platforms like Android, iPhone, and Windows phone. It is a single product that works
on many operating systems like iOS, Android, Windows phone etc. Hybrid

applications perform differently compare to native apps in several ways.

The hybrid application is of two types:
» A Web View — Based Hybrid Mobile Applications
» Cross — Compiled Hybrid Mobile Applications

A native mobile application which runs the web applications by using a Web
View is called Web View- Based Hybrid Mobile Applications. Generally Web View
based hybrid applications are developed using HTMLS5, Java Script and CSS3. It has
numbers of Java Script based gesture detection library to handle touch interaction
on screen. It look and feel like a native application but is actually run by website, It is
basically a web-based program to be put in a native app shell and connected to the

device hardware. The IONIC, Cordova, Angular are some of the example of Web

View —based hybrid application development. Figure-2 shows the Web-View based

hybrid mobile applications development approach.

M obile Application based on HTMLS, CSS and Java Script

Hardware Specific JS
(Camera JS.GPS JS etc...)

Hardw are Specific API
(Camera API.GPS API etc)

M obile Operating System
(Android.,iOS. Windew Phone)

Figure-2 Web-View based hybrid mobile applications development approach

A Cross Compiled Hybrid Mobile Applications development allows developers
to convert a specific single language into native language component at either
compile time or during run time. It acts as an interface between native components

and constructor in the concern programming language.

Mobile Application

Window Phone
Compiler

Native Window

Native Android N ative iOS
Phone

- : Application
Application Application

Figure-3 Cross-Compiled hybrid mobile applications development approach

Figure-3 shows the Cross-Compiled hybrid mobile applications development

approach.Here cross compiler tool binds their APl with native API, therefore the

10

performance and user experience can be achieved almost the same as native
mobile application. The Xamarin with C#, Corona with C and Kony with Java Script

are the example of Cross — Compiled Hybrid Mobile Applications.
1.5.2 MOBILE APPLICATION TECHNOLOGY STACK

Having a next-generation mobile app is the need of every small to large-scale
companies. Before the actual working model development of mobile application,
mobile app developers and management together to define the design, structure,
architecture, features, and functions of the mobile app. Before starting the
development, company management and developers have to select the most
suitable technologies, platforms, frameworks, and tools for the mobile application.
Ideally, it's a job of the mobile app developers. So it is necessary that company’s
management and app developers have to participate in the process of selecting an

appropriate technology stack.

To build a robust mobile app in terms of scalability and performance, we need
to make smarter decision related to the technology aspects. We need to select any
one mobile application technology stack approach based on requirement. Now we
know that mobile application can be develop using any one of the given technology

stack.

» Using native mobile application development approach
» Using web-view based hybrid mobile applications development approach

» Using cross-compiled hybrid mobile applications development approach

When a high performance is necessary, native mobile application
development approach should be selected. It is a bit expensive approach but the
user experience and security is high compare to other approaches. In the
competitive age, each company reaches to customer speedily. The web-view based
hybrid mobile application development approach provides the speedy mobile
application development environment. In this approach we need to code once and
run on the multiple mobile platforms with less cost. When we want to take advantage
of native mobile application and web-view mobile application, we need to select

cross-compiled hybrid mobile applications development approach. As we know that

in this approach, mobile application developed in single specific language and at

compile time (or run time) it converts it in to mobile specific native code.

1.5.3 ADVANTAGES AND DISADVANTAGES OF CROSS
PLATFORM MOBILE APPLICATION

Advantages

» Hybrid mobile applications are developed once for all platforms. So we do
not require to hire different programmer. Due to that the development cost
is very low.

» As we know hybrid apps are web apps incorporated in a native shell, so its
content can be updated as many times as you need or want. So, hybrid
apps have a low maintenance.

» Hybrid mobile applications need to develop once, so we require short time

to develop and place it quickly on app store.

Disadvantages

» Hybrid apps add an extra layer between the source code and the target
mobile platform, layer is call “mobile framework”. It can result in loss of
performance.

» The extra layer from hybrid development framework also makes
debugging a bigger task.

» As compared to native app development, it is difficult to maintain a proper
user experience between the Android and iOS app. If you focus more on

iOS, the user experience will worsen for Android users and vice a versa.

1.6 BASIC REQUIREMENT FOR THE CROSS PLATFORM
MOBILE APPLICATION DEVELOPMENT

Today, many tools and frameworks are available to develop cross platform
mobile applications. Below Table-1 shows the list of most popular tools used for

the cross platform mobile application development.

Tools / Approach Manufacturer

Framework
lonic Web View Drifty Co.
React JS Web View Facebook
jQuery Mobile Web View jQuery Project
Cordova Mobile development Framework | Apache
PhoneGap Mobile development Framework | Nitobi
Xamarin Cross Compiled Xamarin
Robo VM Cross Compiled Robo VM AB

Table-1 Tools / Framework for Cross Platform Mobile Application Development

Here, in this book we learn cross platform mobile application development

using lonic. The lonic is the web view based open source framework for the cross

platform mobile application development. lonic offers mobile application

development based on Angular that is a Java Script frame work. So to learn lonic,

user have to know of HTML5, Cascading Style Sheet (CSS) and Java Script.

1.7 LET US SUM UP

This unit we learnt about the types of mobile application development

environment. Let’'s quickly review the main points of the unit.

At the end of 2019, number of smart phone user will be cross 5 billion.
More than five million mobile applications available on leading app store.
A mobile app that is coded for specific mobile OS called native app.

Native application development require more time and cost.

Y V V VYV VY

A mobile app which can be developed for multiple platform by using single

codebase is call cross platform mobile application. It also call hybrid

application.

‘7

Hybrid app can be two type: Web view based or Cross compile base

» A mobile app which run the web applications by using web view is called web

view based hybrid app.
» Web view based app develop using HTML5, CSS and Java Script.

» A mobile app which developed using specific language, will convert into
mobile’s OS specific native language at run time or compile time is call Cross
compile hybrid app.

» lonic, React JS, jQuery, Xamarin etc. are the tools / framework to develop

cross platform mobile app.

1.8 CHECK YOUR PROGRESS

Give the answer of the following MCQ.

1. Android was developed by ?
A. Google B. Samsung
C. Apple D. Microsoft
2. Android is based on operating system
A. Window B. Unix
C. Mac D. Linux
3. iOSwasdevelopedby ?
A. Google B. Samsung
C. Apple D. Microsoft
4. Latest version of iOS is
A.10.2 B.12.2
C.11.2 D. 13.2
5. TodevelopiOSapp toolis require.
A.Y code B. X code
C. Visual Studio D. Eclipse
6. A mobile app that developed for specific mobile platformiscalled __ app
A. Native B. Cross platform
C. Hybrid D. None of all
7. BYODstandfor
A. Best your Over Device B. Buy your Own Device
C. Bring your Own Device D. Bring why Odd Device

8. A mobile app developed using one codebase and run on any mobile is called

A. Cross platform mobile app B. Native mobile app

C. iOS mobile app D. Android mobile app

9. A mobile app build using CSS, HTM5 and JavaScript is call

A. Native mobile app B. Cross compile mobile app

C. Android app D. Web view based mobile app
10. Cross compile mobile convert into native app at or time

A. load, execute B. run, compile

C. execute , compile D. run, load

1.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

O
O

W O W >
>
o >

1.10 FURTHER READING

e Peter Van Deput, Professional iOS Programming, Wiley.

e Lauren Darcey, Android Application Development in 24 hours, Pearson.

1.11 ASSIGNMENTS

Write answer Of the following Questions

1. Explain Android development environment.

2. State the advantages and disadvantages of native mobile application
development.
Explain BYOD concept
What is native mobile application development? Explain with diagram.
Explain Web view based hybrid mobile applications development with
diagram.

6. Explain Cross compile based hybrid mobile applications development with

diagram.

Unit 2: Basic Of Development
Environment - Angular

2

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Angular Framework

2.4 History of Angular

2.5 Features of Angular

2.6 Prerequisites for Angular
2.7 Letussumup

2.8 Check your Progress

2.9 Check your Progress: Possible Answers
2.10 Further Reading

2.11 Assignments

2.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:
e Angular framework.
o SPA (Single Page Application)
e Angular for mobile applications development.
¢ Angular architecture
¢ Advantages and disadvantages of Angular
¢ Necessary component to setup Angular environment.
e History of Angular
e Features of Angular4

e Perquisite of Angular4

2.2 INTRODUCTION

In the previous unit we learnt about the cross platform mobile application
development environment. Various tools and frame works are available for the
same. Here in this book we will learn the cross platform mobile applications
development using Angular and lonic framework. We also know that lonic work is
based on Angular framework. So before learning lonic framework we need to get
basic knowledge about Angular framework. This unit gives you insight of Angular.
We start with Angular framework and architecture follow by history of it. We also
discuss Angular environment and features of Angular4. This unit is explaining the

concepts of Angular with version of “Angular4”.

2.3 ANGULAR FRAMEWORK

Angular is the framework for building web applications and mobile
applications using HTML, Java Script and CSS. Angular is open source Java Script
framework which binds the Java Script object and HTML Ul elements. Angular was
developed by the Google. It not just Java Script library but it is a complete
framework that provides guideline in writing a proper architectured, maintainable and
testable client side code.

Angular provides inbuilt support for the animation, http services and many
more things. Angular empower developer who develops applications which live on

the web, mobile or the desktop. Angular is written in typescript.

2.3.1 EVOLUTION OF ANGULAR

Angular is basically invented to provide a good support to develop web
applications. Angular is based on Java Script framework. We know that JavaScript is
handling dynamic content on web. Sometimes, web sites are open in the mobile
device, the Java Script need to decide that whether or not to render the mobile
version of the requested website. As sometime as a dynamic content manager, Java
Script needs to provide interface of the website on computer desktop or mobile
devices. To support on both kind of device, developers need to write thousands of

lines of code.

In late 2013, web developer wanted to have their own custom JavaScript
libraries for reducing the number of code lines and implement complex functionalities
easily. A jQuery is the small and feature rich Java Script library that make things
easy for the web developer. But the main problem with jQuery is not real structure
which makes lot of confusion in larger projects. Here Angular comes into picture
and help a developer by providing structured environment. Angular is Java Script
framework that was specifically designed to help developer to build SPAs (Single
Page Applications) for web. A single-page application (SPA) is a web application or
website that interacts with the user by dynamic rewriting the current page rather than
loading entire new pages from a server. Figure-4 shows the different bewteen

traditional web page life cycle and SPA life cycle.

Regquest

Regquest

s Server o Server
Page loa
HTML Page HTML Page
Page |
Reload fost AJAX
HTML Page JSON

Traditional Web pageLife Cycle SPA Web page Life Cycle

Figure-4 Traditional web v/s SPA web page life cycle

2.3.2 FEATURES OF ANGULAR

Before going into the detailed study of Angular, we need to learn the feature

of the Angular:

> It provides a cross platform support. Angular applications can be run on any
OS platforms.

> It gives high performance with easy way to write code.

> Using Angular, we can build native mobile application using lonic framework.

> We can create desktop application version for Mac, Windows and Linux
operating system with the use of Angular.

> Angular provide support to use any technology along with it. We can use
node.js, PHP etc along with Angular framework.

> Angular apps load quickly with the new Component Router, which delivers
automatic code-splitting, so users only load code required to render the view
they request.

> It provides templates through which user can create Ul views quickly.

> Using Command Line Interface (CLI) we can easily and quickly build and add

components. We can also test and deploy them easily with the help of CLI.

2.3.3 ARCHITECTURE OF ANGULAR

Angular architecture consists of eight blocks. Any Angular app is made up of

eight essential constituents. The eight blocks are Modules, components, Templates,

Metadata, Data Binding, Directives, Services and Dependency Injection. Figure-5

shows the architectural view of Angular. Let us understand each block one by one.

>

Modules

Modules are logical boundaries of the application. Instead of writing everything
into one application, we can build separate modules for each functionality of the
application. Angular apps are modular and to maintain modularity, we have
Angular modules or we can say NgModules. Every Angular app contains at
least one Angular module called root module. Module is made of three parts
called Bootstrap Array, Export Array and Import Array. The details of its

functionality can be seen learn in the next block of this book.

Modnle Module Service b A il "
Camponents £ =
i {3 ‘»":J,_’V)I} etada tvaA_;;}_,_.

Directives

§

Template

= >

Property :
Binding Eyeut

Binding

Injectors

Service -1

Figure-5 Architecture of Angular

Components

Each application consists of Components. Each component is a logical
boundary of functionality for the application. Each application is made up of
modules. Each Angular application needs to have one Angular Root Module.
Each Angular Root module can then have multiple components to separate
the functionality. Each component consists of Class, Template and Metadata.
It is represented by the Figure-6.

Angular Root Module

Componen Componen | | .ccoveeiieniennens Componen
t t t

Class ‘ Template ‘ Metadata

Figure-6 Module Component Relationships

20

Templates

As the name suggests, templates are elements of Angular applications that
combine HTML with Angular markup, which are able to modify HTML
elements before displaying them on the screen. A template looks like regular
HTML, except for a few differences. Templates make use of pipes for
improving the user experience. Templates have two parameters like HTML

code and Class Properties.

Metadata

The information related to class is provided by metadata. This has an extra
data defined for the Angular class. It is defined with a decorator.A class
decorator is used for attaching metadata to a class. For providing the
necessary information required by Angular to create the component, class
Decorator makes use of configuration objects. Some of the configuration

options are directives, selector, and template URL.

Data Binding

If we are not using a framework, we have to push data values into the HTML
controls and turn user responses into some actions and value updates.
Angular supports data binding, a mechanism for coordinating parts of a
template with parts of a component. We should add binding markup to the
template HTML to tell Angular how to connect both sides. Binding markup is
responsible for connecting application data with the DOM. There are two

types of data binding, namely:

o Event Binding — Allows the application to respond to user input in
the target environment. It does so by updating application data.
e Property Binding — Allows interpolation of values, which are

computed from application data into the HTML.

Directives
Angular templates are dynamic. When Angular renders them, it transforms

the DOM according to the instructions given by directives. A directive is a

21

custom HTML element that is used to extend the power of HTML. Two kinds
of directives exist, structural and attribute directives.
e Structural directives alter layout by adding, removing, and
replacing elements in DOM.
e Attribute directives alter the appearance or behavior of an

existing element.

> Services
Service is a broad category around any value, function, or feature which
application needs. A service is typically a class with a well-defined purpose.
Anything can be a service. It is a part of component. Examples include:
logging service, data service, and business logic and application

configuration.

> Dependency Injection
Dependency injection is the ability to add the functionality of components at
runtime.Most dependencies are services. Angular uses dependency injection

to provide new components with the services to the existing components.
2.3.4 ADVANTAGES AND DISADVANTAGES OF ANJULAR

Advantages

» Consistency
Code consistency is an important goal to strive for any code base
system. Angular is framework is based on components and
services. In components based structure always look same, we can
add additional thing in to component but overall structure is always
look same. All the components services start on the same way. By
component and service’s structure angular maintain consistency.

» Productivity
With greater consistency, we get the benefit of productivity. When
we learn how to write one component we can write another
component by same general guidelines and code structure. Once

we learn how to create a service class it's easy to create another

22

one. So development of application possible on fast track and

sufficient productivity.

» Maintainability
Angular code can be built using TypeScript (it is improved
JavaScript) which provide lots of benefits along with easy
maintenance of the app.

» Modularity
Angular is all about organizing code into modules. Everything you
create whether it's components, services, pipes, or directives has to

be organized into one or more modules.

» Catch Errors Early
Angular is built using TypeScript provide mechanism to find out

errors easily if any.

Disadvantages

» Angular manipulates actual DOM (Document Object Model) which
make it slower and less efficient.

» Angular is difficult to learn. If we don’t know about TypeScript then
need require more time to learn.

» Data Binding concept is difficult to implement in real world
applications.

» Itis difficult to implements server templates.

> Testing is difficult. End to end tests are simplified only with Angular
CLI.

2.3.5 ANGULAR ENVIRONMENT

To start with Anjular framework, we need to install several tools that Anjular
required. The detail installations of each components will be learned in block two

of the book.To setup the Angular environment we need the following component:

» Node js
Node.js is a cross-platform runtime library and environment for running
JavaScript applications outside the browser. This is a free and open

source tool used for creating server-side JS applications. Node.js is useful

23

to build fast and scalable server-side networking applications. This
framework is best suited for building single-page client-side web

applications.

» Npm (Node Package Manager)
Npm is a package manager for the JavaScript programming language. It is
the default package manager for the JavaScript runtime environment
Node.js. NPM is a package manager for Node.js packages. The Angular
Framework, Angular CLI, and components used by Angular applications

are packaged as npm packages and distributed via the npm registry.

» Angular CLI (Command Line Interface)
Angular CLI makes it easy to start with any Angular project. Angular CLI
comes with commands that help us to create and start on our project very

fast. It provide command to create project, component and services.

» IDE for writing code.

It provide integrated development environment to write Angular code.

2.4 HISTORY OF ANGULAR

Angular is the most well-known framework for SPA (Single — page
application) development. Angular allows the developer to interact with both the
frontend and the backend. The first version of the framework — AngularJS started
back in 2009. AnjularJS was a outcome of side project, by two developers Misko

Hevery and Adam Abrons at Google.

Misko Hevery eventually began working on a project at Google called Google
Feedback. Misko Hevery and two other developers wrote 17,000 lines of code over
the period of 6 months for Google Feedback. However, the code size increased,
Misko Hevery began to grow frustrated with how difficult it was to test and modify the
code which the team had written. So Misko Hevery made bet with his manager that
he could rewrite the entire application using his side and get Angular project in two
weeks. Hevery lost the bet. Instead of two weeks, it took him three weeks to rewrite
the entire application, but he was able to cut the application from 17,000 lines to
1,500 lines. Because of Hevery’s success, his manager predicted that Anguar would

24

be powerful framework for the web development. Thus Angular.js development

began to accelerate.

There are three major releases of Angular. The first version was released is
AngularJS, which is also called Angular1. Angular1 is followed by Angular2, which
came with a lot of changes compared to Angular1. AngularJS is totally different from
Angular2. Some of the differences between AngularJS and Angular2 are mentioned

below:

» The architecture of an Angular application is different from AngularJS.
AngularJS is completely based on controllers and the view communicates
using $scope. Whereas Angular is based on modules, components,
templates, metadata, data binding, directives, services and dependency
injection.

» Angular is a complete rewrite of AngularJS.

» Angular does not have a concept of “scope” or controllers yet it uses a
hierarchy of components as its main architectural concept.

» Angular has a simpler expression syntax for event binding compared to
AngularJS

Mobile development and Desktop development is much easier.

Y VY

Angular follows modularity. Similar functionalities are kept together in same

modules. This gives Angular a lighter & faster core compared to AngularJS.

We know that the structure of Angular is based on the components/services
architecture. Angular is based on the model view controller. Angular 4 was released
in March 2017 which proved to be a major breakthrough. Angular 4 is almost the
same as Angular 2. It has a backward compatibility with Angular 2. Angular4 has
advanced features compared to Angular2. Due to this, Angular framework becomes

more stable.

The latest version of Angular is “Angular 77 which was released in October,
2018. However for the cross platform mobile applications development using lonic,

we will learn Angular4.

25

2.5 FEATURES OF ANGULAR4

Angular4 comes up with advance feature as compared to Angular2. The features

are:
>

Angular2 supported only “if’ condition, however Angualr4 supports the “if
else” condition as well. It provide support of “if else” using “ng-template”
Angular4 is smaller and faster. It reduces bundle file size upto 60% which
improves the application speed.

Angular4 is compatible with newer version of TypesScript2.2

Majority of Angular Universal code has been merged into Angular core.
Animations taken from the Angular core and set within their own package
‘Animation Package”. It means if we don’'t use animations, the excess code

won’'t end up in app.

2.6 PREREQUISITIES FOR ANGULAR

Next block of this book will discuss Angular basics. The block will teach you,

how to write Angular code. Before moving to the next block, you should have a
basic understanding of HTML, CSS, Java Script and Document Object Model
(DOM).

2.7 LET US SUM UP

In this unit we learnt the fundamentals of Angular framework. Let’s quickly review the

main points of the unit.

Y VYV VYV VY

v VvV VvV

Angular is the framework based on Java Script.

Angular is use to develop web view based hybrid mobile applications.
Angular is used to execute web application outside browser.

Angular provide structure environment to develop large application.
Angular held developer to build SPA (Single Page Application) for web.
Using Angular CLI developer can easily and quickly build applications.

Angular architecture is made of eight components.

26

The eight components are Modules, components, Templates, Metadata, Data
Binding, Directives, Services and Dependency Injection.

Modules are logical boundaries of the application.

Each application consists of Components. Each component is a logical
boundary of functionalities.

Templates are elements of Angular applications that combine HTML with
Angular markup, which are able to modify HTML elements.

Metadata is a information related to class used by Angular.

Data binding is a mechanism for coordinating parts of a template with parts of
a component.

Angular templates are dynamic. A service is typically a class with a well-
defined purpose. And Dependency injection is the ability to add the
functionality of components at runtime.

To develop application using Angular, we should have a knowledge of
HTMLS5, CSS, JavaScript and DOM architecture.

2.8 CHECK YOUR PROGRESS

© ® N o g s~ 0N

—
©

—
—

—
A

Fill in the Blanks

Angular is frame work to develop mobile app using , ,

Angular was developed by ~ company.
Angular provide environment.
Angular CLI stand for
is the logical boundaries of the application.
is the logical boundaries of the functionality.

Each component consist of , ,

modify HTML elements before displaying them on the screen.
information related to class.
NPM stands for
First version of Angular is called

Angular is based architecture.

27

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. HTMS5, CSS, Java Script 2. Google 3. Structured

4. Command Line Interface 5. Module 6. Component
Class, Template, 8. Template 9. Metadata
Metadata

10. Node Package Manager 11. Angular JS 12 MVC

2.10 FURTHER READING

e Angular web site : https://angular.io/guide/quickstart

¢ Oswald Campesato, “Angular 4 Pocket Primer”

2.11 ASSIGNMENTS

Write answer of the following Questions
Explain the features of Angular.

Write a short note on Angular Architecture.

List the advantages and disadvantages of Angular.

Write a short note on history of Angular.

ok~ DN~

List the features of Angular4.

28

Unit 3: Basic Of Development 3
Environment - IONIC

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 lonic Framework

3.4 History of lonic

3.5 Understanding the lonic Stack
3.6 Prerequisites for lonic

3.7 Letussumup

3.8 Check your Progress

3.9 Check your Progress: Possible Answers
3.10 Further Reading

3.11 Assignments

29

3.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:
¢ lonic framework.
e Features of lonic
e Advantages and disadvantages of lonic
e lonic Environment
e History of lonic
¢ lonic Stack

e Perquisite of lonics

3.2 INTRODUCTION

In this unit we will discuss about the basic fundamental of lonic. lonic
framework provides a facility to the mobile developers to develop cross platform
mobile application. lonic based mobile application need to code once and run on any
mobile operating system like Android, iOs and Window phone. lonic is an HTMLS
mobile app development framework targeted at building hybrid mobile apps. Hybrid
apps are essentially small websites running in a browser shell in an app that have
access to the native platform layer. Hybrid apps have many benefits over pure native
apps, specifically in terms of platform support, speed of development, and access to

3rd party code.

lonic as the front-end Ul framework handles all of the look and feel and Ul
interactions that app needs in order to be compelled. lonic provide a native style
mobile Ul components and layouts that are the same as we get with native SDK on
iOS or Android. Here we will learn about the basic of the lonic framework and
evolution of lonic. After that we will talk about lonic stack and prerequisites for lonic

learning.

3.3 IONIC FRAMEWORK

lonic framework is the one of the popular frameworks for the cross platform

mobile application development. Using this framework, mobile app developer can

30

create native-looking mobile applications. lonic framework is based on web
technologies such as HTML5, CSS and JavaScript. All these three technologies are
open source. lonic developer can build and upload mobile app on market place
without any cost because lonic is also open source. Developers and users should

not pay any charge to use it.

The developers of lonic believe that HTML5 would rule on mobile over a time,
exactly as it has on desktop. lonic is an HTML5 mobile app development framework
targeted at building hybrid mobile apps. Hybrid apps are essentially small websites
running in a browser shell in an app that have been accessed to the native platform
layer. Hybrid apps have many benefits over pure native apps, especially in terms of

platform support, speed of development, and access to 3rd party code.

Those who are familiar to web development, will find the structure of an lonic
app straightforward. At its core, it's just a web page running in a native app shell
That means we can use any kind of HTML, CSS, and JavaScript we want. The only
difference is, instead of creating a website that others will link to, we are building a
self-contained application experience. The bulk of an lonic app will be written in
HTML, JavaScript, and CSS.

lonic framework is built with Angular, a widely used and well tested
framework. The combination of the two framework allows lonic’s developer to create
SPA (Single Page Application) based mobile application that is easier to organize.
Each mobile operating system has their requirement for Ul components. lonic
provides a readymade Ul mobile component and feature of automatic
implementation based on the mobile operating system it built for. So mobile
application users fill the Ul same at the native application provide. lonic use SASS
(Syntactically awesome style sheets) to generate CSS that visualize the lonic
application. SASS is a preprocessor scripting language that is interpreted or
compiled into Cascading Style Sheets (CSS). SASS provides several advantages

over writing CSS directly. Detail will be shown later in this book.

lonic also provides the JavaScript features for app developers for developing
lonic applications. All the JavaScript features are built on Angular. App developers

use the JavaScript feature through the Angular.

31

3.3.1 FEATURE OF IONIC

lonic help to build cross platform mobile applications using HTM5 with the use

of Angular framework. lonic provides a great range of tools and service using the

framework. Let us see key features of lonic framework.

>

lonic uses Angular MVC architecture for building SPA (Single Page App)
specifically for mobile devices.

SASS provides plenty of Ul components for creating robust and rich apps.
It provides JavaScript components. These components are extending
CSS components with JavaScript functionalities that are specifically made
for the mobile elements, which is not possible only with HTML and CSS.
Development of the app is very vital only once as well as it would be
compatible with all the mobile devices. Also, it needs very limited use of
time, resources and efforts, and helps in giving an integrated look and
feel. It provides easy and feasible cross platform mobile application
environment

lonic has CLI. It is nodedS utility which is the command for starting,
building, running and emulating lonic applications.

lonic View is very useful platform for uploading, sharing testing mobile
application on native devices.

lonic is released under MIT license. lonic is free and open-source.

3.3.2 ADVANTAGES AND DISADVANTAGES OF IONIC

FRAMEWORK

Following are the advantages and disadvantages of lonic framework:

Advantages

>

>

lonic framework provide cross platform mobile application environment. It
means we can build mobile application that run on iOS, Android, Window
Phone or other mobile operating system.

To start mobile application is easy with the help of pre-generated app

setup with simple layout.

32

>

>

The mobile application is built in modular way, so it is easy to be
maintained and updated.

lonic framework is built with Angular framework, which is a product of
Google. So updates comes regularly that help fast and speedy mobile
development.

Disadvantages

>

>

Testing of it is little tricky as browser does not always give right
information about mobile environment.

Today lots of mobile devices and operating system are available in
market. Usually all need to cover them for lonic framework support.

It will be hard to combine different native functionalities.

Sometimes compatibility issues arises, which leads to build errors that are
hard to debug.

Cross platform applications are slower than native applications.

3.3.3 IONIC ENVIRONMENT

To start with lonic framework, we need to install several tools that lonic

requires. It is little challenging task to install it. The detail installations of each

component will be shown in block three of the book. We need to setup two kinds

of components: The base of lonic installation and platform specific SDK

installation. The base installation requires tools that need to build mobile

applications and preview in browser. The platform specific installation requires to

setup native development environment. As we know our mobile application will

be built based on web technologies, the platform specific installation gives

access of emulators to test the applications on mobile device.

>

The base of lonic Installation :

This section discusses the tools required to setup the lonic environment.

¢ NodeJS

The foundation for lonic is built on NodedS. It is a platform that
enables you to run JavaScript outside the browser. Based on NodedJS

(Simple sometime called Node) developer can build applications that are

33

written in JavaScript that can be run anywhere. Both Cordova CLI and

lonic CLI are written using Node.
o Git

lonic CLI holds Git for the management of templates. Git is a free and
open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency.

e Apache Cordova CLI

Cordova provides a set of JavaScript APls which enables a developer
to build a application using HTML5, CSS3 and JavaScript and trough
Cordovas APIls access native-specific functions like GPS, camera and
network.

The installation of Cordova CLI uses the Node package manager (npm) to

perform the installation. This is the SDK.

e lonic CLI

lonic compatibility starts at iOS 6 and Android 4.1, older versions than
that will not be officially supported. The lonic Framework also provides a
useful command line interface (CLI) that makes it easy to start, create,
compile and export mobile applications. The lonic framework provides
some useful functions such as ionic.Platform.islOS(),
ionic.Platform.isAndroid() and ionic.Platform.isWindowsPhone() which

can be used to detect on what OS the current application is running on.

Tonic Framework

Keyboard plugin

Cordova

Figure-7 lonic Framework

34

» Platform Specific SDK Installation:

By setting up above component we can start developing applications
and test it in browser. But if we want to test it on either device emulator or
actual device we need to set up platform specific SDK. Currently lonic

officially supports iOS, Android and Window Universal platform.

e jiOS
If we want to build application for iOS, we need to install Xcode

for emulation and distribution of app. Xcode is available for Mac os.

e Android
If we want to build application for Android, Android can be done
on Window, Mac or Linux system. We need to install Android SDK

tools. If we require IDE then we should install Android Studio.

¢ Window Universal
Window universal supports only on window machine. We need
to install visual studio 2015 with the option of “Tools for Cross Platform

Development” and SDK for Window Universal app.

3.4 HISTORY OF IONIC

lonic is an open-source SDK framework for hybrid mobile app development. It
was created by Max Lynch, Ben Sperry and Adam Bradley of Drifty Company in
2013. The first version was built on top of AngularJS and Apache Cordova. lonic V1
is focused on building native mobile apps rather than mobile websites. lonic 1x
supported by iOs 7+ and Android 4.1 and up. lonic 2 is focused on building both
native/hybrid apps through Cordova, as well as adding the ability for Progressive
Web Apps and Electron. lonic 2 supported by iOS8+, Window 10 and Android 4.4

and up versions of mobile operating system.

The lonic 3 or simply "lonic", are built on Angular (web framework). However,
The lonic3 release allows you to choose your User interface framework from Angular

(web framework), React (JavaScript library) and Vue.js. The latest release lonic 4

35

was come up in January, 2019. Every release come up with new components and

updates in framework.

3.5 UNDERSTANDING THE IONIC STACK

We are clear about the fundamental of mobile application development. It is
time to look deeper into lonic framework. The lonic mobile application is built as part

of three layers of technology.

e Cordova

The Cordova is used as an interface between the web view and the
device’s native layer. It's library provide a framework to bridge the gap
between two technologies, web technology and native web view. Cordova is
provide mobile platform support form iOs, Android, Window Phone,

Blackberry and FireOS. It is an open source framework developed in 2009.

e Angular

As we have discussed a lot about Angular in last unit, there is no need
to discuss it here in detail about Angular. Basically Angular provide SPA
(Single Page App) development with MVW (Model — View — Whatever) to
build complex web applications. lonic team decides to take advantage of this
feature of Angular and they build the application upon it.

e lonic Framework

lonic framework is an open source provided under MIT license. The
primary feature of the lonic Framework is to provide the user interface
components that are not available to web-based application development. For
example, a tab bar is a common Ul component found in many mobile
applications. But this component does not exist as a native HTML element.
The lonic Framework extends the HTML library to create one. These
components are built with a combination of HTML, CSS, and JavaScript, and
each behaves and looks like the native controls it is recreating. lonic also

provides some additional tooling to help build mobile applications.

36

e lonic CLI

The lonic CLI (Command Line Interface) is a command line tool that is
used to manage lonic applications. It allows you to create an lonic application
easily, and provides tooling for serving your application throughout

development, and building your application for production.

e Capacitor

Capacitor is a separate project to lonic (it is still created by the lonic
team), but it is used in conjunction with lonic. Capacitor provides a common
API for accessing native functionality across different platforms. This means
that if you want to access functionality like the camera, you can use the same
code for iOS and Android without worrying about the underlying native
implementation on each platform. Capacitor also allows you to build your

lonic application as a native application for iOS/Android/Desktop.

e Appflow

lonic Appflow is an optional platform which is also provided by the lonic
team that you can use in conjunction with your lonic applications. This is a
paid solution that provides functionality like continuous deployment and

automatic application builds.

3.6 PREREQUISITIES FOR IONIC

To develop lonic application we need to have some additional technical skills
that are not covered in this book. While you do not need to use an expert in these
skills, you should have general knowledge of these technical terms to understand

the concepts of lonic.

lonic applications are built using HTMLS, CSS and JavaScript. So you should
have basic knowledge of these technologies and how to implement these
technologies to build web applications. Here in this book lonic application
development code used JavaScript based on Angular4, this means you should know
fundamental of Angular4. However we will learn the Angular4 in block2 in detail.
lonic is all about cross platform mobile application development, so probably you

should have basic knowledge for the operating the iOS and Android devices.

37

In short lonic is built on top of AngulardS and Apache Cordova, you will need

to have basic knowledge about web technologies. You should familiar with HTML,

CSS and JavaScript, if you want to understand all the information provided by the

book

3.7

LET US SUM UP

In this unit we learnt the fundamentals of lonic framework. Let’s quickly review the

main points of the unit.
> lonic is the framework for developing hybrid mobile application.
» lonic framework is based on web technologies such as HTML5, CSS and
JavaScript.
» lonic is used to develop Single Page Application (SPA)
» lonic environment consist of NodeJS, Git, Cordova CLI and lonic CLI.
3.8 CHECK YOUR PROGRESS
Fill in the Blanks
1. lonic framework is based on technology.
2. Using lonic developer can built mobile application.
3. lonic use architecture.
4. lonicisrelease under ___ license.
5. The foundation of lonic is built on
6. CLlstandsfor .
7. lonicdevelopedby ~ company.
8. Latest version of lonic is
9. __ provide a common API for accessing native functionality.
3.9 CHECK YOUR PROGRESS: POSSIBLE ANSWER
1. Web 2. Hybrid 3. MVC
4. MIT 5. NodedS 6. Command Line
Interface
7. Drifty 8. lonic4 9. Capacitor

38

3.10 FURTHER READING

¢ lonic web site : https://ionicframework.com/

e Chris Griffith, “Mobile Appl Development with lonic” , Oreilly

3.11 ASSIGNMENTS

Write answer of the following Questions
Explain lonic framework.

List the features of lonic.

List the advantages and disadvantages of lonic.

Write a short note on lonic environment.

ok 0N~

Write a short note on lonic Stack.

39

Block-2

Working with Angular

40

1

Unit 1: Introduction to Angular

Unit Structure

1.1 Learning Objectives

1.2 Basic Introduction of Script

1.3 About Angular

1.4 General Features

1.5 Advanced Features

1.6 Advantages and Disadvantages of Angular
1.7 Difference between Angular and AngulardS
1.8 LetUs Sum Up

1.9 Check Your Progress

1.10 Check Your Progress: Possible Answers

1.11 Assignments

41

1.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:
e The history of SCRIPT and Why SCRIPT
¢ The Different available SCRIPTING languages
¢ Difference between AngularJS and Angular with syntax
e General and Core features of Angular

¢ Advantages and Disadvantages of Angular

1.2 BASIC INTRODUCTION OF SCRIPT

All scripting languages are known as programming languages. The scripting
language is basically a language where instructions are written for a run time
environment. Scripting languages do not require the compilation step and
interpreted. It brings new functions to applications and attach complex system
together. A scripting language is a programming language designed for integrating

and communicating with other programming languages.

Scripting languages are becoming more popular. Scripting languages are
intended to be very fast to learn and write in, either as short source code files or
interactively in a read—eval—print loop (REPL, language shell).This generally implies
relatively simple syntax and semantics; typically a "script" is executed from start to
finish, as a "script", with no explicit entry point.There are list of scripting languages

are available but among them JavaScript is known as popular scripting language.

JavaScript is a very powerful client-side scripting language. JavaScript is
used mainly for interaction of a user with the webpage. You can make your webpage
more lively and interactive, with the help of JavaScript. JavaScript is also being used

widely in game development and Mobile application development.

You should place all your JavaScript code within <script> tags (<script> and

</script>) if you are keeping your JavaScript code within the HTML document itself.

This helps your browser distinguish your JavaScript code from the rest of the
code. As there are other client-side scripting languages (Example: VBScript), it is

highly recommended that you specify the scripting language you use. You have to

42

use the type attribute within the <script> tag and set its value to text/ JavaScript like

this:

<script type="text/javascript">

> Hello World Example using JavaScript:

<html>

<head>

<title>My First JavaScript Example</title>

<script

type="text/javascript">

alert("Hello World....");

</script>

</head

>

<body>

</body

>

</html>

There are many scripting languages some of them are discussed below:

Ruby: It is a scripting language which is widely used for web development.

Python: It is easy, free and open source. Python is an interpreted language

with dynamic and huge lines of code are scripted.
bash: It is a scripting language to work in the Linux interface.

Node js: It is a framework to write network applications using JavaScript.
Popular users of Node.js are IBM, LinkedIn, Microsoft, Netflix, PayPal, Yahoo

for real-time web applications.

PHP (Hypertext Preprocessor):PHP is a server-side scripting language
designed for Web development. PHP code may be embedded into HTML
code, or it can be used in combination with various web template systems,

web content management systems, and web frameworks.

Angular JS: AngulardS is a JavaScript framework. AngularJS extends HTML
attributes with Directives, and binds data to HTML with Expressions. It can be

added to an HTML page with a <script> tag.

43

Scripting languages, on other hand, solves different problems:

» Building applications from ‘off the shelf components
» Controlling applications that have a programmable interface
» Writing programs where speed of development is more important than run-

time efficiency.

1.3 ABOUT ANGULAR

Successive versions of Angular are simply called Angular. Angular is one of
the most popular JavaScript framework. Angular is a complete rewrite of the Angular
framework. Angular is a platform that makes it easy to build an applications with the
web. Angular empowers developers to build applications that live on the web,
mobile, or the desktop. Angular is a faultless framework for developing Single Page
Applications.A SPA is web application that requires only a single page load in web

browser.

Angular was created by Google and released in 2010 as AngularJS the 1.x
version . The initial release for the Angular 2.x version was on September 14, 2016.
The second major revision was initially referred to as AngulardS 2 or 2.0 but was

later rebranded to just “Angular” for release 2.0 and higher.

Angular allows us to build applications for all platforms. It is free and an
open-source platform that uses TypeScript. TypeScript is a strict syntactical superset

of JavaScript, adds optional static typing to the language and maintained by

Mircrosoft.

Angular Version Release Date
Version 2 September 14, 2016
Version 4 March 23, 2017
Version 5 November 1, 2017
Version 6 May 4, 2018
Version 7(Latest) October 18, 2018

Table-2 Transparent and Incremental evolution of Angular

44

1.4 GENERAL FEATURE

Developers prefer this framework for their front-end development for a
number of reasons. It's simple to use and has some powerful tools that make the
development process much more efficient. These tools also seamlessly work
together in tandem providing you with an efficiently compiled program. Given below

are five features of Angular that make it the best for web development as framework.
» The Perfect MVC Architecture

MVC stands for Model View Controller Architecture which is a software
pattern to develop applications. The model layer manages the application data, the
view layer is responsible for the display of data while the controller is what connects
the model and the view. in Angular, all you have to do is split the application into

MVC and it does the rest. This saves huge amount of time in coding.

=3
4\
=8 - =D

Figure-8 MVC Architecture

Unit Testing assures Quality Code

One of the best and popular features of angular is the fact that it makes use
of a unit testing technique that helps developers to produce high quality apps. The
code is divided into the smallest testable parts i.e. units. This also helps you easily

detect any flaws or mistakes in each line of the code.

45

L— client

— app
route-config.ts
test-project.html
test-project.spec.ts
test-project.ts

— app.ts

— index.html

Using Angular's module that provides mocking for tests,mock units are
injected and tested to see if the request is returned with the expected data. This
improves you make sure that each and every component of your application works

exactly as required.
Data binding is Efficient

Data binding in Angular is a two way road. This means that the view layer of
the architecture is always an exact representation of the model. Unlike in other apps,
the model and view layers are continuously updated to remain in sync with one

another.

So any changes you make in your model layer will automatically be reflected
in your view layer and vice versa. This again saves a significant amount of time in

coding the connection between the two whenever a change is made.

Figure-9 Data binding in Angular

46

Requires Writing Less Code

Less Code

Figure-10 Less Code

Angular needs a lot less coding than others. You do not have to write code to
connect the MVC layers, you don’t have to write separate codes for the view
manually, directives are separate from the app code and can be written parallelly
etc. All of these collectively decrease the amount of coding that is required,
significantly.

Developed by Google

Figure-11 Angular

Google is the apex of the internet age and you know when there’s something that
Google develops, it will be great. Angular is maintained by a dedicated team of
highly skilled engineers who are readily available to solve any issues related to the

framework.

1.5 ADVANCED FEATURE

Angular release is mainly focused on making Angular framework smaller,
faster, and easier to use. So for that Google introduced new advanced features of

Angular as below.

47

Progressive Web Application

This feature of angular on application makes feel like native apps with mobile
web apps along with add-ons like offline experience and push notifications. This is
made possible as Angular can create code and configuration on its own with

Angular-CLI and it offers service workers through the @angular/service-worker.
Following command is used to activate PWA support in your application:

$ ng set apps.0.serviceWorker=true

Build Optimizer tool(Default tool)

This tool is by default applied. The build optimizer tool makes the application
faster and lighter by removing additional parts and runtime code as well. This tool

decrease the size of script and enhance the speed of the application.
Angular Universal State Transfer APl and DOM

Angular team added the domino to the platform-server.it enhance the more
DOM manipulations are supported within server-side contexts. Team also added the
BrowserTransferModule and ServerTransferStateModule. Both modules enable you
to transfer information between the server and client-side versions of the application.
This is helpful for developers when their application accessing data over HTTP. This
means there is no need to make another HTTP request once the application
reached client-side.

HttpClient

Using the HTTP Client developers can replace the HttpModule with
HttpClientModule from @angular/common/http, inject the HttpClient service, and

remove the map(res => rex.json()) calls that is no longer required.
Compiler and Typescript improvements

This new feature brought a lot of improvements in Angular Compiler to make

re-builds of the applications faster, mainly for AOT and production builds. And the

48

TypeScript is also upgraded to the latest version of TypeScript , which allows

connecting to the standard TypeScript compilati on pipeline
You can use this by running:

ng serve

Multiple Export Alias

This allows exporting, you can give multiple names to your directives and
components. Exporting a component/directive with multiple names can help users to

migrate smoothly without breaking changes.
Animation

Angular now came with some updates in Animations, where you can animate
by using :increment and :decrement based on numerical value changes. you can
also activate and deactivate the animations using values that are associated with

data binding. The .disabled attribute of the trigger value is constrained to do this.

1.6 ADVANTAGES AND DISADVANTAGES OF ANGULAR

The advantages of Angular are:

v

It provides the capability to create Single Page Application.

v

Angular code is well structured

v

Angular uses the Typescript.

It provides data binding capability to HTML.

It gives user a rich and responsive experience.

Angular code is unit testable and easy to debug.

Angular uses dependency injection and make use of separation of concerns.

Angular provides reusable components.

YV V V V VYV V

With Angular, the developers can achieve more functionality with short code.

v

In Angular, views are pure html pages, and controllers written in JavaScript

do the business processing.

49

Though Angular comes with a lot of merits, here are some points of concern as

demerits:

>

>

Not Secure — Being JavaScript only framework, application written in Angular
are not safe. Server side authentication and authorization is must to keep an
application secure.

Not degradable - If the user disables JavaScript, then nothing would be

visible except the basic page.

1.7 DIFFERENCE BETWEEN ANGULAR AND ANGULARJS

Angular was a ground-up note of AngularJS.

>

Instead of scope or controller, Angular uses a hierarchy of components as its
primary architectural characteristic.

As compare to AngulardS, Angular has a different expression syntax,
focusing on "[]" for property binding, and "()" for event binding.

Modularity is a much core functionality has moved to modules.

Angular recommends the use of Microsoft's TypeScript language, which

introduces the features like Class-based Object Oriented Programming,Static

Typing,Generics.

TypeScript is a superset of ECMAScript 6 (ES6), and is backwards

compatible with ECMAScript 5 (i.e.: JavaScript). Angular also includes ES6:

Lambdas, lterators, For/Of loops, Python-style generators, Reflection,

Dynamic loading

Asynchronous template compilation

Iterative callbacks provided by RxJS. RxJS limits state visibility and
debugging, but these can be solved with reactive add-ons like ngReact or
ngrx.

Support Angular Universal, a technology that runs your Angular application on
the server

Has its own suite of modern Ul components that work across the web, mobile

and desktop, called Angular Material

50

1.8 LET US SUM UP

v

All scripting languages are known as programming languages.

Scripting languages do not require the compilation step and interpreted.
JavaScript is a very powerful client-side scripting language. JavaScript is
used mainly for interaction of a user with the webpage.

There are many(Ruby,Python,bash,Nodejs,PHP) scripting languages

Angular was created by Google and released in 2010 as AngularJS the 1.x
version

Angular tools make it the best for web development as framework.

Angular release is mainly focused on making Angular framework smaller,
faster, and easier to use.

Build optimizer is by default tool.

New feature brought a lot of improvements in Angular Compiler to make re-
builds of the applications faster, mainly for AOT and production builds.

Some times angularbecome the not secure and not degradabile.

Modularity is a much core functionality has moved to modules.

1.9 CHECK YOUR PROGRESS

Give the answer of the following MCQ.
1. In AngularJS, JS stands for

A. Java Server C. Java Servlet
B. Java Script D. JSON ScripT
2. All scripting languages are known as language.
A. Presentation C. Programming
B. Process D. POST JS
3. is a scripting language to work in the Linux interface.
A. Ruby C. Bash
B. Perl D. PHP
4. The latest version of Angular is
A. Angular 7 C. Angular 5

B. Angular 6 D. Angular 6.9

51

5. Angular follows the architecture.
A. MVV C. MMC
B. MVC D. MV

6. In MVC, C stands for
A. Controller C. Core

B. Center D. Co-operative
7. Latest version of Angular comes with
A. Animation C.Only A

B. Hitp Client D. Both Aand B

8. Angular is Developed by

A. Facebook C. Google
B. Alibaba D. Amazon
9. Angular uses the script for the core programming.
A. Java C. Ruby
B. Type D. Paython
10. To compile the Angular Application command is used.
A. ng open C. ng compile
B. ng run D. ng serve

1.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Java Script 6. Controller

2. Programming 7.Both Aand B
3. Bash 8. Google

4. Angular 7 9. Type

5. MVC 10. ng serv

55

1.11 ASSIGNMENTS

Write the answer for the following questions.

1. What is Script? Explain the different scripting programming language.

2. Explain the Angular and list out the available versions for angular.
3. Explain the general features of Angular.

4. List and Explain the advanced features of angular.

5. Explain the advantages and disadvantages of angular.

6. Differentiate Angular and Angularjs

56

Unit 2: The Basic of Angular

Unit Structure

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

Learning Objectives

What and Why Framework

Environment setup

Hello World in Angular

Directives and String interplolation
Angular Events

Let Us Sum Up

Check Your Progress

Check Your Progress: Possible Answers

Assighments

57

2.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:
¢ The nature of framework and what is the important of framework
e Why only Angular and settingup the environment of Angular
e The Compilation and Running process of angular
e Entire folder structure of Angular

e Basic use of the events and event handling

2.2 WHAT AND WHY FRAMEWORK

Angular is a modern web application platform. That promises to provide
developers with a comprehensive set of tools and capabilities to build large, complex
and robust applications. The core advantage of Angular is to make it possible to
build applications that work for any platform like mobile, web, or desktop. The
Angular team has focused on building much more than a robust application

framework.
2.2.1 WHY ANGULAR

To build web applications that can meet the needs of users is not a small
task. The quality and complexity of applications is ever increasing, and so are users
expectations for quality and capabilities. Angular exists to help developers deliver

applications to meet these demands.

Angular is inspired by web standards, enhanced by modern capabilities
Angular tries to design its framework and the development process around
common standards like the latest JavaScript language features, using modern

capabilities like Typescript.

Development tooling included, customizations available
Angular provides a common developer experience through its CLI tooling

which includes the generating, building, testing and deploying apps.

58

Powerful ecosystem with a large community
Angular supports number of third-party libraries, Ul libraries, blog posts, and
events. Angulars active community provides a great foundation on which to learn

and should instill confidence that it will remain a valuable technology.

Sponsored by Google, open source community driven
The Google has a team of engineers, managers, and evangelists only

dedicated to bringing Angular to the rest of Google and the entire web community.

2.2.2 ANGULAR: A PLATFORM, NOT A FRAMEWORK

Some important distinctions between a framework and a platform are a
frame-work is usually just the code library used to build an good application,
whereas a platform is more holistic and includes tooling and support beyond a
framework. Angular was focused solely on building web applications in the browser
and was clearly a frame-work. It had a large ecosystem of third-party modules that
could be easily used to add features to your application, but at the heart of it all, it
simply built web applications in the browser. Angular comes with a leaner core
library and makes additional features available as separate packages that can be
used as needed. It also has many tools that push it beyond a simple framework,
including the following features:

e Dedicated CLI for application development, testing, and deployment
¢ Offline rendering capabilities on many back-end server platforms
e Desktop-, mobile-, and browser-based application execution environments

e Comprehensive Ul component libraries, such as Material Design

2.3 DOWNLOADING AND INSTALLING ANGULAR

Angular helps to you build dynamic applications for mobile, web and desktop.
The following steps shows you how to install and build you app in angular.
AngularJS is based on MVC, whereas Angular 2 is based on component structure.
But the version Angular 4 works on the same structure as Angular2 but is faster

when compared to Angular2.

59

Angular4 uses TypeScript 2.2 version whereas Angular 2 uses TypeScript
version 1.8. This brings a lot of difference in the performance. To install Angular 4,
the Angular team came up with Angular CLI which eases the installation. You need

to run through a few commands to install Angular 4.
Follow the Following steps to install Angular 4.
Step 1: Install the nodejs and npm

We first need to install nodejs and npm with latest version to get started installation

of Angular. The npm package gets installed along with node;js.
To download node js go to the nodejs site
https://nodejs.org/en/

Angular requires nodejs version 8.x or 10.x.

e To check your version, run node -v in a terminal/console window.

BN C\Windows\system32icmd.exe | SO -53-]

Microsoft Windows [Uersion 6.1.766811
opyright (c> 2889 Microsoft Corporation. All rights reserved.

m| s

sUzerssHNiravinode —v
3

UserssHivav’

Figure-12 Console

To check the version of npm, type command npm —v in the consol. It will display the

version of npm as shown below.

60

BN C\Windows\system32icmd.exe lﬂ‘i‘]

m|» |

SsUserssNiravinpm —v
T T

SsUserssNirav?>

Figure-13 Check Version
Step 2: Install the Angular CLI(Command Line Interface)

Now that we have nodejs and npm installed as step 1 shown, let us run the angular
cli commands to install Angular 4. You use the Angular CLI to create projects,
generate application and library code, and perform a variety of ongoing development

tasks such as testing, bundling, and deployment.Install the Angular CLI globally.

To install the CLI using npm, open a terminal/console window and enter the

following command:
npm install -g @angular/cli
Step 3: Create a workspace and initialize application

Workspace contains the files structure for one or more projects. A project is the set

of files that comprise an app, a library tests.
To create a new workspace and initial app project:
Run the CLI command ng new and provide the name my-app, as shown here:

ng new first

61

It also creates the following workspace and starter project files:

e A new workspace, with a root folder named first
« Aninitial skeleton app project, also called first (in the src subfolder)
« An end-to-end test project (in the e2e subfolder)

o Related configuration files
Step 4: Serve the application
Angular includes a server, so that you can easily build and serve your app locally.

1. Go to the workspace folder (my-app).
2. Launch the server by using the CLI command ng serve, with the --open
option.

cd first

ng serve —open

Step 5: Edit the application

The project first is created successfully. Internaly its install all the package which are
required to Angular 4. Now we have to change the view and behavior of app so for
the need a one smart editor.You can use the IDE like Visual Studio Code IDE, Atom,

Webstrom, Sublime Text, etc.

To download the Sublime Text go to hitps://www.sublimetext.com/3 and click on

windows and download.

€ ca [oa v e @ fr| | Q. searcn m o =

Download Buy Support ‘ News Forum

Download

Sublime Text 3 is the current version of Sublime Text. For bleeding-edge releases, see the de

Introducing our Git client
’7 Sublime Merge

Version: Build 3207
10.7 or later is required)
o ows - also available as a portal sion
* Windows 64 bit - also available as a portable version

o Linux repos - also available as a 64 bit or 3. rball B)
For notification about new releases,
follow @sublimehq on twitter.
Sublime Text may be downloaded and evaluated for free, however a license must be pu sed for continued use. There is
currently no enforced time limit for the evaluation. OTHER DOWNLOADS

62

Opening Sublime Text Build 3207 Setup.exe |

You have chosen to open:
[57] Sublime Text Build 3207 Setup.exe

which is: Binary File (9.8 MB)
from: https://download.sublimetext.com

Would you like to save this file?

2.4 FIRST EXAMPLE IN ANGULAR

To create an application in Angular, Angular CLI is an awesome tool to start.

It creates fully functional well-structured project which we can take forward.
Only few steps are required to follow for first “Hello Wolrd” Example in Angular.

1. Check angular version using ng -v.

2. Create our first app using command ng new hello-world It will take a
while and create a fully-fledged app for you.

3. Now you will have your folder created called hello-world. Navigate to
it using cd hello-world and then do ng serve. You can see server is
started.

4. Open your browser and visit localhost:4200 You will see “App works”

printed on screen.

After performing this steps open your project in sublime or visual studio code
to use and understand the project structure.

The project structure of Angular 4 application which Angular CLI created for
us. We have already created HELLO-WORLD project, so we will use that project to
get idea about project structure.When we open the Angular 4 project in editor, we

can see three main folders e2e, node_modules, src and different configuration files.

- HELLO-WORLD

gitignore

i} angularjson

Figure-14 project structure of Angular 4 application

63

Following table describe the basic use of this files and folders.

File Name Purpose

E2e/ This folder contain the test cases from live the End-to-End

cycle covered.This must be a separate to test your app.

4 5rC

app.e2e-spec.ts

app-pos
45 protractor.

{} tsconfig.e2ejson

Node_modules Node.js creates this folder and puts all third party modules

listed in package.json .

4 node modules

angular-devkit

¥ . acoIm

» acom-dynamic-import

Src/ This folder contain different three folders: app, assets |,

environments

It also has other configuration files for src directory.

4 src

* app

b assets

> environments
browserslist
favicon.ico
indesxhtml
karma.confjs

$ main.ts

5 polyfills.ts

64

editor.config

It contains the setting of your editor. It has parameter like

style, size of character, line length.It works for UI.

.gitignore

We can define all the folders and files which we want to

exclude from our repository in our git.

karma.conf.js

It has configuration for writing unit tests. karma is the test
runner and it uses jasmine as framework. These both tester
and framework are developed by angular team for writing

unit tests.

package.json

The Jason based file contains all the dependency modules
which are required for our application. if you want to use _js
library or any other library just add name and version of that
dependency library in package.json and execute command
npm install. It will execute all the dependencies and
download in node_modules folder.

README.md

Is contains basic documentation for your project, pre-filled
with CLI command information. Just make sure to enhance
it with project documentation so that anyone checking out

the reputation can build your application.

protector.conf.js

It contains testing configurations.

tsconfig.json

The ts stands for typescripts. Typescripts are used for
developing angular applications since Angular 2 came out.

It contains the configurations for typescripts.

tslint.json

Used for building application with consistent code style. We
can change the configuration that defines how our

application should be build.

Src/favicon.ico

Its favicon icon for your website or an application.

Srcl/index.html

It contains html code with head, and body section. It is

starting point of your application.

Src/main.ts

It is starting point of typescript file in your angular
application. It contains library which are imported by your

angular project.

Src/polyfill.ts

It is used for browser compatibility.

Src/style.css

It has all the styles and css for your angular 4 project.

65

Srcltest.ts

This file is used to write unit tests.

Srcl/tsconfig.app.json

It contains the configuration about how your application

should compile.

App/*

This folder contains component and ts files.

4 51e

4 app
app-component.css

app.component.html

app.component.ts
app.component.spects
app.medule.ts

app /app.module.ts

It contains the entire library which are imported and used in
your angular 4 application. It's a root module that tells
Angular how to assemble the application. Currently it

declares only the App_componenet.

app/app.component.

{ts,html,css,spec.ts}

It has AppComponent with an HTML template, CSS style
sheet, and a unit test. It's the root component of what will
become a tree of nested components as the application

evolves.

assets/*

In this folder you can put images and anything else to be

copied wholesale when you build your application.

environments/*

In this folder one file for each of your destination
environments, each exporting simple configuration
variables to use in your application. The files are replaced
on-the-fly when you build your app. You might use a
different APl endpoint for development than you do for
production or maybe different analytics tokens. You might
even use some mock services. Either way, the CLI has you

covered.

Table-3 Use of Angular 4 application files and Folder

66

2.5 ANGULAR DIRECTIVES AND STRING INTERPOLATION

2.5.1 DIRECTIVES

Directives are the most fundamental unit of Angular applications. As a matter
of fact, the most used unit, which is a component, is actually a directive.
Components are high-order directives with templates and serve as building blocks of
Angular applications. Directives in Angular are a js class, which is declared as

@directive. We have 3 directives in Angular.

1. Components—directives with a template.

2. Structural directives—change the DOM layout by adding and removing DOM
elements.

3. Attribute directives—change the appearance or behavior of an element,

component, or another directive.
Component Directives

These form the main class having details of how the component should be

processed, instantiated and used at runtime.
Structural Directives

A structure directive basically deals with manipulating the dom elements. Structural

directives have a * sign before the directive. For example, *nglf and *ngFor.
Attribute Directives

Attribute directives deal with changing the look and behavior of the dom element.

You can create your own directives as shown below.

2.5.2 STRING INTERPOLATION

String interpolation is a part of data binding. Data biding is robust feature of
Angular, which allow us to communicate between the component and its view. Data

biding can be either one way or two way biding.

67

In one-way data binding, the value of the Model is inserted into an HTML
(DOM) element and there is no way to update the Model from the View. In two-
way binding automatic synchronization of data happens between the Model and

the View.

String Interpolation also known as Angular Interpolation, uses template
expressions in double curly {{ }} braces to display data from the component,
the special syntax {{ }}, also known as moustache syntax. The {{ }} contains
JavaScript expression which can be run by Angular and the output will be inserted
into the HTML.

Say if we put {{ 2 + 2 }} in the template 4 will be inserted into the HTML

String Interpolation Uses

Display main properties — Interpolation can be used to display and evaluate

strings into the text between HTML element tags and within attribute assignments.

Sample Example:

<h1>Hello {{ name }}.....! </h1>

Evaluate arithmetic expressions — Another usage of interpolation is to evaluate

arithmetic expressions present within the curly braces.

Sample Example:

<h2>{{3 + 3}}</h2> //outputs 6 on HTML browser

Display array items — We can use interpolation along with ngFor directive to

display an array of items.

DomainObject.ts
export class DomainObject

{

constructor(public id: number, public name: string) {

68

/lcode

app.component.ts

import { DomainObiject } from './domain’;

@Component({
selector: 'app-root',
template:
<h1>{{title}}</h1>
<h2>The name is : {{domainObjectitem.name}}</h2>
<p>Data Items:</p>

<li *ngFor="let d of domainObjects">
{{ d.name }}

})

export class AppComponent

{
title = 'App Title";

domainObijects = [

new DomainObject(1, 'A"),
new DomainObject(2, 'B'),
new DomainObject(3, 'C"),
new DomainObiject(4, 'D")

domainObijectltem = this.domainObjects[0];

}

69

2.6 ANGULAR EVENT

Angular event is known as Angular event binding. Event binding is used to
build interactive web application with the flow of data. The flow of data various from

component to element and from element to component.

In some cases user will not only just view the information or data on web
application, but also would like to interact with these application using different user

action like clicks, keystrokes and change event.

To define event binding syntax will have a target event name within
parentheses on the left of an equal sign, and a quoted template statement on the

right.

Syntax: (name of event)

Example: onclick()

Lets consider an example where we are binding an event Onlick() on button
element. When user click on button, event binding listens to the button’s click event

and calls the components onClick() method.

File name: ex.componet.ts

import { Component } from "@angular/core";

@Component({

selector: 'app-ex’,

template: -

<div>

<button (click)="onClick()">Click Here!</button>

</div>

70

)

export class ExComponent {
onClick(){

alert("You Clicked on button!");

Angular also provides the different way to handle events.
Target Event Binding

The target event is identified by the name within the parenthesis, ex: (click), which
represents the click event. In the example, above we saw the target click event

bound to the 'onClick()' method, which will listen to the button's click event.
<button (click) = "onClick()">Click me!</button>

We can also use the prefix on-, in event binding this is known as canonical form.
<button on-click = "onClick()">Click me!</button>

If the name of the target event does not match with the element's event, then

Angular will throw an error "unknown directive".

2.7 LET US SUM UP

» Angular is a modern web application platform. That promises to provide
developers with a comprehensive set of tools and capabilities to build large,
complex and robust applications

» The Angular quality and complexity of applications is ever increasing, and so
are users expectations for quality and capabilities

71

» Angular provides a common developer experience through its CLI tooling
which includes the generating, building, testing and deploying apps.

» Angular supports number of third-party libraries, Ul libraries, blog posts, and
events

» Angular comes with a leaner core library and makes additional features
available as separate packages that can be used as needed.

» Angular4d uses TypeScript 2.2 version whereas Angular 2 uses TypeScript

version 1.8
» To setup the Angular 4 need to install nodejs and npm.
» Angular works on command thatswhy need the CLI.
» Angular project is known as workspace.
» The description knowledge of files and folder of angular project is important.
» All the files and folder have a meaning ful files
» Angular supports the three types of directives.
» String Interpolation also known as Angular Interpolation, uses template

expressions in double curly {{ }} braces to display data from the component,

» String Interpolation also evaluated the string expression.

2.8 CHECK YOUR PROGRESS

Give the answer of the following MCQ.

1. is @ modern web application platform.
A.JS C. ANGULARJS
B. ANGULAR D. JAVA

2. Angular sponsored by the
A. Yahoo C. Google
B. Bing D. Amazon

3. Angular CLI need the nodejs and
A. HTTP C.NPM
B. MMP D. DSN

72

4. To serve the angular command is used.
A. ng serve C.ng

B. serve D. ds Server

5. Angular events known as angular event

A. Binding C. Serve
B. Lunching D. Start
6. can be used to display and evaluate strings into the text between HTML

element tags and within attribute assignments.

A. String C. Binding
B. Interpolation D. Event
7.A directive basically deals with manipulating the dom elements.
A. Attribute C. Structure
B. DOM D. Property
8. Angular Supports the types of directives.
A.3 C.2
B.4 D.5
9. folder contain different three folders: app, assets , environments

It also has other configuration files for src directory.
A. Src C. Main
B. App D. Project

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWER

Give the answer of the following MCQ.

1. ANGULAR 4. ng serve 7. Structure
2. Google 5. Binding 8.3
3. NPM 6. Interpolation 9. Src

56

2.10 ASSIGNMENTS

Write the answer for the following questions.

1. What is Framework?

2. State the reason: Angular is a platform not a framework.

3. Write down the steps for angular setup.
4. Explain the file structure of angular application.
5. Explain the string interpolation with example.

6. Explain the event with sample code.

76

3

Unit 3: Introduction to MVC

Unit Structure

3.1 Learning Objectives

3.2 Design Pattern

3.3 The Model View Controller

3.4 Introduction to the Pipes

3.5 Custom Pipes

3.6 Event binding

3.7 LetUs Sum Up

3.8 Check Your Progress

3.9 Check Your Progress: Possible Answer

3.10 Assignments

7

3.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:
e The complete design pattern of MVC.
e Architecture of MVC in detail.
e Various use of pipes in angular applications.
¢ How to create the custom pipes.

e How to handle the user interaction on screen means event handling.

3.2 DESIGN PATTERN

Angular (Angular 2, 4, 5, 6...) is a new framework completely rewritten from
the ground up, replacing the now well-known AngularJS framework (Angular 1.x).
More that just a framework, Angular should be considered as a whole platform which

comes with a complete set of tools like its own CLI, debug utilities or performance

tools.
Angular was designed for the use of design patterns you may not be
accustomed to, like reactive programming, unidirectional data flow and

centralized state management.

Reactive programming

The Angular is now a reactive system by design. Although you are not forced to use
reactive programming patterns, they make the core of the framework and it is
definitely recommended to learn them if you want to leverage the best of
Angular.Angular uses RxJS to implement the Observable pattern.An Observable is a

stream of asynchronous events that can be processed with array-like operators.

Unidirectional data flow

The AngularJS where one of its selling points was two-way data binding which
ended up causing a lot of major headaches for complex applications, Angular now
enforces unidirectional data flow. It means that change detection cannot cause

cycles, which was one of AngulardS problematic points. It also helps to maintain

78

simpler and more predictable data flows in applications, along with substantial
performance improvements.

Centralized state management

As applications grow in size may be complex, keeping track of the all its individual
components state and data flows can become tedious, and tend to be difficult to
manage and debug. The main goal of using a centralized state management is to
make state changes predictable by imposing certain restrictions on how and when
updates can happen, using unidirectional data flow.

3.3 THE MODEL VIEW CONTROLLER

Generally AngulardS follows the MVC architecture, the diagram of the MVC

framework as shown below.

Figure-15 MVC Framework

Models are used to represent your real data. The data in your model can be
as simple as just having primitive declarations. If you are maintaining a employee
application, your data model could just have a empid and empname.

Views are used to represent the presentation layer which is provided to the

end users.

79

The Controller represents the layer that has the business logic. User events
trigger the functions which are stored inside your controller. The user events are part

of the controller.

Angular Architecture

Depends on the Component classes.The Architecture of an Angular Application is
based on the idea of Components. An Angular application starts with a Top level
component called Root Component. Every Angular application has at least one
component, the root component that connects a component hierarchy with the page
document object model (DOM). Each component defines a class that contains
application data and logic, and is associated with an HTML template that defines a

view to be displayed in a target environment.

The @Component() decorator identifies the class immediately below it as a

component, and provides the template and related component-specific metadata.

Main part of the development with Angular 4 is done in the components.
Components are basically classes. That classes are interact with the .html file of the
component, which gets displayed on the browser. The file structure has the app

component and it consists of the following files

e app.component.css

e app.component.html

e app.component.spec.ts
e app.component.ts

e app.module.ts

if we open the app.module.ts which shows some libraries which are imported like

80

BrowserModule } fron
NgModule } from

I
L
¥
L

{ AppRoutingModule } f
{ AppComponent } from °

@hgModule({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
AppRoutingModule

1.

providers: [],

bootstrap: [AppComponent]

The declaration becomes the parent component. This include the AppComponent

variable. This is in build component. If you would like to create a component form

command line then follows this syntax.

ng g component new-cmp

When you run the above command in the command line, you will receive the

following output

installing component

create src\app\new-cmp\new-cmp.component.css

create src\app\new-cmp\new-cmp.component.html

create src\app\new-cmp\new-cmp.component.spec.ts

create src\app\new-cmp\new-cmp.component.ts

update src\app\app.module.ts

The following files are created in the new-cmp folder

new-cmp.component.css — css file for the new component is created for the

new-cmp.component.html — html file is created for the Interface.
new-cmp.component.spec.ts — this can be used for unit testing.

new-cmp.component.ts — used to define the module, properties, etc.

81

3.4 INTRODUCTION TO PIPES

Pipes were earlier called filters in Angular1 and called pipes in Angular 2 and
4+ .Sometimes application starts out with what seems like a simple task: get data,
transform them, and display them to users. Getting data could be as simple as

creating a local variable or as complex as streaming data over a WebSocket.

Once data arrives, you could push their raw toString values directly to the

view, but that rarely makes for a good user experience.

For example, in most use cases, users prefer to see a date in a simple format
like April 15,2019 rather than the raw string format Fri Apr 15 2019 00:00:00 GMT-
0700 (Pacific Daylight Time).

Angular pipes is used display-value transformations that you can declare in

your HTML. The |(pipe sign) character is used to transform data.

Example:

{{ Hello World | lowercase}}

Using Pipes

Pipes takes any integers, strings, arrays, and date as input separated with | to be

converted in the format as required and display the same in the browser.

In the app.component.ts file, we have defined the title variable

The following line of code goes into the app.component.html file.

Welcome to {{ title | uppercase }}!

Welcome to {{ title | lowercase }}!

82

Will convert the title variable in uppercase and lowercase.

A pipe takes in data as input and transforms it to a desired output. In next example

pipes to transform a component's birthday property into a human-friendly date.

In component.ts file

export class A

birthday

1
J

Component.html will be look like

Todays date is {Ibirthday | datd 1H!

Built-in Pipes

Angular comes with a stock of pipes such as DatePipe, UpperCasePipe,

LowerCasePipe, CurrencyPipe, and PercentPipe. They are all available for use in

any template.

Pipe Usage Example

DatePipe date {{ dateObj | date }} output is 'Jun 15, 2015’

UpperCasePipe uppercase {{ value | uppercase }} | outputis 'SOMETEXT'

LowerCasePipe lowercase {{ value | lowercase }} | output is 'sometext’

CurrencyPipe currency { 31.00 | | outputis '$31'
currency:'USD"true }}

PercentPipe percent {{ 0.03 | percent }} output is %3

Table-4 Usage of Angular Pipes

83

Example of Built in pipes

Componenet.ts file

t { Component } from

t({
selector:
templateUrl:

styleUrls: [°.

Component.html file

On {reservationMade | date} at {reservationMade ate: 'shortTime'} you

reserved room 285 for {reservationDate | date} for a total cost of
{cost | currkncy}.

Output

Welcome back Nirav Suthar

On Jun 26, 2016 at 7:18 you reserved room 205 for Nov 14, 2025 for a total cost of
$99.99.

Parameterizing a pipe

A pipe can accept any number of optional parameters to output. To add parameters
to a pipe, follow the pipe name with a colon (:) and then the parameter value (such
as currency:'EUR'). If the pipe accepts multiple parameters, separate the values with

colons (such as slice:1:5)

84

Component.html file

<p>Your birthday is {{ birthday | date:"MM/dd/yy" }} </p>

The parameter value can be any valid template expression, such as a string literal or
a component property. In other words, you can control the format through a binding

the same way you control the birthday value through a binding.

Chaining Pipe

Pipes may be chained. The combination of more then one pipe is called chaining

pipe. we can use chain pipes together in potentially useful combinations.

Component.html

<p>your birthday is
{{ birthday | date | uppercase}}</p>

This example—which displays FRIDAY, APRIL 15, 2019

chains the same pipes as above with passes in a parameter to date as well.

<p>your birthday is
{{ birthday | date:'fullDate' | uppercase}}</p>

3.5 CUSTOME PIPES

You can write your own custom pipes. To create a custom pipe, we have to

create a new ts file.

Steps to create a new custom pipe:

1. Create a new ts file which you want to use as pipe.
2. Add custom created pipe in to module.ts file

3. Use pipe name in component.html file.

85

Below example shows how to create a custom pipe.

Here, we want to create the cube custom pipe. We have given the same name to

the file and it looks as follows

app.cube.ts

import {Pipe, PipeTransform} from '@angular/core’;
@Pipe ({
name : 'cube’
})
export class cubePipe implements PipeTransform {
transform(val : number) : number {

return Math.cbrt(val);

To create a custom pipe, we have to import Pipe and Pipe Transform from

Angular/core. In the @Pipe directive, we have to give the name to our pipe, which

will be used in our .html file. Since, we are creating the cube pipe, we will name it

cube.

As we proceed further, we have to create the class and the class name is cubePipe.

This class will implement the PipeTransform.

we need to add the same in app.module.ts. This is done as follows -

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core";

import { AppComponent } from './app.component’;

import { NewCmpComponent } from './new-cmp/new-cmp.component’;
import { ChangeTextDirective } from './change-text.directive',

import { cubePipe } from './app.cube’;

86

@NgModule({
declarations: [
cubePipe,
AppComponent,
NewCmpComponent,

ChangeTextDirective

1,

imports: [
BrowserModule

],
providers: [],

bootstrap: [AppComponent]

1
export class AppModule { }

now to call cube file in app.component.html file

<h1>Custom Pipe</h1>
Cube root of 64 is: {{64 | cube}}

Will give the output as Cube root of 64 is 4

3.6 EVENT BINDING

Event binding refers to the data binding. Data binding is very important
feature of Angular. Data binding is used for front-end framework, Interpolation and

property binding in Angular.
Data can be bind in form of Event binding and two-way binding.
Event Binding in Angular

A user expects a Ul to respond to her/his actions on the single page. Every

such action would trigger an event on the page and the page has to respond by

87

listening to these events. The event binding system provides us the way to attach a
method defined in a component with an event. Event binding is built on top of the

events defined in the DOM objects.

With Angular, there are two ways to handle an event on an HTML element.
The following line of code shows both the ways for handling a click event on a
button:

<button class="btn' (click)="save()'>Save</button>

<button class="btn' on-click="save()'>Save</button>

The method save has to be defined in the component class. Any DOM event
can be either prefixed with on- or can be enclosed inside parentheses to bind it with

a method in the component class.

Functionally there is no difference in the two ways of handling events, you
can choose the one you like, and use it. As the process of handling events doesn'’t
involve any abstractions which has to be written for any event on the page, this
model is extensible. Any new events added to a DOM element can be bound to
functions in the component using this syntax without writing any piece of new code.
Events can be used to run a piece of logic based on the action taken by the user. It
may include changing values of a few fields in the component, posting data to a
REST API, moving to a different page or anything else. As the events directly

correspond to the browser’s events, every event adds an entry to the event loop.

All of this means Angular's change detection cycle runs whenever an event is
triggered. So, any values modified by the event handler will be detected by the

change detection system and the changes are applied on the page.
The following component shows an example of event binding:

@Component({
selector: 'app-demo’,
template: “<div>{{submitText}}</div>

<button class="btn" (click)='save()'’>Save</button>"

88

})

export class DemoComponent {

public submitText: string = 'Not submitted yet.";

save(f

this.saveText = 'Submitted successfully!’;

}
}

The above component has a div element and a button. The div element has an
interpolation applied, text of the interpolated expression is modified in the click event
handler of the button. You will see that the text inside the expression is modified

after clicking the button.

If an event has to perform a single action like changing a simple value, it can be
done in the HTML instead of writing a separate method. The following snippet shows

an example:
<button class='btn' (click)="color="green">Save</button>

But if the event involves a few more lines of logic, it should be kept outside HTML to
separate the concerns. This way, the code in the event handler can be unit tested as
well. The event handling method gets access to the event object, which is same as
the object passed into any DOM event handler. This object gives us access to the
information about the event. The following snippet shows how to pass the event

object from HTML to the event handling object:
<button class='btn' (click)="save($event)'>Save</button>

The $event object is same as the object that the browser sends when an event is
triggered on an HTML element. We can get details of the event like source of the
event, target element, type of the event, co-ordinates on the page and screen where
the event triggered, as well as many other details.

89

The following snippet shows a component handling two events on a button:

@Component({
selector: 'app-demo’,
template: “<div>{{saveText}}</div>
<button class="btn" (click)="save($event)'
(mousemove)="mouseMove($event)">Save</button>
<div>{{x}} {{y}}</div>"
1
export class DemoComponent {
public submitText: string = 'Not submitted yet.";
public x: number;

public y: number;

submit($event: Event){
this.saveText = 'Submitted successfully!’;

console.log($event);

}

mouseMove($event: MouseEvent) {
this.x = $event.x;
this.y = $event.y;
}
}

The component in the above snippet has a button, on which the click and mouse
move events are handled using methods in the component. The click event changes
the text displayed in the div element and the mouse move event updates values of

the co-ordinates displayed on the screen.
Two-way Binding in Angular

The feature two-way binding in Angular is derived from the property and event
bindings. The property and event bindings are directed one way with the former

receiving data into view from the component object and the later sending data from

90

the view to the component. The two-way binding is a combination of these two
bindings; it gets the data from the component object to the view and sets the data

from view to the component object.

The following line of code shows an example of a directive, ngModel to show

how two-way binding can be used:

Name: <input type="text" [(hgModel)]="name" />

<div>{{name}}</div>

The field name is two-way bound on the input box. When it is rendered on a
page, it shows the existing value of the field and when the value is modified on the
screen, it updates the value in the field. The change in the value of the field is
immediately reflected in the interpolation in the div element next to the input
control.To use the ngModel directive, the FormsModule has to be added to the
application’s module. The following snippet shows the application module using the

FormsModule:

import { NgModule } from '@angular/core’;
import { BrowserModule } from '@angular/platform-browser’;
import { FormsModule } from '@angular/forms'; // Importing forms module to this

file

import { AppComponent } from './app.component’;
import { DemoComponent } from './demo.component’;
@NgModule({
imports: [
BrowserModule,
FormsModule // Importing forms module to application module
1,
declarations: [
AppComponent,
DemoComponent

1,
bootstrap: [AppComponent]

91

})

export class AppModule { }

The following component uses the ngModel directive:

@Component({

selector: 'app-demo’,

template:

Name: <input type="text' [(hgModel)]='name' />

<div>Name is: {{name}}</div>

})

export class DemoComponent {

public name: string = "Virat";

}

The textbox is bound to the field name in the template. When you type something in

the textbox, you will see that the content in the div changes automatically.

3.7 LET US SUM UP

>

Y Y VY

Angular (Angular 2, 4, 5, 6...) is a new framework completely rewritten from
the ground up, replacing the now well-known AngularJS framework (Angular
1.x)

Angular was designed for the use of design patterns

The Angular is now a reactive system by design

The AngularJS where one of its selling points was two-way data binding
which ended up causing a lot of major headaches for complex applications,
Angular now enforces unidirectional data flow.

The main goal of using a centralized state management is to make state
changes predictable by imposing certain restrictions on how and when
updates can happen, using unidirectional data flow.

Models are used to represent your real data. The data in your model can be

as simple as just having primitive declarations. If you are maintaining a

92

employee application, your data model could just have a empid and
empname.

» Views are used to represent the presentation layer which is provided to the
end users.

» The Controller represents the layer that has the business logic. User events
trigger the functions which are stored inside your controller. The user events
are part of the controller.

> Architecture of an Angular Application is based on the idea of Components.
An Angular application starts with a Top level component called Root
Component

» The @Component() decorator identifies the class immediately below it as a
component, and provides the template and related component-specific
metadata.

> Pipes were earlier called filters in Angular1 and called pipes in Angular 2 and
4+.Sometimes application starts out with what seems like a simple task: get
data, transform them, and display them to users.

» Pipes may be a user pipes, buil-in pipes and custom pipes.

» Event binding refers to the data binding. Data binding is very important
feature of Angular. Data binding is used for front-end framework, Interpolation
and property binding in Angular.

» The event binding system provides us the way to attach a method defined in
a component with an event. Event binding is built on top of the events defined
in the DOM objects.

3.8 CHECK YOUR PROGRESS

1. The Angular is now a system by design.
A. reactive C. structure
B. template D. dynamic

2. MVC stands for

93

3. are used to represent the presentation layer which is provided to the end

users.
A. Model C. Controller
B. View D. Server

4. The represents the layer that has the business logic
A. Model C. Controller
B. View D. Layer

5. DOM stands for

6. Components are basically
A. Union C. Classes
B. Objects D. Strucure

7. Pipes are also known as

A. filters C. conditions
B. looping D. comments
8. takes any integers, strings, arrays, and date as input separated with | to be

converted in the format as required and display the same in the browser.
A. looping C. pipes

B. comments D. var

9. A pipe can accept any number of optional parameters to output is known as
A. parameter pipe C. buil-in pipes

B. custom pipe D. pipe
10. Create a new ts file which you want to use as pipe is a part of)

A. parameter pipe C. built-in pipes
B. custom pipe D. pipe

94

3.9 CHECK YOUR PROGRESS:POSSIBLE ANSWER

1. reactive 6. Classes

2. Model View Controller 7. Filters

3. View 8. pipes

4. Controller 9. parameter pipe
5. Document Object Model 10. custom pipe
3.10 ASSIGNMENTS

Write the answer for the following questions.

1. Explain the MVC in detail.

2. What is pipes in angular.

3. Explain how to use pipes and also explain the built in pipes with example.
4. What is custom pipes write down the sample code for it.

5. What is event binding? Explain the two way event binding in detail.

95

Unit 4: Angular Directives

Unit Structure

41

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Learning Objectives

Introduction to Directives

Using the Directives

Structure Directives

Attribute Directives

Let Us Sum Up

Check Your Progress

Check Your Progress: Possible Answer

Assignments

96

4.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:
e What is Directives and how useful in angular app.
e How to use the directives.
e The use of Ngif, Ngfor and Ngswitch with example.
e How to create a different CSS files to define the style in HTML.

4.2 INTRODUCTION

In a programming structure class is very important concept. Directives in
Angular is a js class which is declared as @directive. A directive is a custom HTML
element that is used to extend the power of HTML. Angular provides a number of
built-in directives, which are attributes we add to our HTML elements that give us

dynamic behavior.

Angular Directive is basically a class with a @Directive decorator.
Decorators are functions that modify JavaScript classes. Decorators are used for
attaching metadata to classes, it knows the configuration of those classes and how
they should work. a component is also a directive-with-a-template. A @Component
decorator is actually a @Directive decorator extended with template-oriented
features. Angular renders a directive, it changes the DOM according to the
instructions given by the directive. Directive appears within an element tag similar to

attributes.

There are three kinds of directives in Angular:

et — Directives — o

Component Directives Structural Directives Attribute Directives

Figure-16 Angular Directives

97

1. Components directives—directives with a template, how the component
should be processed, instantiated and used at runtime..

2. Structural directives—change the DOM layout by adding and removing DOM
elements. It is denoted by using * sign.

3. Attribute directives—change the appearance or behavior of an element,

component, or another directive.

4.3 USING COMPONENT DIRECTIVES

The Component processed is processed by component directives. It is mainly
used to specify the HTML templates. It is the most commonly used directive in an
Angular project. It is decorated with the @component decorator. This directive is a
class. The component directive is used to specify the template/HTML for the Dom

Layout. Its built-in is @component.

e app.component.css: contains all the CSS styles for the component

e app.component.html: contains all the HTML code used by the component to
display itself

e app.component.ts: contains all the code used by the component to control its

behavior

A root component is the first Angular component that gets bootstrapped when

the application runs. Two things are special about this component:

First, if you open the application module file src/app/app.module.ts

£ BrowserModule }
£ NgModule } from

{ AppRoutingModul
f AppComponent }

@NgModule {

declarations: [
AppComponent

1-

imports: [
BrowserModule,
AppRoutingModule

1-

providers: [].

bootstrap: [AppComponent]

98

Added to the bootstrap array of the module definition.

Second, if you open the src/index.html file

y charset="utf-8"
=>HelloWorld
href="/"

sppe// coponent directives
Hello This shows the coponent directives

n (elick)="print()">print
prHello Worldssssssssssssss

it's called inside the document <body> tag.

Now, let's open the component file src/app/app.component.ts,

import { Component } from '@angular/core;

@Component({
selector: 'my-app’,
template: "<h2>{{title}}</h2>
<p *nglf="showElement">Show Element</p>

<div [ngSwitch]="inpvalue">

<p style='color:blue' *ngSwitchCase="1">You have selected Aadhar Card</p>

<p style='color:blue' *ngSwitchCase="2">You have selected Passport</p>
<p style='color:blue’ *ngSwitchCase="3">You have selected Voter ID</p>

<p style='color:red' *ngSwitchDefault>Sorry! Invalid selection....</p>

99

export class AppComponent {

inpvalue: number = 4;

}

In decorator part that is @component is the component decorator. We had
customized own selector my-app to map in HTML files. In the template, | put the
name property which will fetch its value from the name string from AppComponent

class.

Output

html - How to embe X A Angular - Introduct X g HelloWorld X

&« G @& (© localhost:4200

Sorry! Invalid selection. ...

4.4 STRUCTUREL DIRECTIVES

The structural directive is used to add or remove the HTML Element in the
Dom Layout, typically by adding, removing, or manipulating elements... Its built-in
types are *Nglf,*NgFor,*NgSwitch. Structural directives are easy to recognize by
using an asterisk (*).

Types of built-in structural directive

e NgFor
e NgSwitch
Nglf

It is used to create or remove a part of the DOM tree depending on a condition.

100

import { Component } from '@angular/core;

@Component({
selector: 'my-app’,

template: "<div style='color:blue' *nglf="true">You can See Passport....</div>"

)

export class AppComponent {
inpvalue: number = 2;

}

Here If ngif= true the text will be visible on the web page.

NgFor

It is used to customize data display. It is mainly used for displaying a list of items

using repetitive loops.

App.component.ts file

import { Component } from '@angular/core’;

@Component({

selector: 'my-app’,

templateUrl: './app.component.html’,
})
export class AppComponent {

cust: any[] = [

{

code: '1001', name: 'Nirav', gender: '‘Male',
total: 1255, dateOfBirth: '25/6/1990"

code: '1002', name: 'Pooja’, gender: 'Female’,
total: 1355, dateOfBirth: '9/6/1992'

101

code: '1003', name: 'Nishant', gender: 'Male',
total: 1455, dateOfBirth: '12/8/1995'

code: '1004', name: 'Neha', gender: 'Female’,
total: 1555, dateOfBirth: '14/10/1989'

App.component.html

DOCTYPE html
html
head
title></title
meta charset="utf-8"
style
table {

font-family: arial, sans-serif;

border-collapse: collapse;
width: 100%;

td, th {
border: 1px solid #dddddd;
text-align: left;

padding: 8px;

tr:nth-child(even) {
background-color: #dddddd;
}
style
head
body
table ="center" ="1" cellpadding="4" cellspacing="4"
thead
tr
th style="background-color: Yellow;color: blue">Cust_Code</th
th style="background-color: Yellow;color: blue">C_Name</th
th style="background-color: Yellow;color: blue">C_Gender</th
th style="background-color: Yellow;color: blue">Total</th
th style="background-color: Yellow;color: blue">Date of Birth</th
tr
thead
tbody

tr *ngFor='let ¢ of cust'
td>{{c.code}}</td
td>{{c.name}}</td
td>{{c.gender}}</td
td>{{c.total}}</td
td>{{c.dateOfBirth}}</td

Output

« c @ @ localhost4200 s Search In @ =

Cust_Code C_Name C_Gender Total Date of Birth
1001 Nirav Male 1255 25(6/1990
1002 Pooja Female 1355 9/6/1992
1003 Nishant Male 1455 12/8/1995

1004 Neha Female 1555 14/10/1989

Ngswitch

A structural directive that adds or removes templates when the next match

expression matches the switch expression.

The [ngSwitch] directive on a container specifies an expression to match against.

The expressions to match are provided by ngSwitchCase directives on views within

the container.

o Every view that matches is rendered.
« If there are no matches, a view with the ngSwitchDefault directive is rendered.
« Elements within the [NgSwitch] statement but outside of any NgSwitchCase

or ngSwitchDefault directive are preserved at the location.

import { Component } from '@angular/core’;

@Component({
selector: 'my-app’,
template: "<h2>{{title}}</h2>

<div [ngSwitch]="inpvalue">

<p *ngSwitchCase="1">Monday</p>

<p *ngSwitchCase="2">Tuesday</p>

<p *ngSwitchCase="3">Wednesday</p>

<p *ngSwitchDefault>Sorry Invalid selection!!</p>
</div>’

1)

export class AppComponent {

104

inpvalue: number = 1;

&« ¢ @ @ localhost:4200 {4 Searc n @

4.5 ATTRIBUTE DIRECTIVES

The attribute directive changes the appearance or behavior of a DOM
element. These directives look like regular HTML attributes in templates. The
ngModel directive which is used for two-way is an example of an attribute directive.
Some of the other attribute directives are listed below:

« NgStyle: Based on the component state, dynamic styles can be set by using
NgStyle. Many inline styles can be set simultaneously by binding to NgStyle.
« NgClass: It controls the appearance of elements by adding and removing

CSS classes dynamically.
NgStyle

Ngstyle used to change the look and feel of elements.The NgStyle directive
lets you set a given DOM elements style properties. One way to set styles is by

using the NgStyle directive and assigning it an object literal.

<div [ngStyle]="{'background-color":'red'}"></<div>

This will change the div background color to red.

ngStyle is a very useful when its value is dynamic. The values in the object literal
that we assign to ngStyle can be javascript expressions which are evaluated and the

result of that expression is used as the value of the css property.

105

like this:
<div [ngStyle]="{'background-color'person.country === 'USA' ? 'green' : 'red'

y'></<div>

The above code uses the ternary operator to set the background color to green if
the persons country is the USA else red.But the expression doesn’t have to be

inline, we can call a function on the component instead.

To demonstrate this lets define full example.

DOCTYPE html

htm

head
title></title

head

body

div [style.background-color]="yellow
Uses fixed yellow background
div
body
html

Output

& ¢ @ @ localhost:4200 r Search L INn @ =

Uses fixed vellow background

Another way to set fixed values is by using the NgStyle attribute and using key value
pairs for each property you want to set, like this:

DOCTYPE html
htm

head
title></title

106

head
body

div [ngStyle]="{color: 'white', 'background-color": 'blue'}"

Uses fixed yellow background
div
body
html

Here we are setting both the color and the background-color properties. But the real

power of the NgStyle directive comes with using dynamic values.

In our example, we are defining two input boxes with an apply settings button:
DOCTYPE html
htm
head
title></title
head
body

div class="ui input"
input type="text" name="color" value="{{color}}" #colorinput
(o[\Y;
div class="ui input"
input type="text" name="fontSize" value="{{fontSize}}" #fontinput

(o[\Y;

button class="ui primary button" (click)="apply(colorinput.value,

fontinput.value)"

Apply settings

button

107

html

This will apply the color and fontsize after apply button click on element.

NgClass

The NgClass directive, represented by a ngClass attribute in your HTML template,
allows you to dynamically set and change the CSS classes for a given DOM
element.

The first way to use this directive is by passing in an object literal. The object is
expected to have the keys as the class names and the values should be a
truthy/falsy value to indicate whether the class should be applied or not.

Let's assume we have a CSS class called bordered that adds a dashed black border

to an element:
Src/style.css

.bordered {

border: 1px dashed black;

background-color: #eee; }

Let's add two div elements: one always having the bordered class (and therefore

always having the border) and another one never having it:

componenet.html
<div [ngClass]="{bordered: false}">This is never bordered</div>

<div [ngClass]="{bordered: true}">This is always bordered</div>

4.6 LET US SUM UP

» Directives in Angular is a js class which is declared as @directive. A directive
is a custom HTML element that is used to extend the power of HTML. Angular
provides a number of built-in directives, which are attributes we add to our
HTML elements that give us dynamic behavior.

» Decorators are functions that modify JavaScript classes. Decorators are used
for attaching metadata to classes, it knows the configuration of those classes
and how they should work. a component is also a directive-with-a-template.

» Three types of directives-Component, Structural, Attribute

108

» Components directives—directives with a template, how the component
should be processed, instantiated and used at runtime..

» Structural directives—change the DOM layout by adding and removing DOM
elements. It is denoted by using * sign.

» Attribute directives—change the appearance or behavior of an element,
component, or another directive.

» The component directive is used to specify the template/HTML for the Dom
Layout.

» The structural directive is used to add or remove the HTML Element in the
Dom Layout, typically by adding, removing, or manipulating elements... Its
built-in types are *Nglf,*NgFor,*NgSwitch. Structural directives are easy to
recognize by using an asterisk (*).

» The attribute directive changes the appearance or behavior of a DOM
element. These directives look like regular HTML attributes in

templates(Ngstyle,Ngclass)

4.7 CHECK YOUR PROGRESS

1. in Angular is a js class which is declared as @directive.
A. Style C. Structure
B. Template D. Directives
2. Directives are declared by using symbol.
A $ C.!
B.@ D. &
3. directives with a template, how the component should be processed,

instantiated and used at runtime.

A. Component C. Attribute

B. Structure D. Class
4. change the appearance or behavior of an element, component, or another
directive.

A. Component C. Attribute

B. Structure D. Class

109

5. app.component.css: contains all the for the component.

A. html file C. css style
B. ts file D. confing file
6. Structural directives are easy to recognize by using an symbol.
A & C. .
B. # D.*
7. is used to create or remove a part of the DOM tree depending on a condition.
A. ngif C. ngstyle
B. ngswitch D. ngfor

controls the appearance of elements by adding and removing CSS

classes dynamically.

A. ngstyle C. ngswitch
B. ngclass D. ngif
9. app.component.ts: contains all the used by the component to control its
behavior.
A. html C. code
B.ts D. css
10. are functions that modify JavaScript classes.
A. Style C. Decorators
B. JS D. Server

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWER

1. Directives 6. *

2. @ 7. ngif

3. Component 8. ngclass

4. Attribute 9. code

5. css style 10.Decorators

110

4.9 ASSIGNMENTS

Write the answer for the following questions.

1. What is directives?

2. Explain the component directive in detail with example.

3. Explain the Structurel directive in detail with example.

4. Explain the attribute directive in detail with example.

m

5

Unit 5: Working with Forms

Unit Structure

5.1 Learning Objectives

5.2 Introduction to Forms

5.3 Key Difference

5.4 Reactive Form Use

5.5 Template Driven Form Use

5.6 Form Validation

5.7 LetUs Sum Up

5.8 Check Your Progress

5.9 Check Your Progress: Possible Answer

5.9 Assignments

12

5.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

¢ The importance of Form in application.
¢ Difference between the forms types.
e Use of Reactive form and Template driven form with code

e How to collect the correct information from form using validation.

5.1 INTRODUCTION

Forms are critical to any modern front-end application, and they're a feature
that we use every day, even if don't realize it. Forms are required for securely
logging in a user to the app, searching for all the available hotels in a particular city,
booking a cab, building a to-do list, and doing tons of other things that we are used
to. Some forms have just a couple of input fields, whereas other forms could have an

array of fields that stretch to a couple of pages or tabs.

Interface,Forms are the most important aspect of any web application. To
handle the various events of user need to design a meaningful form. Events get in
like from clicking on links or moving the mouse it is through forms where we get the

crucial data inputs from the end users.

Angular, being a full-fledged front-end framework, has its own set of libraries
for building complex forms. The latest version of Angular has two powerful form-

building strategies. They are:

+« Reactive forms - more scalable, reusable, and testable
o Template-driven forms - adding a simple form to an app, such as an email list

signup form

Both the technologies belong to the @angular/forms library and are based on
the same form control classes. They differ remarkably in their philosophy,
programming style, and technique. Choosing one over the other depends on your

personal taste and also on the complexity of the form that you are trying to create. In

13

my opinion, you should try both the approaches first and then choose one that fits

your style and the project at hand.

5.3 KEY DIFFERENCE INTRODUCTION

The table below summarizes the key differences between reactive and template-

driven forms.

Differs Reactive Template-driven

Setup More explicit, created in component | Less explicit, created by
class directives

Data model Structured UnStructured

Predictability Synchronous Asynchronous

Form Functions Directives

validation

Mutability Immutable Mutable

Scalability Low-level API access Abstraction on top of APIs

Use More flexible, but needs a lot of Easy to use
practice

Data Binding No data binding is done Two way data binding

Testing Easier unit testing Unit testing is another

challenge

Table-5 key differences between reactive and template-driven forms

Both reactive and template-driven forms share underlying building blocks.

« FormControl tracks the value and validation status of an individual form

control.

« FormGroup tracks the same values and status for a collection of form

controls.

o FormArray tracks the same values and status for an array of form controls.

o ControlValueAccessor creates a bridge between Angular FormControl

instances and native DOM elements.

14

5.4 REACTIVE FORMS

Reactive forms are more powerful. They are more scalable, reusable, and
testable. If forms are a key part of your application, or you're already using reactive

patterns for building your application, use reactive forms.

A reactive form is just an HTML form that's been wired up with RxJS to
manage its state as a realtime stream. This means you can listen to changes to its
value as an Observable and react accordingly with validation errors, feedback,
database operations, etc. Each change to the form state returns a new state, which
maintains the integrity of the model between changes. Reactive forms are built
around observable streams, where form inputs and values are provided as streams
of input values, which can be accessed synchronously. Reactive forms also provide
a straightforward path to testing because you are assured that your data is
consistent and predictable when requested. Any consumers of the streams have

access to manipulate that data safely.

5.4.1 CREATING A FORM

To create a reactive form we have to import certain modules and need to generate

form controls. So for that follow the below steps.

Step 1 : Registering the reactive module.

To use the reactive forms in angular need to import ReactiveFormsModule from the

angular /forms package and add it to NgModules import array.(app.module.ts)

import { BrowserModule } from '@angular/platform-browser’;

import { NgModule } from '@angular/core";

import { AppRoutingModule } from './app-routing.module’;
import { AppComponent } from './app.component’;

import { ReactiveFormsModule} from '@angular/forms";

@NgModule({

115

declarations: [

AppComponent,

1,

imports: [
BrowserModule,
AppRoutingModule,
ReactiveFormsModule

1,

providers: [],

bootstrap: [AppComponent]

})
export class AppModule {}

Step 2: Generating and importing new form control
To generate a component for the control run the following command.

ng generate component NameEditor

C:\sershNiravireacthsrc\app>ng generate component MNameEditor
TE srcfapp/name-editor/name-editor.component.hitml (38 bytes)
src/app/name-editor/name-editor.component.spec.ts (657 bytes)
= src/app/name-editor/name-editor.component.ts (2
src/app/name-editor/name-editor.component.css (

UPDATE src/appfapp.module.ts (572 bytes)

C:EUS&PEhmirau%reactharckapp>ﬂ

The main class called FormControl class which used to define building blocks. For
the single form conrol import the FormControl class into your component class and

create a new instance to save as class property.
Step 3: Registering the controls in the Form

Once you created the control in the component class you must associated with form

control element in the template. Update the template with the form control using the

116

formControl binding provided by FormControlDirective included in

ReactiveFormsModule.(nameeditor.component.html)

label

NEIES

input type="text" [formControl]="name"

label

5.4.2 MANAGING CONTROL VALUES

Powerful Reactive forms give you access to the form control state and value at a
point in time. Any one can manipulate the current state and value through the
component class or the component template. The following examples display the

value of the form control instance and change it.

Displaying a form control value

To display the value in follow these ways:

> Through the valueChanges observable where you can listen for changes in
the form's value in the template using AsyncPipe or in the component class
using the subscribe() method.

> With the value property. which gives you a snapshot of the current value.

(name-editor.component.html)

label
Name:
input type="text" [formControl]="name"

label

Y

Value: {{ name.value }}

Y

Reactive forms provide access to information about a given control through

properties and methods provided with each instance. These properties and methods

17

of the underlying AbstractControl class are used to control form state and determine

when to display messages when handling validation.

Replacing a form control value

Methods are used to change the control values. Reactive forms have methods to
change a control's value programmatically, which gives you the flexibility to update
the value without user interaction. A form control instance provides a setValue()
method that updates the value of the form control and validates the structure of the
value provided against the control's structure. The following example adds a method
to the component class to update the value of the control to Angular using the

setValue() method.

(name-editor.component.ts)

import { Component, Onlnit } from '@angular/core’;

@Component({
selector: 'app-name-editor’,
templateUrl: './name-editor.component.html’,
styleUrls: ['./name-editor.component.css']

})

export class NameEditorComponent implements Onlnit {

constructor() { }

ngOnlnit() {

}
updateName() {

this.name.setValue('Angular');

}

118

5.4.3 GROUPING FORMS CONTROL

Angular will provide the facility to group multiple controls. Form control can give the
access over single input field, a form group will provide the group of control access.

Each control in a form group instance is tracked by name when creating the form

group.

So for that need to create one more component in our project.
ng generate component ProfileEditor

and import below line of code

import { FormGroup, FormControl } from '@angular/forms';

Step 1 : Creating an instance of Form Group

First need to Create a property in the component class named profileForm and set
the property to a new form group instance. To initialize the form group, provide the

constructor with an object of named keys mapped to their control.

For the profile form, add two form control instances with the names firstName and
lastName.

(profileeditor.component.ts)

import { Component } from '@angular/core’;

import { FormGroup, FormControl } from '@angular/forms';

@Component({
selector: 'app-profile-editor,
templateUrl: './profile-editor.component.html’,

styleUrls: ['./profile-editor.component.css']

)

export class ProfileEditorComponent {

profileForm = new FormGroup({

firstName: new FormControl("),

119

lastName: new FormControl("),

;s

}

Step 2: Associating the FormGroup model and view

A form group tracks the status and changes for each of its controls, so if one of the
controls changes, the parent control also emits a new status or value change. The
model for the group is maintained from its members. After you define the model, you
must update the template to reflect the model in the view.

(profile-editor.component.html)

form [formGroup]="profileForm"

label
First Name:
input type="text" formControIName="firstName"

label

label

Last Name:

input type="text" formControIName="lastName"

label

form

Saving form data

The ProfileEditor component accepts input from the user, but in a real scenario you
want to capture the form value and make available for further processing outside the
component. The FormGroup directive listens for the submit event emitted by the

form element and emits an ngSubmit event that you can bind to a callback function.

Add an ngSubmit event listener to the form tag with the onSubmit() callback method.

120

(profile-editor.component.html)

form [formGroup]="profileForm" (ngSubmit)="onSubmit()"

label
First Name:

input type="text" formControIName="firstName"
label
label
Last Name:

input type="text" formControIName="lastName"
label

form

The onSubmit() method in the ProfileEditor component captures the current value of
profileForm. Use EventEmitter to keep the form encapsulated and to provide the
form value outside the component. The following example uses console.warn to log

a message to the browser console.

export class ProfileEditorComponent {
profileForm = new FormGroup({
firstName: new FormControl("),

lastName: new FormControl("),

1

onSubmit() {

console.warn(this.profileForm.value);

}

}

Displaying the component

To display the ProfileEditor component that contains the form, add it to a component

template.

121

(app.component.html)

<app-profile-editor></app-profile-editor>

5.5 TEMPLATE DRIVEN FORMS

Forms are mainly used to attract the user. Forms enhance the look of the
interface of app. Forms are the mainstay of business applications. You use forms to
log in, submit a help request, place an order, book a flight, schedule a meeting, and

perform countless other data-entry tasks.

Developing forms requires design skills (which are out of scope for this page),
as well as framework support for two-way data binding, change tracking, validation,
and error handling, Template driven forms are forms where we write logic,
validations, controls etc, in the template part of the code (html code). The template is
responsible for setting up the form, the validation, control, group etc. Template
driven forms are suitable for simple scenarios, uses two way data binding using the

[(NgModel)] syntax, easier to use though unit testing might be a challenge.

Template driven form is one complete form.

Code for creating a simple Template driven form. In this code we show how
template-driven forms in Angular can be created. This code uses the FormsModule

and NgModel directive to register form controls on an out NgForm.

(app.module.ts)

import { NgModule } from '@angular/core;

import { BrowserModule } from '@angular/platform-browser’;
import { FormsModule } from '@angular/forms";
import { AppComponent } from './app.component’;

import { FormComponent } from './form.component’;

@NgModule({
imports: [BrowserModule, FormsModule],

declarations: [AppComponent, FormComponent],

122

bootstrap: [AppComponent]
1

export class AppModule {}

(app.component.ts)

import { Component } from '@angular/core’;

@Component({
selector: 'my-app’,

templateUrl: ‘app/app.component.html’

})

export class AppComponent { }

Create a new component named form using below syntax inside app folder.

Ng generate component form

(app/form.component.ts)

import { Component } from '@angular/core’;
@Component({
selector: 'form-component’,
template:
<form #form="ngForm" (ngSubmit)="submit(form.value)">
<div>
<label>Firstname:</label>
<input type="text" name="firstname" ngModel>
</div>
<div>

<label>Lastname:</label>

<input type="text" name="lastname" ngModel>

</div>

<div>

123

<label>Street:</label>

<input type="text" name="street" ngModel>
</div>
<div>

<label>Zip:</label>

<input type="text" name="zip" ngModel>
</div>
<div>

<label>City:</label>

<input type="text" name="city" ngModel>

</div>

<button type="submit">Submit</button>

</form>

<pre>
{{form.value | json}}

</pre>

<h4>Submitted</h4>
<pre>
{{value | json }}

</pre>

1)

export class FormComponent {

value: any;

submit(form) {
this.value = form;
}
}

(app.component,html)

form-component></form-component

Create one more ts file inside the app folder and set the below code for design using
the bootstrap.

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app.module’;

platformBrowserDynamic().bootstrapModule(AppModule);

Save your entire project and output should be like.

Firstname:

Lastname:

Street:

Zip:

City:

|_Submit |

{
Pfirstname®™: "7
"lastname™: "7,
IFStIEEtIP: lf";

"Zip": ""’
"City": TR

Submitted

After submitting the data it look like

125

Firstname: Core
Lastname: Angular
Street: Google
Zip: 123456

City:

"Ffirstname™: "Core™,
"lastname": "Angular™,
Tatreet™: "Google™,
Tzip™: M123456"™,
"Cit}[": lrIt_]’C"

Submitted

"firstname™: "Core™,
"lastname™: "Angular™,
T"gtreet™: "Google™,
TEipT: T1Z234TE";
rrcit_:\‘:.-lr H PFIE_ICH'

5.6 FORM VALIDATION

User Interface play the vital role in any apps. To give the dynamic look at the
app must have to forms in app. Forms are almost always present in any website or
application. Forms can be used to perform countless data-entry tasks such as

authentication, order submission or a profile creation.

Improve overall data quality by validating user input for accuracy and
completeness.To design a form is easy but it must be well maintained. That means a
form must be a validate form. Because forms are used to collection of information so

information must be a in correct format so forms are need to be a validated.

126

5.6.1 TEMPLATE DRIVEN VALIDATION

To add validation to a template-driven form, you add the same validation attributes

as you would with native HTML form validation. Angular uses directives to match

these attributes with validator functions in the framework.

Every time the value of a form control changes, Angular runs validation and
generates either a list of validation errors, which results in an INVALID status, or

null, which results in a VALID status.

You can then inspect the control's state by exporting ngModel to a local template

variable. The following example exports NgModel into a variable called name:
Code of example.

input id="name" name="name" class="form-control"
required minlength="4" appForbiddenName="bob"

[(ngModel)]="hero.name" #name="ngModel"

div *nglf="name.invalid && (name.dirty || name.touched)"

class="alert alert-danger"

div *nglf="name.errors.required"
Name is required.
(o[\Y;

div *nglf="name.errors.minlength"

Name must be at least 4 characters long.
(o[\Y;
div *nglf="name.errors.forbiddenName"
Name cannot be dob.
(o[\Y;
div

127

Explanation of code

> <input> element carries the HTML validation attributes: required and

minlength.
#name="ngModel" exports NgModel into a local variable called name.

NgModel mirrors many of the properties of its underlying FormControl
instance.

The *nglf on the <div> element reveals a set of nested message divs but only
if the name is invalid and the control is either dirty or touched.

Each nested <div> can present a custom message for one of the possible
validation errors. There are messages for required, minlength, and

forbiddenName.

5.6.2 REACTIVE FORM VALIDATION

The most important part of application is form validation. To validate the Reactive

form component class become the main class. Instead of adding validators through

attributes in the template, you add validator functions directly to the form control

model in the component class. Angular then calls these functions whenever the

value of the control changes.

We can perform the validation on Reactive form in two ways, either using validators

functions or using built-in validators.

Validator functions

There are two types of validator functions: sync validators and async validators.

Sync validators: Is a functions that take a control instance and immediately
return either a set of validation errors or null. You can pass these in as the
second argument when you instantiate a FormControl.

Async validators: Is a functions that take a control instance and return a
Promise or Observable that later emits a set of validation errors or null. You

can pass these in as the third argument when you instantiate a FormControl.

128

Built-in validators

Similar to the built-in validators that are available as attributes in template-driven

forms, such as required and minlength, are all available to use as functions from the

Validators class. For a full list of built-in validators

5.7 LET US SUM UP

>

Forms are required for securely logging in a user to the app, searching for all
the available hotels in a particular city, booking a cab, building a to-do list,
and doing tons of other things that we are used to

Interface, Forms are the most important aspect of any web application.

Events get in like from clicking on links or moving the mouse it is through
forms where we get the crucial data inputs from the end users.

Angular, being a full-fledged front-end framework, has its own set of libraries
for building complex forms

Two types of form: Reactive and Template-driven

Reactive forms - more scalable, reusable, and testable

Template-driven forms - adding a simple form to an app, such as an email list
signup form

Both the technologies belong to the @angular/forms library and are based on
the same form control classes

Reactive forms are more explicit, created in component class as compare to
template driven form.

Unit Testing is complex in template driven forms.

Reactive forms are more powerful. They are more scalable, reusable, and
testable. If forms are a key part of your application, or you're already using
reactive patterns for building your application, use reactive forms.

To use the reactive forms in angular need to import ReactiveFormsModule
from the angular /forms package and add it to NgModules import
array.(app.module.ts)

Powerful Reactive forms give you access to the form control state and value

at a point in time.

129

» Forms are mainly used to attract the user. Forms enhance the look of the
interface of app. Forms are the mainstay of business applications

» Code for creating a simple Template driven form

» To give the dynamic look at the app must have to forms in app. Forms are
almost always present in any website or application. Forms can be used to
perform countless data-entry tasks such as authentication, order submission
or a profile creation.

» To add validation to a template-driven form, you add the same validation
attributes as you would with native HTML form validation.

» To validate the Reactive form component class become the main class.
Instead of adding validators through attributes in the template, you add
validator functions directly to the form control model in the component class.
Angular then calls these functions whenever the value of the control changes.

5.8 CHECK YOUR PROGRESS
______are critical to any modern front-end application
A. Forms C.CSS
B. Pages D. Design
2. Angular supports the __ types of forms.
A. 1 C.4
B.3 D.2
__ forms are more scalable, reusable, and testable
A. Template C. Normal
B. Reactive D.A&B
forms adding a simple form to an app, such as an email list signup.
A. Template C. Normal
B. Reactive D.A&B
______ tracks the value and validation status of an individual form control.
A. FormArray C. FormValue
B. FormGroup D. FormControl

130

7. tracks the same values and status for an array of form controls.
A. FormArray C. FormValue

B. FormGroup D. FormControl

8. To use the reactive forms in angular need to import

A. ReactiveFormsModule C. ReactiveModule
B. ReactiveForms D. ReactiveCore
9. to create the new componet syntax is used.
A. ng generate C. ng generate component
comp_name
B. ng generate component D. generate component
10. There are two types of validator functions: sync validators and validators.
A. void C. empty
B. null D. asyn

5.9 CHECK YOUR PROGRESS:POSSIBLE ANSWER

1. Forms 7. FormArray

2.2 8. ReactiveFormsModule
4. Reactive 9. ng generate component
5. Template comp_name

6. FormControl 10. async

5.10 ASSIGNMENTS

Write the answer for the following questions.
1. What is forms?

2. List the types of form in angular with definition.

3. Differentiate reactive form and template driven form

131

4. How to create reactive form explain in detail.
5. How to create template driven form explain in detail.
6. What is form validation.

7. Explain how to validate reactive form with validation functions.

132

Block-3
Working With IONIC

133

Unit 1: Setting up the
Environment for IONIC

Unit Structure

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

Learning Objective

lonic Framework

How to build Mobile Apps
Node.js

Installing CLI

IDE’s

iOS setup

Android setup

Let Us Sum Up

Check Your Progress
Check Your Progress: Possible Answers

Activities

1

134

1.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

e How lonic Framework works.

e All about mobile app thought process.

e Node.js installation

e CLlinstallation

¢ iOS and Android setup

1.2 IONIC FRAMEWORK

lonic framework is a powerful tool to build hybrid mobile apps. It's open

source (https://github.com/ionic-team/ionic) and has over 35,000 stars on GitHub,

the popular social coding platform. lonic framework is not the only player in hybrid

mobile apps development, but it's the one that draws a lot of attention and is

recommended as the first choice by many developers. lonic is popular for the

following reasons:

Based on Web Components standards and is framework agnostic. Web
Components are W3C specifications of components for the web platform.
lonic components are built as custom elements using its own open source
tool, Stencil. Being framework agnostic makes lonic components work
with any framework. Developers are free to choose the framework to use,

including Angular, React, and Vue.

Provides beautifully designed out-of-box Ul components that work across
different platforms. Common components include lists, cards, modals,
menus, and pop- ups. These components are designed to have a similar
look and feel as native apps. With these built-in components, developers
can quickly create prototypes with good enough user interfaces and

continue to improve them.

Leverages Apache Cordova as the runtime to communicate with native

platforms. lonic apps can use all the Cordova plugins to interact with the

135

native platform. lonic Native further simplifies the use of Cordova plugins

in lonic apps.

e Performs great on mobile devices. The lonic team devotes great effort to

make it perform well on different platforms.

The current release version of lonic framework is 4.0. lonic 4 is the first version of
lonic to be framework agnostic. lonic Core is the set of components based on Web
Components. lonic Angular is the framework binding of lonic Core with Angular. This

book focuses on lonic Angular with Angular 6.

Apart from the open source lonic framework, lonic also provides a complete solution

lonic Pro for mobile app development, which includes the following products:

¢ lonic Creator — lonic Creator is a desktop app to create lonic apps using
drag-and-drop. It helps nontechnical users to quickly create simple apps

and prototypes.

¢ lonic View — lonic View allows viewing lonic apps shared by others

directly on the phones. It's a great tool for app testing and demonstration.

¢ lonic Deploy — lonic Deploy performs hot updates to apps after they are

published to app stores.

¢ lonic Package — lonic Package builds lonic apps and generates bundles
ready for publishing to app stores. With lonic Package, we don’t to

manage local build systems and can use the cloud service instead.

¢ lonic Monitor — lonic Monitor can monitor apps and report runtime errors.

1.3 HOW TO BUILD MOBILE APPS

Even with the frameworks and services mentioned above, it's still not an easy
task to build mobile apps. There are multiple stages in the whole development life
cycle from ideas to published apps. A typical process may include the following

major steps:

136

Ideas brainstorming. This is when we identify what kind of mobile apps
to build. It usually starts from vague ideas and expands to more concrete

solutions.

Wire-framing and prototyping. This is when we draw on the whiteboard
to identify main usage scenarios. Prototypes may be created to
demonstrate core usage scenarios for better communications with

stakeholders.

User experiences design. This is when all pages and navigation flows

are finalized, and we are now clear what exactly needs to be built.

Implementation. This is when the development team implements the

pages to fulfill requirements.

Testing. Unit testing should be part of implementation of pages and
components. End-to-end testing is also required to verify all usage

scenarios. All these tests should be executed automatically.

Continuous integration. Continuous integration is essential for code
quality. If every code commit can be tested automatically, then the

development team will be more confident about the product’s quality.
Publishing. This is when the app is published to app stores.

Operations. After the app is published, we still need to continuously
monitor its running status. We need to capture errors and crash logs

occurred on users’ devices.

1.4 NODE.JS

Node.js is the runtime platform for lonic CLI. To use lonic CLI, we first need to

install Node.js (https://nodejs.org/) on the local machine. Node.js is a JavaScript

runtime built on Chrome’s V8 JavaScript engine. It provides a way to run JavaScript

on the desktop machines and servers. lonic CLI itself is written in JavaScript and

executed using Node.js. There are two types of release versions of Node.js — the

stable LTS versions and current versions with the latest features. It's recommended

137

to use Node.js version 6 or greater, especially the latest LTS version (8.12.0 at the

time of writing).

Installing Node.js also installs the package management tool npm. npm is
used to manage Node.js packages used in projects. Thousands of open source
packages can be found in the npmjs registry (https://www. npmjs.com/). If you have
background with other programming languages, you may find npm is similar to
Apache Maven (https://maven.apache. org/) for Java libraries or Bundler

(http://bundler.io/) for Ruby gems.

1.5 INSTALLING CLI

lonic CLI

After Node.js is installed, we can use npm to install the lonic command- line

tool and Apache Cordova.

$ npm i -g cordova ionic

Note : You may need to have system administrator privileges to install these two
packages. For Linux and macQOS, you can use sudo. For Windows, you can start a
command-line window as the administrator. however, it's recommended to avoid
using sudo when possible, as it may cause permission errors when installing native
packages. treat this as the last resort. the permission errors usually can be resolved

by updating the file permissions of the node.js installation directory.

After finishing installation of lonic CLI and Cordova, we can use the command ionic

to start developing lonic apps.

You are free to use Windows, Linux, or macOS to develop lonic 4 apps. Node.js is
supported across different operating systems. One major limitation of Windows or
Linux is that you cannot test iOS apps using the emulator or real devices. Some
open source Node.js packages may not have the same test coverage on Windows
as Linux or macOS. So they are more likely to have compatibility issues when
running on Windows. But this should only affect the CLI or other tools, not lonic 4

itself.

138

After lonic CLI is installed, we can run jonic info to print out current runtime
environment information and check for any warnings in the output; see Listing 1-1.

The output also provides detailed information about how to fix those warnings.

lonic:
ionic (lonic CLI) : 4.12.0 (/usr/local/lib/node_modules/ionic)
lonic Framework :
@angular-devkit/build-angular :
@angular-devkit/schematics :
@angular/cli :
@ionic/angular-toolkit :

System:

NodedS : v8.9.4 (/usr/local/bin/node)

npm :

0S:

1.6 IDE’S

You are free to use your favorite IDEs and editors when developing lonic
apps. IDEs and editors should have good support for editing HTML, TypeScript, and
Sass files. For open source alternatives, Visual Studio Code
(https://code.visualstudio.com/) and Atom (https://atom.io/) are both popular choices
tools. For commercial IDEs, WebStorm (https://www. jetbrains.com/webstorm/) is

recommended for its excellent support of various programming languages.

1.6.1 LEARNING MORE ABOUT VISUAL STUDIO CODE

Setting up Visual Studio Code

Getting up and running with Visual Studio Code is quick and easy. It is a small

download so you can install in a matter of minutes and give VS Code a try.

139

Cross platform

VS Code is a free code editor which runs on the macOS, Linux and Windows

operating systems.

Follow the platform specific guides below:

e macOS
e Linux
¢ Windows

VS Code is lightweight and should run on most available hardware and platform
versions. You can review the System Requirements to check if your computer

configuration is supported.

Extensions
VS Code extensions let third parties add support for additional:
e Languages - C++, C#, Go, Java, Python
e Tools - ESLint, JSHint , PowerShell
e Debuggers - Chrome, PHP XDebug.
e Keymaps - Vim, Sublime Text, IntelliJ, Emacs, Atom, Visual Studio, Eclipse

Extensions integrate into VS Code's Ul, commands, and task running systems so
you'll find it easy to work with different technologies through VS Code's shared

interface.

Some useful extension:
1. lonic Extension Pack
2. lonic 4 Snippets
3. Prettier - Code formatter
4. TSLint
5. Peacock

6. Auto Rename Tag

140

7. Angular Language Service
8. Angular v7 Snippets

9. angular2-switcher

Next steps

Once you have installed and set up VS Code, these topics will help you learn more
about VS Code:

e Additional Components - Learn how to install Git, Node.js, TypeScript and

tools like Yeoman.
e User Interface - A quick orientation to VS Code.
e Basic Editing - Learn about the powerful VS Code editor.
e Code Navigation - Move quickly through your source code.
e Debugging - Debug your source code directly in the VS Code editor.

e Proxy Server Support - Configure your proxy settings.

1.7 10S SETUP

Developing iOS apps with lonic requires macOS and Xcode
(https://developer.apple.com/xcode/)You need to install Xcode and Xcode
command-line tools on macOS. After installing Xcode, you can open a terminal

window and type command shown below.
$ xcode-select —p

If you see output like that below, then command-line tools have already been
installed.

/Applications/Xcode.app/Contents/Developer

Otherwise, you need to use the following command to install it.

$ xcode-select --install

141

After the installation is finished, you can use xcode-select —p to verify.

To run lonic apps on the iOS simulator using lonic CLI, package ios-sim is required.
Another package ios-deploy is also required for deploying to install and debug apps.

You can install both packages using the following command.

$ npm i -g ios-sim ios-deploy

1.8 ANDROID SETUP

To develop lonic apps for Android, Android SDK must be installed.Before
installing Android SDK, you should have JDK installed first. Read this guide
(https://docs.oracle.com/javase/8/docs/technotes/ guides/install/) about how to install
JDK 8 on different platforms. It's recommended to install Android Studio
(https://developer.android.com/studio/index.html), which provides a nice IDE and
bundled Android SDK tools.

Note: Android APi level 22 is required to run ionic apps. Make sure that the required

SdK platform is installed.

Stand-alone SDK tools is just a ZIP file; unpack this file into a directory and
it's ready to use. The downloaded SDK only contains basic SDK tools without any
Android platform or third-party libraries. You need to install the platform tools and at
least one version of the Android platform. Run android in tools directory to start

Android SDK Manager to install platform tools and other required libraries.

After installing Android SDK, you need to add SDK's tools and platform-tools
directories into your PATH environment variable, so that SDK’s commands can be
found by lonic. Suppose that the SDK tools is unpacked into /Development/android-
sdk, then add /Development/ android-sdk/tools and /Development/android-
sdk/platform-tools to PATH environment variable. For Android Studio, the Android

SDK is installed into directory /Users/<username>/Library/Android/sdk.

To modify PATH environment variable on Linux and macOS, you can edit

~/.bash_profile file to update PATH as shown below. The PATH environment below

142

uses the Android SDK from Android Studio. You can replace it with another directory

if stand-alone SDK tools is used.
export PATH=${PATH}/:/Users/<username>/Library/Android/sdk/platform-tools \

: /Users/<username>/Library/Android/sdk/tools

To modify the PATH environment variable on Windows, you can follow the steps

below.
1 Click Start menu, then right-click Computer and select Properties.
2 Click Advanced System Settings to open a dialog.

3 Click Environment Variables in the dialog and find PATH variable in the list,
then click Edit.

4 Append the path of tools and platform-tools directories to the end of PATH

variable.

It's highly recommended to use Android Studio instead of stand-alone SDK tools.

Stand-alone SDK tools is more likely to have configuration issues.

1.9 LET US SUM UP

e Use and application of lonic framework
e All brief thought for build mobile apps

¢ Installing all the pre-requisite

e Visual studio code and its extension

e Setting up iOS and Android environment.

1.10 CHECK YOUR PROGRESS

1. lonic is used to build mobile apps
A. Native B. Hybrid
C. Web app D. Standard

143

2. lonic used to interact with native platform.
A. Angular B. Swift
C. Java D. Apache Cordova

3. Lastest version of lonic is

A.20 B.25
C.3.0 D.4.0
4. is the runtime platform for lonic CLI.
A. React.js B. Node.js
C. Vue.js D. Angular.js
5. command is used to the complete information of lonic
A. ionic info B. ionic getdata
C. ionic detail D. ionici

6. Full form of IDE.
A. Integrated Demand Environment
B. Internal Development Engine
C. Integrated Development Environment

D. Intel Development Environment

1.11 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Answer
1.B 2.D 3.D
4.B 5 A 6.C

144

1.12 ACTIVITIES

¢ Install NodedS

o Try to get information about NPM
¢ Install lonic and Cordova
e Install IDE(Visual Studio Code)

e |Install all the required extension for IDE, So that development can be more

productive.
e Setup Android

e Setup iOS (MacOS system are mandatory)

145

Unit 2: Developing First Mobile
Application

Unit Structure

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

212

213

2.14

Learning Objective

Introduction

Create your first hybrid app

Scaffolding lonic

Working with Simulator

Running the Mobile Application on Android Phone
Running the Mobile Application on Apple Phone
Android Debugging

iOS Debugging

WebView

Let Us Sum Up

Check your Progress

Check your Progress: Possible Answers

Assignments

146

2.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.
e First app in lonic
e Folder structure of lonic
e Working with simulator

e Debugging

2.2 INTRODUCTION

After the local development environment is set up successfully, it's time to create
new lonic apps. The easiest way to create lonic apps is using lonic CLI. Before we
can create lonic 4 apps using lonic CLI, we need to enable the feature project-

angular first by running the following command.
$ ionic config set -g features.project-angular true

Apps are created using the command ionic start. Below is the syntax of using ionic

start.
$ ionic start <name> <template> [options]

The first argument of ionic start is the name of the new app, while the second
argument is the template name. We can also pass extra options after these two
arguments. If not enough arguments are provided, lonic CLI can help you to finish
the setup interactively with prompts. lonic CLI supports creation of projects of three
types. Project types are specified using the option --type, for example, --

type=angular.
e angular — lonic Angular projects for lonic 4.
e ionic-angular — lonic 2/3 projects.
e ionic1 —lonic 1 projects.

For project templates, lonic provides different types of application templates.
All available templates can be listed with the following command. A template may

have versions for different project types.

147

$ ionic start --list

We can choose a proper template to create the skeleton code of the app. It's

also possible to pass URLs of other Git repositories as the templates to use. lonic

also maintains a marketplace (https://market.ionicframework.com/starters/) for the

community to share project starters. You can find many paid or free project starters

in the marketplace. Below are the available options of ionic start.

--type — Allowed values are angular, ionic-angular and ionic1.
--cordova — Enable Cordova integration.

--capacitor - Enable Capacitor integration.

--pro-id — Link this app with lonic Dashboard.

--no-deps — Do not install npm dependencies. Useful when you only want to

explore the content of a project starter.
--no-git — Do not initialize a Git repo.
--no-link — Skip the prompt about connecting the app with lonic Dashboard.

--project-id — Specify the slug for the app. The slug is used for the directory

name and npm package name.

--package-id — Specify the bundle ID/application ID for the app. This is the
unique ID of the app when publishing to the Apple store or Google Play. It's
highly recommended to set this value when Cordova integration is enabled.
The value of this option should be in the reverse domain format, for example,
com. mycompany.myapp. If not specified, the default value io.ionic.starter is

used.

2.3 CREATE YOUR FIRST HYBRID APP

Blank App

This template blank only generates basic code for the app. This template should be

used when you want to start from a clean code base

148

$ ionic start blankApp blank
$ cd blankApp

$ ionic serve

This will open the browser with the preview of your app which will reload

automatically once you change anything inside your project.

Starter Description

Tabs A starting project with a simple tabbed interface

Blank A blank starter project

Sidemenu A starting project with a side menu with navigation in the

content area

Super A starting project complete with pre-built pages, providers and
best practices for lonic development.

Conference | A project that demonstrates a realworld application

Tutorial A tutorial based project that goes along with the lonic
documentation
Aws AWS Mobile Hub Starter

Table-6 Project Starter

Starters are constructed within the lonic Starters repository by overlaying a starter
app onto a set of base files, constructing a compressed archive of the files, and
uploading it around the world. The lonic CLI then downloads and extracts the starter

template archive and personalizes files for each new app.
Local Development

After a new app is created using ionic start, we can navigate to the app directory and

run ionic serve to start the local development server. The browser should

149

automatically open a new window or tab that points to the address
http://localhost:8100/. You should see the Ul of this lonic app. lonic sets up
livereload by default, so when any HTML, TypeScript or Sass code is changed, it
automatically refreshes the page to load the page with updated code. There is no

need for a manual refresh.

The default port for the lonic local development server is 8100. The port can be
configured using the option --port or -p. For example, we can use ionic serve -p 9090
to start the server on port 9090.

2.4 SCAFFOLDING IONIC

Let’'s walk through the anatomy of an lonic app. Inside of the folder that was created,
we have a typical Cordova project structure where we can install native plugins, and

create platform-specific project files.

- src
- app
- home
TS home.module.ts
home.page.html
home.page.scss
home.page.spec.ts
TS home.page.ts
TS app-routing.module.ts
Cx app.component.htmil
app.component.spec.ts
TS app.component. ts
TS app-module._ts
r assets
B environments
= theme
* global.scss
<> index.htmil
W karma.conf.js
TS main.ts
TS polyfills_ts
TS test.is
tsconfig.app.json
tsconfig.spec._json
tslint.json
TS zone-flags.ts
o _gitignore
angular.json
@) jonic.config.json
package-lock. json
package.json
tsconfig.json

tslint.json

Figure-17: Scaffolding lonic

150

» Config Files

File name

Description

package.json

package.json is a JSON file that describes this Node.js project.
This file contains various metadata of this project, including
name, description, version, license, and other information. This
file is also used by npm or yarn to manage a projects
dependencies.

package.json also contains metadata used by Cordova. All
Cordova-related configurations are specified in the property
cordova. The value of this property is a JavaScript object with
other configuration values. For example, plugins specifies the
installed plugins for this app, while platforms specifies supported

platforms.

The content of package.json file can be managed by tools like
npm, yarn, or lonic CLI, or edited manually using text editors.

config.xml

config.xml is the configuration file for Apache Cordova. More
information about this file can be found at the Apache Cordova
website
(https://cordova.apache.org/docs/en/dev/config_ref/index.html -
The config.xml File). The content of this file is usually managed
by Cordova CLI.

tsconfig.json

tsconfig.json is the JSON file to configure how TypeScript
compiler compiles the TypeScript code into JavaScript. For
example, compilerOptions specifies the compiler options. In
these compiler options, emitDecoratorMetadata and
experimentalDecorators must be enabled to use Angular
decorators. More details about tsconfig.json can be found in the
official website (http://www.typescriptlang.org/docs/

151

handbook/tsconfig-json.html).
{
" compileOnSave": false,
"compilerOptions": {
"baseUrl": "./",
"outDir": "./dist/out-tsc",
"sourceMap": true,
"declaration™: false,
"module": "es2015",
"moduleResolution": "node",
"emitDecoratorMetadata": true,
"experimentalDecorators": true,
"importHelpers": true,
"target": "es5",
"typeRoots": [
"node_modules/@types"
1
"lib": [
"es2018",

lldomll

ionic.config.json

ionic.config.json is the config file for lonic itself. From this file, we
can see the app is an lonic 4 project with Cordova integration.

Because the project is created from an lonic starter template, it

152

also has the file ionic.starter.json to describe the template used
to create it. The file ionic.starter.json can be removed after the

code skeleton is generated.
{
"name": "My App",
"type": "angular”,
"id": "abc123",
"integrations": {
"cordova": {}

hi

tslint.json

tslint.json is the config file for TSLint. lonic 4 provides a default
configuration. More rules (https://palantir.github.io/tslint/rules/)can
be added to match the development team’s style guide.

angular.json

angular.json is the configuration file of Angular CLI.

» Cordova Files

Besides the config.xml in the root directory, the directories hooks, platforms, plugins,

and www are all managed by Cordova.

File name | Description

platforms | For each supported platform, there is a subdirectory in the directory
platforms to contain built files for this platform. This app has
subdirectories ios and android for iOS and Android platforms,
respectively. These files are generated by Cordova and should not be
edited manually.

plugins This directory contains various Cordova plugins used in this app.

WWW The directory www contains static files of this app. This is also the
directory of the whole app’s static files, including built JavaScript and
CSS files and other assets.

153

» App Files

All the app’s main source code is in the directory src. The directory resources

contains the image files for the app icons and the splash screen.

File name Description

index.html As we know, an lonic app is just a web app running inside the
browser-like WebView component. The index.html is the entry
point of the whole lonic app. The markup in index.html is very
simple with only one element app-root.

Assets The directory assets contains various assets used in the app,
including favicon and fonts.

Theme The directory theme contains Sass files to customize the look and

feel of the app. The file variables.scss contains colors for different
themes. If you don’t need to customize the look and feel of lonic

4, just leave this file unchanged.

> Environment Files

The directory environments contains configuration files for different environments.

Development and production environments are defined by default.

File name

Description

environment.ts

The difference between these two environments is the value of

environment.prod.ts

the property production. We can add extra environment-
specific configurations into these two files. To use the
production environment, we can add the option --env, for

example, ng build --env=prod.

> Skeleton Code

The template blank already includes some basic code. It has only one page.

File Path

Description

App

The directory app contains modules and components of

154

the app.

Components The directory components contains components declared
in the app.
pages The directory pages contains code for different pages.

Each page has its own subdirectory.

app.module.ts

The file app.module.ts declares the root module of the
app. This file contains only a single empty class
AppModule. Most of the code is using @NgModule
decorator to annotate the class AppModule. The imported
module lonicModule.forRoot() in the array of property
imports is the difference between normal Angular modules
and lonic modules. The method lonicModule.forRoot()
makes sure that the service providers, components, and
directives from lonic Angular are provided when the
module is loaded. These components and directives can
be used anywhere in the module. AppComponent is the
root component of the app, so it's in the array of the
property bootstrap to bootstrap the lonic app. The property
declarations contains only the AppComponent, while
entryComponents is an empty array. StatusBar and
SplashScreen in the property providers are used by
Cordova. RouteReuseStrategy is related to Angular
Router

import { NgModule } from '@angular/core’,

import { BrowserModule } from '‘@angular/platform-
browser’,

import { RouteReuseStrategy } from '@angular/router’;

import { lonicModule, lonicRouteStrategy } from
'@ionic/angular';

155

import { SplashScreen } from '@ionic-native/splash-

screen/ngx’;

import { StatusBar } from '@ionic-native/status-bar/ngx’;

import { AppRoutingModule } from './app-routing.module’;

import { AppComponent } from './app.component’;

@NgModule({
declarations: [AppComponent],
entryComponents: [],

imports: [BrowserModule, lonicModule.forRoot(),

AppRoutingModule],
providers: [
StatusBar,
SplashScreen,

{ provide: RouteReuseStrategy, useClass:
lonicRouteStrategy }

1,
bootstrap: [AppComponent]

)
export class AppModule {}

app-
routing.module.ts

The file app-routing.module.ts defines the routes used by
Angular Router in the app. Here the path home points to

the HomePageModule. We'll see more details of routing.

import { NgModule } from '@angular/core’,
import { Routes, RouterModule } from '@angular/router’;

const routes: Routes = |

156

{ path: ", redirectTo: 'home', pathMatch: 'full' },

{ path: 'home', loadChildren:
"./home/home.module#HomePageModule' },

I;

@NgModule({
imports: [RouterModule.forRoot(routes)],

exports: [RouterModule]

)
export class AppRoutingModule { }

app.component.ts

The file app.component.ts declares the main component
of the app. In the decorator @Component, the property
templateUrl is set to the file app.component.html. The
constructor function declares a public parameter platform
of type Platform. Angular injector creates the instance of
Platform and provides it when this component is
instantiated. The method ready() of Platform returns a
promise that is resolved when the Cordova platform is
ready to use. Here it set the styles of the status bar and
hide the splash screen.

import { Component } from '@angular/core’;
import { Platform } from '@ionic/angular’;

import { SplashScreen } from '@ionic-native/splash-

screen/ngx’;
import { StatusBar } from '@ionic-native/status-bar/ngx’;
@Component({

selector: 'app-root’,

templateUrl: 'app.component.html’

157

)

export class AppComponent {
constructor(

private platform: Platform, private splashScreen:

SplashScreen,
private statusBar: StatusBar){
this.initializeApp();
}
initializeApp() {
this.platform.ready().then(() => {
this.statusBar.styleDefault();

this.splashScreen.hide();

D
}
}

app.component.html

The template file app.component.html uses ion-app as the
root element of the app. The component ion-router-outlet
is the lonic Angular integration of Angular Router.

<ion-app>
<ion-router-outlet></ion-router-outlet>

</ion-app>

main.ts

The main.ts file contains the logic to bootstrap the lonic
app. In the production environment, the method
enableProdMode is invoked to enable Angular’s
production mode for better performance.

import { enableProdMode } from '@angular/core’;

158

import { platformBrowserDynamic } from

'‘@angular/platform-browser-dynamic';

import { AppModule } from "./app/app.module’;

import { environment } from './environments/environment';

if (environment.production) {

enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule)

.catch(err => console.log(err));

global.scss

The file global.scss contains additional global CSS styles.
This file can also be used as the entry point to import
other Sass files. If you don’t need to customize the styles

of the app, just leave this file empty.

Home Page Files

The home page has its own subdirectory home under the
directory app. Each component has five files with similar

names.

home.page.ts — TypeScript file for the component class.
home.module.ts — TypeScript file for the module.

home.page.spec.ts — TypeScript file for the Jasmine test

spec.
home.page.html — HTML file as the view template.

home.page.scss — Scss file for styles.

package.json

This file contains all dependencies (NPM packages) of our
application. You can add new packages or update the
version of packages already included. By executing the
command npm install in the project directory the

159

dependencies listed in package.json are downloaded and

added to the project automatically.

2.5 WORKING WITH SIMULATOR/EMULATORS

After finishing the basic testing using browsers, it's time to test on device emulators.
First, we need to configure the platforms’ support for the app. lonic apps created by

lonic CLI have no platforms added by default.

2.6 RUNNING THE MOBILE APPLICATION ON ANDROID
PHONE

To add the Android platform, we can use the following command.
$ ionic cordova platform add android --save
Then we need to finish several tasks before building the app for Android.

e Install Gradle. Gradle is the build tool for Android apps. Follow the official

instructions (https://gradle.org/install/) to install Gradle on your local machine.

e Accept Android SDK licenses. Use the sdkmanager tool in Android SDK to
accept all SDK package licenses by running sdkmanager --licenses. The tool

sdkmanager can be found in the directory of <Android Home>/sdk/ tools/bin.

e Create an Android Virtual Device (AVD). Follow the official instructions
(https://developer.android.com/studio/run/managing-avds) to create a new
AVD.

Now the app can be built for the Android platform using the following command.
$ ionic cordova build android

We can start the emulator and test the app; lonic app running on the Android 8.1

emulator. If the emulator is not started, the following command will try to start it.

$ ionic cordova emulate android

160

When running on the emulator, we can also use the option --livereload to enable

livereload, so the app refreshes automatically when the code changes.

2.7 RUNNING THE MOBILE APPLICATION ON APPLE
PHONE

We can use the following command to add iOS platform support.
$ ionic cordova platform add ios —save

Then the app can be built for iOS platform using the following command. If you just

installed Xcode, you may need to open Xcode to install additional components first.
$ ionic cordova build ios

Now you can start the emulator and test your app.
$ ionic cordova emulate ios

Running the code above will launch the default iOS emulator. If you want to use a
different emulator, you can use --target flag to specify the emulator name. To get a

list of all the targets available in your local environment, use the following command.
$ cordova emulate ios —list

Then you can copy the target name from the output and use it in the command ionic
cordova emulate ios, see the code below to use the iPhone 8 with the iOS 11.3

emulator.

$ ionic cordova emulate ios --target=" iPhone-8, 11.3"

2.8 ANDROID DEBUGGING

Use Chrome for Development

Using iOS or Android emulators to test and debug lonic apps is not quite convenient
because emulators usually consume a lot of system resources and take a long time
to start or reload apps. A better alternative is to use Chrome browser for basic
testing and debugging. To open Chrome DevTools, you can open the Chrome

system menu and select More Tools > Developer Tools. Once the developer tools

161

window is opened, you need to click the mobile phone icon on the top menu bar to
enable device mode. Then you can select different devices as rendering targets: for

example, Apple iPhone X or Nexus 6P.

Use Chrome DevTools for Android Debugging

For Android platform, when an lonic app is running on the emulator or a real device,
we can use Chrome DevTools (https://developers.google.com/web/tools/chrome-
devtools/) to debug the running app. Navigate to chrome://inspect/#devices in
Chrome and you should see a list of running apps. Clicking inspect launches the
DevTools to inspect the running app. If you cannot see the app in the list, make sure

that the device is listed in the result of the command adb devices.

2.9 10S DEBUGGING

Use Safari Web Inspector for iOS Debugging

For an iOS platform, when an lonic app is running on the emulator or a real device,

we can use Safari Web Inspector (https://developer.apple.com/safari/tools/) to debug
the running app. After opening Safari, in the Develop menu, you should see a menu
item like Simulator — iPhone X - iOS 11.3 (15E217). This menu item has a subitem
called localhost - index. html. Clicking this menu item opens the Web Inspector for

debugging.

2.10 WEB VIEW

The Web View powers web apps in native devices. lonic maintains a Web View
plugin for apps integrated with Cordova. The plugin is provided by default when
using the lonic CLI. For apps integrated with Capacitor, the Web View is

automatically provided.

lonic apps are built using web technologies and are rendered using Web Views,

which are a full screen and full-powered web browser.

Modern Web Views offer many built-in HTMLS5 APIs for hardware functionality such

as cameras, sensors, GPS, speakers, and Bluetooth, but sometimes it may also be

162

necessary to access platform-specific hardware APIs. In lonic apps, hardware APls
can be accessed through a bridge layer, typically by using native plugins which

expose JavaScript APls.

O Native O web
App

Web View

App Hardware API Bridge Hardware API

Device OS Device OS

Figure-18 Structure of lonic App

The lonic Web View plugin is specialized for modern JavaScript apps. For both iOS
and Android, app files are always hosted using the http:// protocol with an optimized

HTTP server that runs on the local device.

2.11 LET US SUM UP

e Understanding the predefined starters of lonic framework
e Learning structure of lonic project.
e Emulators
e Create, Build and Run the individual platform
o i0S

o Android

163

e Debugging the platform
o i0S
o Android

¢ Understanding webview

2.12 CHECK YOUR PROGRESS

1. Command for ionic start <name> , to create app with tabs.
A. blank B. tabs
C. super D. No possible
2. Is it possible to configure the port on which ionic app will be serve.
A. True B. False
3. file contains metadata of ionic apps.
A. config.xml B. package.json
C. angular.json D. ionic.config.json
4. file contains Name of the ionic apps.
A. config.xml B. package.json
C. angular.json D. ionic.config.json

5. Platform folder is managed by

A. Cordova B. Angular
C. lonic D. Javascript
6. The is the entry point of the whole lonic app.
A. index.html B. index.js
C. package.json D. angular.json
7. The file declares the root module of the app
A. index.html B. app.module.ts
C. app.component.ts D. app.html

164

8. The file contains the logic to bootstrap the lonic app

A. app.ts B. index.html

C. main.ts D. app.component.ts
9. ionic cordova platform add --save

A. angular B. ionic

C. android D. none of above
10.ionic cordova ios. To build the platform

A. start B. build

C. compile D. serve
11. browser is used to debug ios app

A. Chrome B. Safari

C. Internet explorer D. Firefox

12.lonic apps are built using web technologies and are rendered using

A. Serve B. Server

C. Web Views D. HTML

2.13 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A 2.A 3.B
4.D 5 A 6. A
7.B 8.C 9.C
10.B 11.B 12.C

165

2.14 ASSIGNMENTS

e Create & Run a blank project with name “Automobiles”
e Create & Run a tab project with name “Supermarket’
e Create & Run a sidemenu project with name “MasterDetails”
e Checkout all the config files.
e Go through the files and folder of project
e Try to debug the platform
o i0S

o Android

166

Unit 3:

Unit Structure

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Learning Objectives
Introduction

Why Typescript ?
Basic Types
Functions

Interface and Classes
Let us sum up

Assignments

Typescript

3

167

3.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.
e Typescript
e Variables
e Function, Interface and Classes
e Decorators

e Angular

3.2 INTRODUCTION

Building hybrid mobile apps with lonic requires mostly front-end skills,
including HTML, JavaScript, and CSS. You should have basic knowledge of these

programming languages before reading this book.

lonic Angular is the framework binding for the Angular framework, and it's
also the framework. Other than standard JavaScript, lonic Angular uses TypeScript
(https://www. typescriptlang.org/) by default. This is because Angular uses
TypeScript by default. You are still free to use JavaScript if you don’t want to learn a
new programming language. But TypeScript is strongly recommended for enterprise
applications development. As the name suggests, TypeScript adds type information
to JavaScript. Developers with knowledge of other static-typing programming
languages, for example, Java or C#, may find TypeScript very easy to understand.
The official TypeScript documentation
(https://www.typescriptlang.org/docs/index.html) is a good starting point to learn

TypeScript.

3.3 WHY TYPESCRIPT?

The reason why TypeScript is recommended for lonic apps development is because

TypeScript offers several benefits compared to standard JavaScript.

168

Compile-Time Type Checks

TypeScript code needs to be compiled into JavaScript code before it can run inside
of the browsers because browsers don’t understand TypeScript. This process is
called transpiling. During the compiling, the compiler does type checks using type
declarations written in the source code. These static type checks can eliminate
potential errors in the early stage of development. JavaScript has no static-typing
information in the source code. A variable declared with var can reference to any
type of data. Even though this provides maximum flexibility when dealing with
variables in JavaScript, it tends to cause more latent issues due to incompatible
types in the runtime. For most of the variables and function arguments, their types
are static and won’t change in the runtime. For example, it's most likely an error
when assigning a string to a variable that should only contain a number. This kind of

error can be reported by the TypeScript compiler in the compile time.

In the below example, the variable port represents the port that a server listens on.
Even though this variable should only contain a number, it's still valid to assign a

string 9090 to port in JavaScript. This error may only be detected in the runtime.

var port = 8080;
port = '9090";

Il -> valid assignment

However, the TypeScript code in below example declares the type of port is number.
The following assignment causes a compiler error. So developers can find out this

error immediately and fix it right away.

let port: number = 8080;
port = '9090";

Il -> compiler error!

169

Rich Feature Sets

Apart from the essential compile-time type checks, TypeScript is also a powerful
programming language with rich feature sets. Most of these features come from
current or future versions of ECMAScript, including ES6, ES7, and ES8. Using these
features can dramatically increase the productivity of front-end developers. You'll

see the usages of these features in the code of the sample app.

Better IDE Support

With type information in the TypeScript source code, modern IDEs can provide
smart code complete suggestions to increase developers’ productivity. IDEs can
also do refactoring for TypeScript code. Navigation between different files, classes,
or functions is easy and intuitive. Front- end developers can enjoy the same coding

experiences as Java and C# developers.

3.4 BASIC TYPES

The key point of writing TypeScript code is to declare types for variables, properties,
and functions. TypeScript has a predefined set of basic types. Some of those types

come from JavaScript, while other types are unique in TypeScript.
3.4.1 BOOLEAN

Boolean type represents a simple true or false value. A Boolean value is declared

using type boolean in TypeScript.
let isActive: boolean = false;

isActive = true;

3.4.2 NUMBER

Numbers are all floating-point values in TypeScript. A number is declared using type
number in TypeScript. TypeScript supports decimal, hexadecimal, binary, and octal
literals for numbers. All these four numbers in the code below have the same

decimal value 20.

let p1: number = 20; /I decimal

170

let p2: number = 0x14; // hexadecimal
let p3: number = 0b10100; // binary

let p4: number = 0024; // octal

3.4.3 STRING

String type represents a textual value. A string is declared using type string in
TypeScript. Strings are surrounded by double quotes (") or single quotes (). It's up
to the development team to choose whether to use double quotes or single quotes.
The key point is to remain consistent across the whole code base. Single quotes are
more popular because they are easier to type than double quotes that require the
shift key.

let text: string = 'Hello World';

TypeScript also supports ES6 template literals, which allow embedded expressions
in string literals. Template literals are surrounded by backticks (*). Expressions in the

template literals are specified in the form of ${expression}.
let a: number = 1;

let b: number = 2;

let result: string = "${a} + ${b} = ${a + b}’;

/[->string"1 +2=3"

3.4.4 NULL AND UNDEFINED

null and undefined are special values in JavaScript. In TypeScript, null and
undefined also have a type with name null and undefined, respectively. These two

types only have a single value.
let v1: null = null;
let v2: undefined = undefined;

By default, it's allowed to assign null and undefined to variables declared with other

types. For example, the code below assigns null to the variable v with type string.

let v: string = null;

171

However, null values generally cause errors in the runtime and should be avoided
when possible. TypeScript compiler supports the option --strictNullChecks. When
this option is enabled, TypeScript compiler does a strict check on null and undefined
values. null and undefined can only be assigned to themselves and variables with
type any. The code above will have a compile error when strictNullChecks is
enabled.

3.4.5 ARRAY

Array type represents a sequence of values. The type of an array depends on the
type of its elements. Appending [] to the element type creates the array type. In the
code below, number(] is the type of arrays with numbers, while string[] is the type of
arrays with strings. Array type can also be used for custom classes or interfaces. For

example, Point[] represents an array of Point objects.
let numbers: number[] = [1, 2, 3];

let strings: string[] = ['a’, 'b', 'c'];

3.4.6 TUPLE

The elements of an array are generally of the same type, that is, a homogeneous
array. If an array contains a fixed number of elements of different types, that is, a
heterogeneous array, it's called a tuple. The tuple type is declared as an array of
element types. In the code below, the tuple points has three elements with types

number, number, and string.
let points: [number, number, string] = [10, 10, 'P1'];

Tuples are useful when returning multiple values from a function because a function
can only have at most one return value. Tuples of two elements, a.k.a. pairs, are
commonly used. Be careful when using tuples with more than two elements,
because elements of tuples can only be accessed using array indices, so it reduces
the code readability. In this case, tuples should be replaced with objects with named

properties. So it's better to change the type of points to an actual interface.

172

3.4.7 ENUM

Enum type represents a fixed set of values. Each value in the set has a meaningful
name and a numeric value associated with the name. In the code below, the value of
status is a number with value 1. By default, the numeric values of enum members
start from 0 and increase in sequence. In the enum Status, Status.Started has value

0, Status.Stopped has value 1, and so on.

enum Status { Running, Stopped, NotWorking };

let status: Status = Status.Stopped;

It's also possible to assign specific humeric values to enum values. In the code
below, enum values Read, Write, and Execute have their assigned values. The

value of permission is 3.

enum Permission { Read = 1, Write = 2, Execute = 4 };

let permission = Permission.Read | Permission.Write;

To convert an enum value back to its textual format, we can do the lookup by

treating the enum type as an array.
let status: string = Status[1];

/I -> 'Stopped'

3.4.8 ANY

Any type is the escape bridge from the TypeScript world to the JavaScript world.
When a value is declared with type any, no type checking is done for this value.
While type information is valuable, there are some cases when type information is
not available, so we need the any type to bypass the compile-time check. Below are

two common cases of using the type any.

e Migrate a JavaScript code base to TypeScript. During the migration, we can

annotate unfinished values as any to make the TypeScript code compile.

173

¢ Integrate with third-party JavaScript libraries. If TypeScript code uses a third-
party JavaScript library, we can declare values from this library as any to
bypass type checks for this library. However, it's better to add type definitions
for this kind of libraries, either by loading type definitions from community-

driven repositories or creating your own type definitions files.

In the code below, the variable val is declared as any type. We can assign a string, a

number, and a Boolean value to it.
let val: any = 'Hello World",
val = 100; // valid

val = true; // valid

3.4.9 VOID

Void means no type. It's commonly used as the return type of functions that don't

return a value. The return type of the sayHello function below is void.
function sayHello(): void {
console.log('Hello");
}
void can also be used as a variable type. In this case, the only allowed

values for this variable are undefined and null.

3.4.10 UNION

Union type represents a value that can be one of several types. The allowed types
are separated with a vertical bar (|). In the code below, the type of the variable

stringOrNumber can be either string or number.
let stringOrNumber: string | number = 'Hello World';
stringOrNumber = 44;

stringOrNumber = 'Test';

174

Union types can also be used to create enum-like string literals. In the code below,

the type TrafficSignalColor only allows three values.
type TrafficSignalColor = 'Red' | 'Green' | 'Yellow';

let color: TrafficSignalColor = 'Red';

3.5 FUNCTIONS

Functions are important building blocks of JavaScript applications. TypeScript adds
type information to functions. The type of a function is defined by the types of its

arguments and return values.

As shown in below example, we only need to declare function types either on the
variable declaration side or on the function declaration side. TypeScript compiler can

infer the types from context information.
let size: (str: string) => number = function(str) {

return str.length;

|

let multiply = function(v1: number, v2: number): number {

return v1 * v2;

Function types are useful when declaring high-order functions, that is, functions that
take other functions as arguments or return other functions as results. When
specifying types of functions used as arguments or return values, only type
information is required, for example, (string) => number or (number, number) =>
number. We don’t need to provide the formal parameters. In below example,
forEach is a high-order function that takes functions of type (any) => void as the

second argument.
function forEach(array: any([], iterator: (any) => void) {

for (let item in array) {

175

iterator(item);

}

forEach([1, 2, 3], item => console.log(item));

/[-> Output 1, 2, 3

Arguments
JavaScript uses a very flexible strategy to handle function arguments.

A function can declare any number of formal parameters. When the function is
invoked, the caller can pass any number of actual arguments. Formal parameters
are assigned based on their position in the arguments list. Extra arguments are
ignored during the assignment. When not enough arguments are passed, missing
formal parameters are assigned to undefined. In the function body, all the arguments
can be accessed using the array-like arguments object. For example, using
arguments[0] to access the first actual argument. This flexibility of arguments
handling is a powerful feature and enables many elegant solutions with arguments
manipulation in JavaScript. However, this flexibility causes an unnecessary burden
on developers to understand. TypeScript adopts a stricter restriction on arguments.
The number of arguments passed to a function must match the number of formal
parameters declared by this function. Passing more or fewer arguments when

invoking a function is a compile- time error.

If a parameter is optional, we can add ? to the end of the parameter name, then the
compiler doesn’t complain when this parameter is not provided when invoking this
function. Optional parameters must come after all the required parameters in the
function’s formal parameters list. Otherwise, there is no way to correctly assign
arguments to those parameters. For example, given a function func(v1?: any, v2:
any, v3?: any), when it's invoked using func(1, 2), we could not determine whether

value 1 should be assigned to v1 or v2.

We can also set a default value to a parameter. If the caller doesn’t provide a value
or the value is undefined, the parameter will use the default value. The parameter

timeout of function delay has a default value 1000. The first invocation of delay

176

function uses the default value of timeout, while the second invocation uses the

provided value 3000.

function delay(func: () => void, timeout = 1000) {
setTimeout(func, timeout);

}

delay(() => console.log('Hello"));

/Il -> delay 1000ms

delay(() => console.log('Hello"), 3000);

/Il -> delay 3000ms

3.6 INTERFACE AND CLASSES

TypeScript adds common concepts from object-oriented programming languages.
This makes it very easy for developers familiar with other object-oriented

programming languages to move to TypeScript.

Interfaces

Interfaces in TypeScript have two types of usage scenarios. Interfaces can be used
to describe the shape of values or act as classes contracts.

Describe the Shape of Values

In typical JavaScript code, we use plain JavaScript objects as the payload of
communication. But the format of these JavaScript objects is opaque. The caller and
receiver need to implicitly agree on the data format, which usually involves
collaboration between different team members. This type of opacity usually causes

maintenance problems.

For example, a receiver function may accept an object that contains the properties
name, email, and age. After a later refactoring, the development team found that the
date of birth should be passed instead of the age. The caller code was changed to

pass an object that contains the properties name, email, and dateOfBirth. Then the

177

receiver code failed to work anymore. These kinds of errors can only be found in the
runtime if developers failed to spot all those places that rely on this hidden data
format contract during refactoring. Because of this potential code breaking,
developers tend to only add new properties while still keeping those old properties,
even though those properties were not used anymore. This introduces “bad smells”

to the code base and makes future maintenance much harder.

Interfaces in TypeScript provide a way to describe the shape of an object. As shown
in below example, if we update interface User to remove the property age and add a
new property dateOfBirth, TypeScript compiler will throw errors on all the places
where the age property is used in the whole code base. This is a huge benefit for

code refactoring and maintenance.
interface User {
name: string;
email; string;
age: number;
}
function processUser(user: User) {
console.log(user.name);
}
processUser({
name: 'Alex’,
email: 'alex@example.org',
age: 34,
};

Classes

Class is the fundamental concept in object-oriented programming languages. ES6

added the classes concept to JavaScript. TypeScript also supports classes.

178

Below example shows important aspects of classes in TypeScript. A class can be
abstract. An abstract class cannot be instantiated directly, and it contains abstract
methods that must be implemented in derived classes. Classes also support
inheritance. The members of a class are public by default. public, protected, and
private modifiers are supported with similar meanings as in other object-oriented

programming languages.

Classes can have constructor functions to create new instances. In the constructor
function of a subclass, the constructor of its parent class must be invoked using
super(). The constructor of Rectangle takes two parameters width and height, but
the constructor of the subclass Square takes only one parameter, so super(width,
width) is used to pass the same value width for both parameters width and height in

the Rectangle constructor function.
abstract class Shape {
abstract area(): number;
}
class Rectangle extends Shape {
private width: number;
private height: number;
constructor(width: number, height: number) {
super();
this.width = width;
this.height = height;
}
area() {

return this.width * this.height;

}

class Square extends Rectangle {

179

constructor(width: number) {
super(width, width);
}
}

class Circle extends Shape {
private radius: number;
constructor(radius: number) {
super();
this.radius = radius;
}
area() {

return Math.PI * this.radius * this.radius;

}
}

let rectangle = new Rectangle(5, 4);
let square = new Square(10);

let circle = new Circle(10);

console.log(rectangle.area());
/I ->20
console.log(square.area());

// ->100
console.log(circle.area());

/1 ->314.1592653589793

180

3.7 LET US SUM UP

¢ Understanding Typescript

o Data Types in Typescript

e Understanding Function

e Understanding interface and Classes

e Create the following class with proper data type.

3.8 ASSIGNMENTS

Try to implement the below diagram. It contain class, variable, and function.

TransportationVehicle

-NoOfDoors: number
-LoadCapacity: string

Vehicle

-NoOfWheels: number
-Color: string
-FuelType: string
-Speed: number

-start() : void

-accelerate() . void

-brake() : void
-getNumberOfwheels : number

PassengerVehicle

-PassengerSeats: number

Bike

-SaddleHeight: number

I'a "l‘ b
-
(Van (Truck |
-NoOfBoxes: number -SizeOfContainers: number Car
-NoOfDoors: number
-loadVan() : void -loadContainer() : void
- J - S

181

Block-4
Advance of IONIC

182

Unit 1: lonic Ul Controls

Unit Structure

4.1 Learning Objective
4.2 Introduction

4.3 Input

44 Labels

4.5 Checkbox

4.6 Radio Button

4.7 Selects
4.8 Toggles
49 Ranges

410 Header and Footer
411 Toolbar

4.12 Card Layout

413 List

4.14 Grid Layout

4.15 LetUs Sum Up

4.16 Activities

1

183

1.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

e Basic Ul Controls of lonic

1.2 INTRODUCTION

To gather users’ information, we need to use different input controls, including
standard HTML form elements like inputs, checkboxes, radio buttons and selects;
and components designed for mobile platforms, like toggles or ranges. lonic

provides out-of-box components with beautiful styles for different requirements.

1.3 INPUT

The component ion-input is for different types of inputs. This component supports

the following properties.

e type — The type of the input. Possible values are text, password, email,

number, search, tel, or url. The default type is text.
e value — The value of the input.
e placeholder — The placeholder of the input.
e disabled — Whether the input is disabled or not.
e clearlnput — Whether to show the icon that can be used to clear the text.

e clearOnEdit — Whether to clear the input when the user starts editing the text.
If the type is password, the default value is true; otherwise the default value is

false.

e accept — If the type is file, this property specifies a comma-separated list of

content types of files accepted by the server.

e autocapitalize — Whether the text should be automatically capitalized. The

default value is none.

e autocomplete — Whether the value should be automatically completed by the

browser. The default value is off.

184

autocorrect — Whether auto-correction should be enabled. The default value

is off.
autofocus —Whether the control should have input focus when the page loads.

debounce — The amount of time in milliseconds to wait to trigger the event

ionChange after each keystroke. The default value is 0.

inputmode — The hint for the browser for the keyboard to display.

max — The maximum value.

maxlength — The maximum number of characters that

the user can enter.

min — The minimum value.

minlength — The minimum number of characters that the user can enter.

step — The increment at which a value can be set. This property is used with

min and max.

multiple — Whether the user can enter multiple values. It only applies when

the type is email or file.

name — Name of the control.

pattern — A regular expression to check the value.
readonly — Whether the value can be changed by the user.

required — Whether the value is required. spelicheck — Whether to check the

spelling and grammar.

size — The initial size of the control.

ion-input also supports following events.

ionBlur — Fired when the input loses focus.
ionFocus — Fired when the input has focus.
ionChange — Fired when the value has changed.

ionlnput — Fired when a keyboard input occurred.

185

Below is a basic sample of using ion-input.

<ion-input type="text" [(ngModel)]="name" name="name" required></ion-input>

1.4 LABEL

Labels can be used to describe different types of inputs. ion-label is the component
for labels. It supports different ways to position the labels relative to the inputs using

the property position.
o fixed - Labels are always displayed next to the inputs.

o floating - Labels will float above the inputs if inputs are not empty or have

focus.
e stacked - Labels will always appear on the top of inputs.

We can add the property position to the ion-label to specify the position.

Below is a basic sample of using ion-label.

<ion-label floating>Username</ion-label>

1.5 CHECKBOX

The component ion-checkbox creates checkboxes with lonic styles. It has the

following properties.

e color - The color of the checkbox. Only predefined color names like primary

and secondary can be used.
e checked - Whether the checkbox is checked. The default value is false.
e disabled - Whether the checkbox is disabled. The default value is false.
ion-checkbox also supports following events.
e ionBlur — Fired when the input loses focus.

e ionFocus — Fired when the input has focus.

186

e ionChange — Fired when the value has changed.

Below is a basic sample of using ion-checkbox.

<ion-checkbox [(hgModel)]="enabled"></ion-checkbox>

1.6 RADIO BUTTON

Radio buttons can be checked or unchecked. Radio buttons are usually grouped
together to allow the user to make selections. A radio button is created using the
component ion-radio. ion-radio supports properties color, checked, and disabled with
the same meaning as the ion- checkbox. ion-radio also has a property value to set
the value of the radio button. ion-radio supports the event ionSelect that fired when

it's selected.

A radio buttons group is created by the component ion-radio-group, then all the
descendant ion-radio components are put into the same group. Only one radio

button in the group can be checked at the same time. It has the following properties.
e checked - Whether the radio-button is selected. The default value is false.

e color - The color of the radio-button. Only predefined color names like primary

and secondary can be used.
e disabled - Whether the radio-button is disabled. The default value is false.
ion-radio also supports following events.
e jonBlur — Fired when the input loses focus.
e ionFocus - Fired when the input has focus.

e ionChange — Fired when the value has changed.

In the example below, we create a group with three radio buttons.
<ion-radio-group>
<ion-list>

<ion-list-header>

187

Traffic colors
</ion-list-header>
<ion-item>

<ion-label>Red</ion-label>

<ion-radio slot="start" value="red"></ion-radio>
</ion-item>
<ion-item>

<ion-label>Green</ion-label>

<ion-radio slot="start" value="green"></ion-radio>
</ion-item>

<ion-item>

<ion-label>Blue</ion-label>

<ion-radio slot="start" value="blue"></ion-radio>
</ion-item>

</ion-list>
</ion-radio-group>

Radio groups
TRAFFIC COLORS
v

Green

Blue

Figure-19 Radio Button

188

1.7 SELECTS

The component ion-select is similar to the standard HTML <select> element, but its

Ul is more mobile friendly. The options of ion-select are specified using ion-select-

option. If the ion-select only allows a single selection, each ion-select-option is

rendered as a radio button in the group. If the ion-select allows multiple selections,

then each ion-select-option is rendered as a checkbox. Options can be presented

using alerts or action sheets. Below are configuration options for ion-select.

multiple — Whether the ion-select supports multiple selections.
disabled — Whether the ion-select is disabled.

interface — The interface to display the ion-select. Possible values are alert,

popover, and action-sheet. The default value is alert.
interfaceOptions — Additional options passed to the interface.
okText — The text to display for the OK button.

cancelText — The text to display for the cancel button.
placeholder — The text to display when no selection.

selectedText — The text to display when selected.

ion-select also supports the following events.

ionChange — Fired when the selection has changed.
ionCancel — Fired when the selection was canceled.
ionBlur — Fired when the select loses focus.

ionFocus — Fired when the select has focus.

The ion-select in the below example renders a single selection select.

<ion-select placeholder="Select a color">

<ion-select-option value="red">Red</ion-select-option>

<ion-select-option value="green" selected>

189

Green
</ion-select-option>
<ion-select-option value="blue">Blue</ion-select-option>

</ion-select>

Figure-20 Select with single selection

190

Multiple selections select

<ion-select multiple="true” placeholder="Select browsers”>
<ion-select-option>IE</ion-select-option>
<ion-select-option selected>Chrome</ion-select-option>
<ion-select-option selected>Firefox</ion-select-option>

</ion-select>

Figure-21 Select with multi-selection

191

Use action sheet to display

<ion-select interface="action-sheet" placeholder="your

response">
<ion-select-option>Yes</ion-select-option>
<ion-select-option>No</ion-select-option>
<ion-select-option>Maybe</ion-select-option>

</ion-select>

No

Maybe

Cancel

Figure-22 Select using action sheet

192

1.8 TOGGLES

Like checkboxes, toggles represent Boolean values but are more user friendly on
the mobile platforms. ion-toggle supports the same properties and events as ion-

checkbox. See the code below for a sample of ion-toggle.

<ion-toggle [(ngModel)]="enabled"></ion-toggle>

1.9 RANGES

Range sliders allow users to select from a range of values by moving the knobs. By
default, a range slider has one knob to select only one value. It also supports using
dual knobs to select a lower and upper value. Dual knobs range sliders are perfect

controls for choosing ranges, that is, a price range for filtering.

The component ion-range has the following properties. Standard properties,

including color and disabled, are omitted.

e min and max - Set the minimum and maximum integer value of the range.

The default values are 0 and 100, respectively.

e step - The value granularity of the range that specifies the increasing or

decreasing values when the knob is moved. The default value is 1.

e snaps - Whether the knob snaps to the nearest tick mark that evenly spaced

based on the value of step. The default value is false.

e pin - Whether to show a pin with current value when the knob is pressed. The

default value is false.

e debounce - How many milliseconds to wait before triggering the ionChange

event after a change in the range value. The default value is 0.
e dualKnobs - Whether to show two knobs. The default value is false.

To add labels to either side of the slider, we can use the property slot of the child

components of the ion-range. Labels can be texts, icons, or any other components.

193

Labels of ion-range

<ion-range min="1" max="5">
<ion-icon name="sad" slot="start"></ion-icon>
<ion-icon name="happy" slot="end"></ion-icon>

</ion-range>

Step and snaps

<ion-range step="10" snaps="true" pin="true">
<ion-label slot="start">Min</ion-label>
<ion-label slot="end">Max</ion-label>

</ion-range>

Double knobs

<ion-range dual-knobs="true" min="0" max="10000">
<ion-label slot="start">Low</ion-label>
<ion-label slot="end">High</ion-label>

</ion-range>

Range

RANGES

o ©

Min Max

Low High

Figure-23 Range control

194

1.10 HEADER AND FOOTER

Header is a parent component that holds the toolbar component. It's important to
note that ion-header needs to be the one of the three root elements of a page.
Headers are fixed regions at the top of a screen that can contain a title label, and

left/right buttons for navigation or to carry out various actions.

Footer is a root component of a page that sits at the bottom of the page. Footer can

be a wrapper for ion-toolbar to make sure the content area is sized correctly.

<ion-header>
<ion-navbar>
<ion-title>Header</ion-title>
</ion-navbar>
<ion-toolbar>
<ion-titte>Subheader</ion-title>
</ion-toolbar>
</ion-header>
<ion-content></ion-content>
<ion-footer>
<ion-toolbar>
<ion-title>Footer</ion-title>
</ion-toolbar>

</ion-footer>

1.11 TOOLBARS

A toolbar is a generic container for text and buttons. It can be used as a header,
sub-header, footer, or sub-footer. Toolbars are created using the component ion-

toolbar.

195

Buttons in a toolbar should be placed inside of the component ion-buttons. We can

use the property slot to configure the position of the ion-buttons inside of the toolbar.

e secondary - On iOS, positioned to the left of the content; on Android and

Windows phones, positioned to the right.

e primary - On iOS, positioned to the right of the content; on Android and

Windows phones, positioned to the far right.
e start - Positioned to the left of the content in LTR, and to the right in RTL.
e end - Positioned to the right of the content in LTR, and to the left in RTL.
<ion-app>
<ion-header>
<ion-toolbar>
<ion-buttons slot="start">
<ion-button>
<ion-icon name="menu" slot="icon-only">
</ion-icon>
</ion-button>
</ion-buttons>
<ion-title>My App</ion-title>
<ion-buttons slot="end">
<ion-button>
<ion-icon name="settings" slot="icon-only">
</ion-icon>
</ion-button>
</ion-buttons>
</ion-toolbar>
</ion-header>

<ion-content padding>

196

App content
</ion-content>

</ion-app>

1.12 CARD LAYOUT

Cards are a great way to display important pieces of content, and are quickly
emerging as a core design pattern for apps. They are a great way to contain and
organize information, while also setting up predictable expectations for the user.
With so much content to display at once, and often so little screen realestate, cards
have fast become the design pattern of choice for many companies, including the

likes of Google, Twitter, and Spotify.

For mobile experiences, Cards make it easy to display the same information visually
across many different screen sizes. They allow for more control, are flexible, and
can even be animated. Cards are usually placed on top of one another, but they can

also be used like a "page" and swiped between, left and right.

Cards are created using the component ion-card. A card can have a header and
content that can be created using ion-card-header and ion-card-content,

respectively. Below example shows a simple card with a header and content.
<ion-card>
<ion-card-header>
Header
</ion-card-header>
<ion-card-content>
Card content
</ion-card-content>
</ion-card>

In the ion-card-content, we can include different kinds of components. The

component ion-card-title can be used to add title text to the content. The component

197

ion-card-subtitle adds a subtitle to the content. Below example shows a card with an

image and a title.
<ion-card>
<ion-card-content>

<ion-card-title>Iltem 1</ion-card-title>
<ion-card-subtitle>Another item</ion-card-subtitle>
<p>
This is item 1.

</p>

</ion-card-content>

</ion-card>
Cards
e
Item 1
ANOTHER ITEM
This is item 1.
Figure-24 Card layout
1.13 LIST

Lists are one of the most common interface elements in mobile applications. They

are an efficient way to display lots of information in a small space and the act of

198

scrolling through a list is basically second nature for most mobile users. Facebook

uses a list for their news feed, as does Instagram and many others.

Given the importance of lists, the lonic team have put a lot of effort into creating an
optimised list component that has smooth scrolling, inertia, acceleration and

deceleration, and everything else that gives list that nice “native” feel.

Both the list, which contains items, and the list items themselves can be any HTML

element.

Using the List and Item components make it easy to support various interaction

modes such as swipe to edit, drag to reorder, and removing items.
<ion-list>
<ion-item>
<ion-label>Apple</ion-label>
</ion-item>
<ion-item>
<ion-label>Apricots</ion-label>
</ion-item>
<ion-item>
<ion-label>Avocado</ion-label>
</ion-item>
<ion-item>
<ion-label>Banana</ion-label>
</ion-item>
<ion-item>
<ion-label>Blueberries</ion-label>
</ion-item>

</ion-list>

199

1.14 GRID LAYOUT

The grid is a powerful mobile-first flexbox system for building custom layouts. It is
composed of three units — a grid, row(s) and column(s). Columns will expand to fill
their row, and will resize to fit additional columns. It is based on a 12 column layout

with different breakpoints based on the screen size.

In the item card, we need to display two or three buttons. These buttons should take
up the same horizontal space of the line. This layout requirement can be easily
archived by using the grid layout. The grid layout is implemented using the CSS3

flexbox layout (https://css- tricks.com/snippets/css/a-guide-to-flexbox/).

The grid layout uses three components: ion-grid, ion-row, and ion-col. ion-grid
represents the grid itself, ion-row represents a row in the grid, ion-col represents a
column in a row. Rows take up the full horizontal space in the grid and flow from top
to bottom. Horizontal space of a row is distributed evenly across all columns in the
row. Grid layout is based on a 12-column layout. We can also specify the width for
each column using attributes from col-1 to col-12. The number after col- is the
number of columns it takes in the 12-column layout, for example, col-3 means it
takes 3/12 of the whole width. By default, columns in a row flow from the left to the
right and are placed next to each. We can use the property offset-* to specify the
offset from the left side. We can the same pattern as in col-* to specify the offset, for
example, offset-3 and offset-6. Columns can also be reordered using attributes
push-* and pull-*. The attributes push-* and pull-* adjust the left and right of the
columns, respectively. The difference between offset-* and push-* and pull-* is that
offset-* changes the margin of columns, while push-* and pull-* change the CSS

properties left and right, respectively.

For the alignment of rows and columns, we can add attributes like align-items-start,
align-self-start, and justify-content-start to ion-row and ion-col. These attribute
names are derived from flexbox CSS properties and values. For example, align-

items-start means using start as the value of the CSS property align-items.
<ion-grid>
<ion-row>

<ion-col>

200

<ion-button expand="full">1</ion-button>
</ion-col>

<ion-col>

<ion-button expand="full">2</ion-button>
</ion-col>

<ion-col>

<ion-button expand="full">3</ion-button>
</ion-col>
</ion-row>
<ion-row>

<ion-col>

<ion-button expand="full">4</ion-button>
</ion-col>

<ion-col>

<ion-button expand="full">5</ion-button>
</ion-col>

<ion-col>

<ion-button expand="full">6</ion-button>
</ion-col>
</ion-row>
<ion-row>

<ion-col>

<ion-button expand="full">7</ion-button>
</ion-col>

<ion-col>

<ion-button expand="full">8</ion-button>

201

</ion-col>

<ion-col>

<ion-button expand="full">9</ion-button>
</ion-col>
</ion-row>
<ion-row>

<ion-col col-4>

<ion-button expand="full">0</ion-button>

</ion-col>

<ion-col col-8>

<ion-button expand="full" color="secondary">=</ion-button>

</ion-col>
</ion-row>

</ion-grid>

1.15 LET US SUM UP

e All the basic Ul control of lonic 4.

e How control are used, in respect to scenario.

1.16 ACTIVITIES

e With help of ion-list and ion-card create a list of country.
e With help of ion-select create a multi select for restaurant menu.

e With the help of ion-range create a RGB color screen value from 0 to 255.

202

2

Unit 2: Advanced Components

Unit Structure
2.1 Learning Objective
2.2 Introduction

2.3 Action Sheet

2.4 Popover
2.5 Slides
26 Tabs
27 Menu
2.8 Loading

2.9 Check Your Progress
2.10 Check Your Progress: Possible Answers

2.11 Activities

203

2.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

e Advance lonic component

2.2 INTRODUCTION

When implementing those user stories for the app, we already use many lonic built-
in components. There are still some lonic components that are useful but not
included in the app. We are going to discuss several important components,
including action sheet, popover, slides, tabs, modal, and menu. After reading this

chapter, you should know how to use these components.

2.3 ACTION SHEET

An action sheet is a special kind of dialog that lets user choose from a group of
options. It's like the component ion-alert we mentioned before, but only buttons are
allowed in an action sheet. It can also be used as menus. An action sheet contains
an array of buttons. There are three kinds of buttons in action sheets: destructive,
normal, or cancel. This can be configured by setting the property role to destructive
or cancel. Destructive buttons usually represent dangerous actions, for example,
deleting an item or canceling a pending request. Destructive buttons have different
styles to clearly convey the message to the user, and they usually appear first in the

array buttons. Cancel buttons always appear last in the array buttons.

Just like alerts and loading indicators, there are two lonic components for action
sheets. The component ion-action-sheet-controller is responsible for creating,
presenting, and dismissing action sheets. The component ion-action-sheet is the
actual component displayed to the user. Action sheets are created using the method

create() of ion-action- sheet-controller.

204

The method create() takes an options object with the following possible properties.

header - The title of the action sheet.
subHeader - The subtitle of the action sheet.
cssClass - The extra CSS classes to add to the action sheet.

backdropDismiss - Whether the action sheet should be dismissed when the

backdrop is tapped.

buttons - The array of buttons to display in the action sheet.

Each button in the of array of buttons is a JavaScript object with the following

possible properties.

text - The text of the button.

icon - The icon of the button.

handler - The handler function to invoke when the button is pressed.
cssClass - The extra CSS classes to add to the button.

role - The role of the button. Possible values are destructive, selected, and

cancel.

The return value of create() is a Promise<HTMLIonActionSheet Element> instance.

After the promise is resolved, we can use methods present() or dismiss() of

HTMLIlonActionSheetElement to present or dismiss the action sheet, respectively.

When the action sheet is dismissed by user tapping the backdrop, the handler of the

button with role cancel is invoked automatically. When working with Angular, we can

use the service ActionSheetController from lonic Angular.

Action sheets also emit different life-cycle related events.

ionActionSheetDidLoad - Emitted after the action sheet has loaded.
ionActionSheetDidUnload - Emitted after the action sheet has unloaded.
ionActionSheetDidPresent - Emitted after the action sheet has presented.
ionActionSheetWillPresent - Emitted before the action sheet is presented.

ionActionSheetWillDismiss - Emitted before the action sheet is dismissed.

205

e jonActionSheetDidDismiss - Emitted after the action sheet is dismissed.

export class ActionSheetComponent {
actionSheet: HTMLIonActionSheetElement;
constructor(private actionSheetCtrl: ActionSheetController) { }
async chooseAction() {
this.actionSheet = await this.actionSheetCtrl.create({
header: 'Choose your event',
backdropDismiss: true,
buttons: [{
text: 'Remove’,
role: 'destructive’,
icon: 'trash’,
handler: this.removeFile.bind(this),
3 A
text: 'Move',
icon: 'move’,
handler: this.moveFile.bind(this),
3 A
text: 'Cancel,
role: ‘cancel’,
icon: 'close’,
handler: this.close.bind(this),
3
b;

return this.actionSheet.present();

206

}

close() {
this.actionSheet.dismiss();

}

removeFile() {

}

moverFile() {

}
}

2.4 POPOVER

A popover floats on top of the current page. Popovers are created by wrapping
existing components. We use the method create() of the component ion-popover-
controller to create popovers. The method create() has only one parameter, which is

a JavaScript object containing the following properties.
e component - The component that's wrapped in the popover.
e componentProps - The data object to pass to the popover component.
¢ showBackdrop - Whether to show the backdrop.

e backdropDismiss - Whether the backdrop should be dismissed when

clicking outside of the popover.
e cssClass - Extra CSS classes to add.
¢ enterAnimation - Animation to use when the popover is presented.

e event - The click event object to determine the position of showing the

popover.

The return value of create() is a Promise<HTMLIonPopoverElement> instance. The
popover can be dismissed by invoking dismiss() of the resolved
HTMLlonPopoverElement instance. The method dismiss() can accept an optional

object that passed to the callback function configured by onDidDismiss() of the

207

HTMLIonPopoverElement instance. This is how data is passed between the

component wrapped by the popover and the component that creates the popover.

Now we use an example to demonstrate how to pass data when using popovers;
see the example below. The component contains some text, and we want to use a
popover to change the font size. In the PopOverComponent, we use the injected
PopoverController instance to create a new HTMLIonPopoverElement. When
invoking create(), the component to show is FontSizeChooserComponent, and we
pass the current value of fontSize to the component in the componentProps. The
event object of the click event is passed as the value of the property event, so the
popover is positioned based on the position of the click event. If no event is passed,
the popover will be positioned in the center of the current view. We use present() to
show the popover. We then use onDidDismiss() to add a callback function to receive

the updated value of fontSize from the popover.

import { Component } from '@angular/core’;
import { PopoverController } from '@ionic/angular’;
import { PopoverComponent } from '../../component/popover/popover.component’;
@Component({
selector: 'popover-example’,
templateUrl: 'popover-example.html',
styleUrls: ['./popover-example.css']
b
export class PopoverExample {

constructor(public popoverController: PopoverController) {}

async presentPopover(ev: any) {
const popover = await this.popoverController.create({
component: PopoverComponent,

event: ev,

208

translucent: true

h;

return await popover.present();

Popover also emit different life-cycle related events.
e ionPopoverDidDismiss - Emitted after the popover has dismissed.
e ionPopoverDidPresent - Emitted after the popover has presented.
¢ ionPopoverWillDismiss - Emitted before the popover has dismissed.

e ionPopoverWillPresent - Emitted before the popover has presented.

2.5 SLIDES

The slides component is a container for multiple views. The user can swipe or drag

between different views. Slides are commonly used for tutorials and galleries.

Slides are created using components ion-slides and ion-slide. ion- slides is the
container component for ion-slide components inside of it. When creating the ion-
slides, we can use the property options to configure it. lonic slides uses Swiper as its
implemenation. The property options takes the same value as in the Swiper API
(http://idangero.us/swiper/api/). The property pager controls whether to show the

pagination bullets.

After the slides component is created, we can also programmatically control the slide

transitions using the following methods.

o slideTo(index, speed, runCallbacks) - Transition to the slide with the
specified index.

¢ slideNext(speed, runCallbacks) - Transition to the next slide.
¢ slidePrev(speed, runCallbacks) - Transition to the previous slide.

o getActivelndex() - Get the index of the active slide.

209

e getPreviousindex() - Get the index of the previous slide.

¢ length() - Get the total number of slides.

e isBeginning() - Get whether the current slide is the first slide.
e isEnd() - Get whether the current slide is the last slide.

o startAutoplay() - Start autoplay.

e stopAutoplay() - Stop autoplay.

In below example, we create an ion-slides component with the reference variable set

to slides. It contains three ion-slide components.
<ion-slides #slides>
<ion-slide>
Slide 1
</ion-slide>
<ion-slide>
Slide 2
</ion-slide>
<ion-slide>
Slide 3
</ion-slide>
</ion-slides>
<div>
<ion-button (click)="prev()">Prev</ion-button>
<ion-button (click)="next()">Next</ion-button>
</div>

It has two buttons to go to the previous or next slide. The component
SlidesComponent in below example has a @ViewChild property slides that binds to
an ElementRef object. The property nativeElement returns the ion-slides element.

The property loaded is used to check whether the slides component is loaded. The

210

method componentOnReady returns a Promise that resolved when the component
is ready. The method isValid() is required to check whether the Slides component is

ready to use.

import { Component, ViewChild, ElementRef, Onlnit } from
'‘@angular/core’;
@Component({

selector: 'app-slides’,

templateUrl: './slides.component.html’,

styleUrls: ['./slides.component.css']
1
export class SlidesComponent implements Oninit {
@ViewChild('slides') slidesElem: ElementRef;

loaded = false;

slides: any;
ngOnlnit() {
this.slides = this.slidesElem.nativeElement;
this.slides.componentOnReady().then(() => {
this.loaded = true;
b;
}
prev() {

if (this.isValid()) {

this.slides.slidePrev();

next() {

21

}

if (this.isValid()) {

this.slides.slideNext();

}

isValid(): boolean {

return this.loaded && this.slides != null;

}

Slider also emit different life-cycle related events.

ionSlideDidChange - Emitted after the active slide has changed.

ionSlideDoubleTap - Emitted when the user double taps on the slide's

container.

ionSlideDrag - Emitted when the slider is actively being moved.
ionSlideNextEnd - Emitted when the next slide has ended.
ionSlideNextStart - Emitted when the next slide has started.
ionSlidePrevEnd - Emitted when the previous slide has ended.
ionSlidePrevStart - Emitted when the previous slide has started.
ionSlideReachEnd - Emitted when the slider is at the last slide.
ionSlideReachsStart - Emitted when the slider is at its initial position.
ionSlidesDidLoad - Emitted after Swiper initialization

ionSlideTap - Emitted when the user taps/clicks on the slide's container.
ionSlideTouchEnd - Emitted when the user releases the touch.
ionSlideTouchStart - Emitted when the user first touches the slider.
ionSlideTransitionEnd - Emitted when the slide transition has ended.
ionSlideTransitionStart - Emitted when the slide transition has started.

ionSlideWillChange - Emitted before the active slide has changed.

212

2.6 TABS

Tabs are commonly used components for layout and navigation. Different tabs can

take the same screen estate, and only one tab can be active at the same time.

Tabs components are created using the component ion-tabs, while individual tabs

are created using ion-tab. ion-tabs supports the standard properties color and mode

and the following special properties.

tabbarHidden - When this property is true, hide the tab bar.

tabbarLayout - The layout of the tab bar. Possible values are icon-top, icon-

start, icon-end, icon-bottom, icon-hide, title-hide.

tabbarPlacement - The position of the tab bar. Possible values are top and

bottom.

tabbarHighlight - Whether to show a highlight bar under the selected tab. The

default value is false.

Once ion-tabs is created, we can get the ion-tab instance of this component. The

component ion-tabs instance provides different methods to interact with the tabs.

e select(tabOrlndex) - Select a tab by its index or its ion-tab instance.
e getTab(index) - Get the ion-tab instance by the index.

e getSelected() - Get the selected ion-tab instance.

Each ion-tab also supports the following properties to configure it.

active - Whether the tab is active.

href - The URL of the tab.

label - The title of the tab.

icon - The icon of the tab.

badge - The badge to display on the tab button.
badgeStyle - The color of the badge.

disabled - Whether the tab button is disabled.

show - Whether the tab button is visible.

213

o tabsHideOnSubPages - Whether the tab is hidden on subpages.

ion-tab also emits the event ionSelect when it's selected.

In the template file below, we create an ion-tabs with the reference name set to tabs.

Each ion-tab has its title and icon. The first tab has a button to go to the second tab.

<ion-tabs tabbar-placement="top" #tabs>
<ion-tab label="Tab 1" icon="alarm">
Tab One
<ion-button (click)="gotoTab2()">Select Tab 2</ion-button>
</ion-tab>
<ion-tab label="Tab 1" icon="albums">
Tab Two
</ion-tab>
<ion-tab label="Tab 1" icon="settings">
Tab Three
</ion-tab>

</ion-tabs>

In the TabsComponent below,we use the decorator @ViewChild to get the reference

to the ion-tabs element and use its method select() to select the second tab.

import { Component, Onlnit, ViewChild, ElementRef } from
'‘@angular/core’;
@Component({

selector: 'app-tabs’,

templateUrl: './tabs.component.html',

styleUrls: ['./tabs.component.css']

214

})

export class TabsComponent implements Onlnit {
@ViewChild('tabs') tabsElem: ElementRef;
tabs: any;
constructor() { }
ngOnlnit() {
this.tabs = this.tabsElem.nativeElement;
}
gotoTab2() {

this.tabs.select(1);

}

2.7 MENU

Using ion-menu-toggle is generally enough to control the visibility of the menu.
However, when there are multiple menus at both sides, or the visibility of the menu
depends on complex logic, it's better to use ion-menu-controller. It has the following

methods.
¢ open(menuld) - Open the menu with specified id or side.

¢ close(menuld) - Close the menu with specified id or side. If no menuld is

specified, then all open menus will be closed.
¢ toggle(menuld) - Toggle the menu with a specified id or side.

e enable(shouldEnable, menuld) - Enable or disable the menu with a
specified id or side. For each side, when there are multiple menus, only one
of them can be opened at the same time. Enabling one menu will also disable

other menus on the same side.

215

e swipeEnable(shouldEnable, menuld) - Enable or disable the feature to

swipe to open the menu.
e isOpen(menuld) - Check if a menu is opened.
¢ isEnabled(menuld) - Check if a menu is enabled.
¢ get(menuld) - Get the ion-menu instance with a specified id or side.
e getOpen() - Get the opened ion-menu instance.
e getMenus() - Get an array of all ion-menu instances.

¢ isAnimating() - Check if any menu is currently animating.

We create two menus at the start and end side. The ion-menu-button toggles the
menu at the start side. If the property contentld is not specified for the ion-menu, it

looks for the element with the attribute main in its parent element as the content.
<ion-app>
<ion-menu side="start">
<ion-header>
<ion-toolbar>
<ion-title>Start Menu</ion-title>
</ion-toolbar>
</ion-header>
<ion-content>
<ion-list>
<ion-item>
<ion-button (click)="openEnd()">Open end</ion-button>
</ion-item>
</ion-list>
</ion-content>

</ion-menu>

216

<ion-menu side="end">
<ion-header>
<ion-toolbar>
<ion-titte>End Menu</ion-title>
</ion-toolbar>
</ion-header>
</ion-menu>
<div main>
<ion-header>
<ion-toolbar>
<ion-buttons slot="start">
<ion-menu-button menu="start">
<ion-icon name="menu"></ion-icon>
</ion-menu-button>
</ion-buttons>
<ion-title>App</ion-title>
</ion-toolbar>
</ion-header>
<ion-content>
Content
</ion-content>
</div>

</ion-app>

The MenuComponent uses MenuController to open the menu at the end side.

217

import { Component } from '@angular/core’;
import { MenuController } from '@ionic/angular’;
@Component({
selector: 'app-menu’,
templateUrl: './menu.component.html’,
styleUrls: ['./menu.component.css']
1
export class MenuComponent {
constructor(private menuCtrl: MenuController) { }
openEnd() {

this.menuCtrl.open(‘end");

2.8 LOADING

An overlay that can be used to indicate activity while blocking user interaction. The
loading indicator appears on top of the app's content, and can be dismissed by the
app to resume user interaction with the app. It includes an optional backdrop, which

can be disabled by setting showBackdrop:false upon creation.

Creating

Loading indicators can be created using a Loading Controller. They can be
customized by passing loading options in the loading controller's create method. The
spinner name should be passed in the spinner property, and any optional HTML can
be passed in the content property. If a value is not passed to spinner the loading

indicator will use the spinner specified by the platform.

218

Dismissing

The loading indicator can be dismissed automatically after a specific amount of time
by passing the number of milliseconds to display it in the duration of the loading
options. To dismiss the loading indicator after creation, call the dismiss() method on
the loading instance. The onDidDismiss function can be called to perform an action

after the loading indicator is dismissed.

Loading controllers supports this properties.
e animated - the loading indicator will animate.

e backdropDismiss - If true, the loading indicator will be dismissed when the

backdrop is clicked.

e cssClass - Additional classes to apply for custom CSS. If multiple classes are

provided they should be separated by spaces.

e duration - Number of milliseconds to wait before dismissing the loading

indicator.
¢ enterAnimation - Animation to use when the loading indicator is presented.

o keyboardClose - If true, the keyboard will be automatically dismissed when
the overlay is presented.

e leaveAnimation - Animation to use when the loading indicator is dismissed.

e message - Optional text content to display in the loading indicator.

" | n

e spinner - The name of the spinner to display("bubbles" | "circles" | "crescent" |

"dots" | "lines" | "lines-small" | null | undefined.

Events:

ionLoadingDidDismiss - Emitted after the loading has dismissed.
ionLoadingDidPresent - Emitted after the loading has presented.
ionLoadingWillDismiss - Emitted before the loading has dismissed.

ionLoadingWillPresent - Emitted before the loading has presented.

219

import { Component } from '@angular/core";

import { LoadingController } from '@ionic/angular’;

@Component({
selector: 'loading-example’,
templateUrl: 'loading-example.html,
styleUrls: ['./loading-example.css']

1)

export class LoadingExample {

constructor(public loadingController: LoadingController) {}

async presentLoading() {
const loading = await this.loadingController.create({
message: 'Hellooo',
duration: 2000

b;

await loading.present();

const { role, data } = await loading.onDidDismiss();

console.log('Loading dismissed!');

async presentLoadingWithOptions() {
const loading = await this.loadingController.create({
spinner: null,
duration: 5000,

message: 'Please walit...",

220

translucent: true,
cssClass: 'custom-class custom-loading'
b;
return await loading.present();

}

2.9 CHECK YOUR PROGRESS

1. Strings are surrounded by or
A. Single slash or Double slash
B. Single quote or Double quote
2. enabled will have a compile error when for null.
A. nullCheck B. strictNullChecks
C. nullNotAllowed D. noNullAllowed
3. let strings: =['1', '2', '3'] will create kind of array
A. number B. char
C. string D. letter
4. Enum type represents set of values.
A. fixed B.variable
C. alike D.same
5. type is the escape bridge from the TypeScript world to the

JavaScript world
A. Free B. Zone

C. NoRule D. Any

221

6. Void means type

A.no B. null
C. undefined D. nil
7. added the classes concept to JavaScript
A. ES6 B. Compiler
C. Microsoft D. Google

2.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A 2.B 3.C
4. A 5.D 6. A
7.A

2.11 ACTIVITIES

e Try to replicate you mobile setting page.
e Try to replicate Sign in page of Google.

e Try to replicate BookMyShow movie page.

222

Unit 3: Advanced Topics in
IONIC

Unit Structure

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Learning Objective

Platform

Themes

Storage

Publish

Check your Progress

Check your Progress: Possible Answers

Activities

223

3.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.
e Working with different platform
e How theming working in lonic
e Working with storage

e Publishing lonic app.

3.2 PLATFORM

We have class Platform. It can be used to interact with the underlying platform. We
used the method ready() of Platform to wait for the Cordova platform to finish

initialization. The class Platform also has other methods.

e platforms() — Depends on the running device, the return value can be an
array of different platforms. Possible values of platforms are android, cordova,
core, ios, ipad, iphone, mobile, mobileweb, phablet, tablet, windows, and
electron. When running on the iPhone emulator, the return value of

platforms() is ["ios","iphone"].

o is(platformName) — Checks if the running platform matches the given
platform name. Because the method platforms() can return multiple values,
the method is() can return true for multiple values.

e versions() — Gets version information for all the platforms. When running on

the iPhone emulator, the return value of versions() is [{"name":"iphone"},
"name":"ios", "settings":{"mode":"ios","tabsHigh
light":false,"statusbarPadding":false,"keyboard

Height":250,"isDevice":true,"deviceHacks":true}}].
e isRTL() — Checks if the language direction is right to left.

e width() and height() — Gets the width and height of the platform’s viewport,

respectively.

224

¢ isPortrait() and isLandscape() — Checks if the app is in portrait or landscape

mode, respectively.

e ready() — This method returns a promise that is resolved when the platform is
ready and we can use the native functionalities. The resolved value is the

name of the platform that was ready.
e url() — Gets web page’s URL.

e getQueryParam(key) — Gets query parameter.

There are three important EventEmitters in the Platform that are related to app
states. The EventEmitter pause emits events when the app is put into the
background. The EventEmitter resume emits events when the app is pulled out from
the background. These two EventEmitters are useful when dealing with app state
changes. The EventEmitter resize emits events when the browser window has

changed dimensions.

3.3 THEMING

Theme support is baked right into lonic apps. Changing the theme is as easy as

updating the $colors map in your src/theme/variables.scss file:
$colors: (
primary: #488aff,
secondary: #32db64,
danger: #f53d3d,
light: #f4f4f4,
dark: #222
);
The fastest way to change the theme of your lonic app is to set a new value for
primary, since lonic uses the primary color by default to style most components.

Colors can be removed from the map if they aren’t being used, but primary should

not be removed.

225

lonic provides different look and feels based on the current platform. The styles are
grouped as different modes. Each platform has a default mode that can also be
overridden. It's possible to use iOS styles on Android devices.here are two modes:
md for Material Design styles, ios for iOS styles. The platform ios uses the mode ios

by default, and other platforms use the mode md by default.

lonic uses modes to customize the look of components. Each platform has a default
mode, but this can be overridden. For example, an app being viewed on an Android
platform will use the md (Material Design) mode. The <ion-app> will have
class="md" added to it by default and all of the components will use Material Design

styles.

Platform | Mode Details

ios los Viewing on an iphone, ipad, or ipod will use the iOS styles.

android Md Viewing on any android device will use the Material Design
styles.

windows | Wp Viewing on any windows device inside cordova or electron

uses the Windows styles.

core Md Any platform that doesn’t fit any of the above platforms will

use the Material Design styles.

Table-7 Platform and Mode

Overriding the Mode Styles

Each lonic component has up to three stylesheets used to style it. For example, the
tabs component has a core stylesheet that consists of styles shared between all
modes, a Material Design stylesheet which contains the styles for the md mode, an
iOS stylesheet for the ios mode, and a Windows stylesheet for the wp mode. Not all
components are styled differently for each mode, so some of them will only have the

core stylesheet, or the core stylesheet and one of the mode stylesheets.

226

You can use the class that is applied to the ion-app to override styles. For example,
if you wanted to override all buttons in Material Design (md) mode to have

capitalized text:

Once the mode is selected for the app, the html element will have the attribute mode
set to the mode name, for example, <html mode="ios">. The element <ion-app> will
have the mode name as a CSS class name, for example, <ion-app class="md"> for
the mode md. This class name can be used to override styles for different modes. In

the code below, we add extra styles only for the mode md.
.md {
font-size: 16px;

}
.md .button {

text-transform: capitalize;
}
.button-md {

text-transform: capitalize;

}

lonic components have the property mode to set the mode. This mode overrides the

platform’s default mode for this component only.
<ion-app>
<ion-header>
<ion-toolbar>
<ion-tittle>Range</ion-title>
</ion-toolbar>
</ion-header>
<ion-content padding>
<ion-list>

<ion-item>

227

<ion-label slot="start">md</ion-label>
<ion-range mode="md" value="50">
<ion-icon mode="md" slot="start" name="angry">
</ion-icon>
<ion-icon mode="md" slot="end" name="smile">
</ion-icon>
</ion-range>
</ion-item>
<ion-item>
<ion-label slot="start">ios</ion-label>
<ion-range mode="ios" value="50">
<ion-icon mode="ios" slot="start" name="angry">
</ion-icon>
<ion-icon mode="ios" slot="end" name="smile">
</ion-icon>
</ion-range>
</ion-item>
</ion-list>
</ion-content>

</ion-app>

lonic has different Sass variables to configure the styles. These variables can be
overridden in the file src/theme/variables.scss. For example, the variable $button-
md-font-size configures the button font size of mode md. The default value is 14px.

We can add the code below to the file variables.scss to change the variable’s value.

$button-md-font-size: 16px;

228

3.4 STORAGE

To storage data in app, and so the user can access all the data across different
devices. For some cases, it's not required that the data needs to be shared between

different devices.

For this kind of data, we can store the data on the device. In this case, we can use
the key/value pairs storage provided by lonic. The package @ionic/storage is

already installed as part of the starter template, so we can use it directly.

The storage stores key/value pairs. The value of each pair can be data of any type.
If the value is a JavaScript object, it's serialized to a JSON string before saving.
When the data is retrieved, the JSON string is deserialized back to a JavaScript
object. The lonic storage package wraps the localForage library
(https://github.com/localForage/localForage). It provides a common API to access
different storage engines, including SQLite, IndexedDB, WebSQL, and localstorage.
The actual engine used in the runtime depends on the availability of the platform.
The best storage engine to use is SQLite, because it's natively supported on iOS
and Android platforms. We can install the plugin cordova-sqlite-storage to make

SQLite available on different platforms.

$ cordova plugin add cordova-sqlite-storage --save

We use the class Storage from @ionic/storage to interact with the underlying
storage engine. The module created by lonicStorageModule. forRoot() should be
imported. The instance of class Storage can be injected into components. Storage

has the following methods.
o get(key) — Gets the value by key.
o set(key, value) — Sets the value of the given key.
e remove(key) — Removes the given key and its value.
e clear() — Clears the whole store.
o keys() — Gets all the keys in the store.

¢ length() — Gets the number of keys.

229

o forEach(callback) — Invokes the callback function for each key/value pair in

the store.

Most of the operations in Storage are asynchronous. The return values of methods
get(), set(), remove(), and clear() are all Promise objects that resolved when the
operations are completed. In below example, we use set() to set the value first, then

use get() to read the value and assign it to the property value.
import { Component, Onlnit } from '@angular/core’;
import { Storage } from '@ionic/storage’;
@Component({
selector: 'app-page-home’,
templateUrl: 'home.page.html',
styleUrls: ['(home.page.scss'],
1
export class HomePage implements Onlnit {
value: any;
constructor(private storage: Storage) { }
ngOnlnit() {
const obj = {
name: 'Alex’,
email: 'alex@example.org'
2
this.storage.set('value', obj)
then(_ => this.storage.get('value')

.then(v => this.value = v));

230

The method lonicStorageModule.forRoot() accepts an optional object to configure

the storage engine. This object has the following properties.
e name - Name of the storage.
e storeName - Name of the store.

e driverOrder - The array of driver names to test and use. The default value is

['sqlite’, 'indexeddb’, 'websql', 'localstorage'].

3.5 PUBLISH

After the app has been developed and tested, it's time to publish it to app stores.
Here, we’ll discuss tasks related to app publish. An app needs to have proper icons
and splash screens. lonic provides a way to generate these icons and splash

screens.

3.5.1 ICONS AND SPLASH SCREENS

Before the app can be published, we need to replace the default icons and splash
screens. lonic can generate icons and splash screens from source images to create
images of various sizes for each platform. We only need to provide an image for the
icon and another image for the splash screen, then lonic can generate all necessary
images. Source images can be .png file, .psd file from PhotoShop or .ai file from

Adobe lllustrator.

For icons, the source image should be file icon.png, icon.psd or icon.ai in the
directory resources of the lonic project. The icon image should have a size of at
least 192 x 192 px without the round corners. For splash screens, the source image
should be file splash.png, splash.psd or splash.ai in the directory resources. The
splash screen should have a size of at least 2732 x 2732 px with the image centered

in the middle.

We use the command ionic resources to generate those resource files for icons and

splash screens.

231

/I lcons only

$ ionic resources —icon

/I Splash screens only

$ ionic resources —splash

/I Both icons and splash screens
$ ionic resources

Generated icons and splash screens are saved to the subdirectory ios and android
of the directory resources.

3.5.2 DEPLOY TO DEVICES

We can deploy the app to a device for testing. For iOS, open the generated project
in the directory platforms/ios with Xcode and use Xcode to deploy to the device. For
Android, open the generated project in the directory platforms/android with Android

Studio to deploy to the device.

lonic CLI commands ionic run ios and ionic run android can also be used to deploy

apps to the device.

lonic Deploy

After we publish the app’s first version to app stores, we need to continuously
release new versions to the users. Usually, these new versions need to go through
the same review process as the first version, which may take a long time to finish.
This can delay the delivery of new features and bug fixes. For Cordova apps, since
the majority code is written in HTML, JavaScript, and CSS, it's possible to perform
live updates without installing new versions. These static files can be replaced by the
wrapper to update to the new versions. lonic Pro provides the deploy service to

perform live deployments.

You'll need an lonic Pro account to use this feature. After being logged in to lonic
Pro, we need to create a new app in the dashboard and link the app to lonic Pro.
Because we already created the lonic app, the following command is used to link it.

You can find the app_id in the dashboard.

232

$ ionic link --pro-id <app_id>

lonic Pro uses a Git-based workflow to manage app updates. The command ionic
link will prompt to set up the Git repository. Just follow the instructions displayed
when running ionic link to finish the setup. Here we use lonic Pro as the Git
repository. A new Git remote called ionic is added to the repository, and we can
push the current code to this remote. After the link, the file ionic.config.json is

updated to include the property pro_id.

In the lonic Pro dashboard for the app, go to the tab Code and select Channels. Two
channels Master and Production have already been created. Master channel is for
binaries for development, while Production channel is for binaries for app stores.
Clicking the button Set up deploy next to a channel shows a dialog with instructions

on how to set up the deploy. There are three options of how updates are installed.

e ‘“pbackground” mode checks for updates when the app is opened from a
completely closed state. It will download the update in the background when
the user is using the app. The update is applied when the app is closed and

opened the next time.

e “auto” mode checks for updates when the app is opened from a completely
closed state. It will wait on the splash screen until the update is downloaded

and applied. This mode forces users to always use the latest version.

e “‘none” mode doesn’t download or apply updates automatically. The entire
update process is managed by you using the plugin API. This is not
recommended as it may break the app with broken updates. Using
background and auto mode won’t have this issue as the updates in these two

modes are done in the native layer.
We are going to use the background mode for the app. The dialog already shows
the command to run to install the plugin cordova-plugin- ionic.
$ cordova plugin add cordova-plugin-ionic --save \
--variable APP_ID="<app _id>"\
--variable CHANNEL_NAME="Master" \

--variable UPDATE_METHOD="background"

233

After a commit is pushed to the Git repository, a new build will run. You can check
the builds in the tab Builds. For each build, it can be manually deployed to a

channel. A channel can also be configured to auto- deploy builds in a Git branch.

3.6 CHECK YOUR PROGRESS

1. .scss supports variable
A.True
B. False

2. Is it possible to use iOS styles on Android devices.

A.Yes
B.No
3. __ mode is use for Android.
A.md B. ios
C.an D. wp
4. cordova-sqlite-storage makes database available on iOS and
Android.
A. Oracle B. MS-Access
C. MongoDB D. SQLite
5. is used to clear the storage
A. clear() B. removeAll()
C. remove() D. deleteAll()

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A 2.A 3.A

4.D 5 A

234

3.8 ACTIVITIES

e Create a app and assign Splash Screen and Icon for Specific Platform

e Create a app and use Primary and Secondary color for changing the Button

and App Background
e Try to create custom Theme variable and use it in app

e Try to go through Config.xml and then build the individual plarform

235

BAOU

Education
for All

yRaRé o0d

AL UM dU:
AU YUY du:
AU UM dY:

[, dsld, ugeua, [eaolad wn
. GloIALSE. 261353 U YRARZ]L Aln;

Al AleAl wivt 1L, A Al 2Ald 2™,
el [zaMi RMd ad ¢l 2a (28l YM-el™,

AMHEL] AL WA, 2iksRA Yl ?
5¢ Olg oIS 58, ¢ Al dIRl eldl;
WRELL AL USIAUL AR QUH dUH
fa diRsl FH 3ed sadl .

ARAIAL HYR AR s@a udl ads
s Al Gl 56 HS;
ol Al $I e AHUAL ¥ L 8l &R
g el HL e wRel 2 (AR YR,

AsRUAL Yol UEE, U lerd WA
yuiddl euld yeid Al Uldid AN
AU 52 elRA eisl Rae 33 aswel,
2Ll 534 vl Al
My AR [AH. ..
[t A [Axla. ..
My AR [AHle

O

978-81-940577-6- 5

