

Cross Platform
Mobile Application
Development

2019

Dr. Babasaheb Ambedkar Open University

 i

ii

Expert Committee

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

Prof. M. T. Savaliya
Associate Professor and Head, Computer Eng. Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Dr. Ankit R. Bhavsar
Assistant Professor, Faculty of Computer Application & Information Technology
GLS University, Ahmedabad
Mr. Nirav Suthar
Assistant Professor, Faculty of Computer Application & Information Technology
GLS University, Ahmedabad
Mr. Pratik Maniar

Subject Reviewer

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Editors

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad
Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

June 2019, © Dr. Babasaheb Ambedkar Open University

ISBN-978-81-940577-6-5

All rights reserved. No part of this work may be reproduced in any form by mimeograph or
any other means, without written permission from the Dr. Babasaheb Ambedkar Open
University.

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad

 iii

iv

Dr. Babasaheb
Ambedkar Open
University

PGDMAD-202

Cross Platform Mobile Application Development

Block-1: Scenario of Mobile Application
Development

UNIT-1 Cross Platform Mobile Application Development 02

Unit-2 Basic of Development Environment-Angular 16

Unit-3 Basic of Development Environment-IONIC 29

Block-2: Working with Angular

UNIT-1 Introduction to Angular 41

Unit-2 The Basic of Angular 57

Unit-3 Introduction to MVC 77

Unit-4 Angular Directives 96

Unit-5 Working with Forms 112

Block-3: Working With IONIC

UNIT-1 Setting Up the Environment for IONIC 134

Unit-2 Developing First Mobile Application 146

Unit-3 Typescript 167

Block-4: Advance of IONIC

UNIT-1 Ionic UI Controls 183

Unit-2 Advanced Components 203

Unit-3 Advanced Topics in IONIC 223

 1

 Block-1

Scenario of Mobile Application

Development

 2

Unit 1: Cross Platform Mobile
Application Development

Unit Structure

1.1 Learning Objectives

1.2 Introduction

1.3 Mobile Application Development

1.4 Native Mobile Application Development

1.5 Cross Platform (Hybrid) Mobile Application Development

1.6 Basic Requirement For The Cross Platform Mobile Application Development

1.7 Let us sum up

1.8 Check your Progress

1.9 Check your Progress: Possible Answers

1.10 Further Reading

1.11 Assignments

1

 3

1.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

 Android OS app development environment

 iOS app development environment

 Window Phone app development environment

 Native mobile application development concept

 Concept of BYOD

 Cross platform (Hybrid) mobile application development concept

 Tools / Framework available for the cross platform mobile application

development

1.2 INTRODUCTION

As per the survey by the leading statistics portal (sttista.com), in 2019 the

number of smart phone users is forecasted to reach 4.68 billion and will cross cross

5 billion at the end of the year 2019. This number represents 66 percentage of world

population. It shows the use of smart phone is growing rapidly. The applications play

The increasing popularity of smart phone is rooted with mobile applications.

The massive number of mobile applications is available for different mobile operating

systems. By using applications, the smart phone helps their user to do many things.

They can set alarms, get reminders, find location, do online shopping, booking and

many more. More than five million apps are available on leading app store till the

end of the year 2018. This statistics declare by the leading statistics portal

statista.com. As per the portal total 2.1million apps available on android play store

 are available on

window store, Amazon store and BlackBerry World.

is required for programming because each mobile platform is based on a different

programming language. This means that companies must use different experts to

develop applications for each platform. To overcome the said problem, we need to

develop hybrid mobile application. The hybrid mobile application development

 4

supports developers to build applications for multiple mobile platforms at the same

time. In this book we will learn hybrid mobile application development using IONIC.

This unit discuss about the basic of mobile platform environment. We will also learn

the native mobile application development and cross platform (hybrid) mobile

application environment.

1.3 MOBILE APPLICATION DEVELOPMENT

1.3.1 ANDROID

1.3.1.1 Development Environment

 Android is an open source operating system. It is based on Linux

operating system. Android was developed by Open Handset Alliance (OHA)

led by Google. The vision is to provide a robust and open source environment

for wireless platform. Android provide a uniform approach for its developer. It

means android developer needs to develop mobile applications for the

android and their applications able to run on any device powered by Android.

 The Android platform is itself complete, open and free for the mobile

platform.

Complete: The android developers take a comprehensive approach to

develop secure operating system called Android. On the top of this they

provide robust software framework that allows for rich mobile application

development environment.

Open: The android is an open source platform. Neither application

developers nor device manufactures need to take any license for the android

platform.

Free: The android applications are free to develop. There is no licensing,

membership, testing fees for the android platform.

 Android applications are developed in Java language using the

Android Software Development Kit (SDK). The first beta version of the SDK

was released by Google in 2007. The first commercial version, Andorid 1.0

was released in 2008. There after various versions like Cupcake, Donut,

Éclair, Froyo, Gingerbread, Honeycomb, Ice Cream Sandwich, Jelly Bean,

 5

KitKat, Lollipop, Marshmallow, Nougat, Android Oreo were published. The

 Android application development is supported by the following

operating system:

 Microsoft Window XP and later version

 Mac OS X 10.5.8 and later version with Intel chip

 Linux including GNU C library 2.7 and later

1.3.1.2 Tools and Technology for Android App Development

The tools that required developing Android applications are freely

available on internet. We can download the tools and set up the Android

application development environment. The detail installation steps are not

scope of this book so we are not discussing it in detail. The following tools we

need to install before starting the Android application programming.

 Java JDK 6

 Android SDK

 Android Studio or Eclipse

 Android Development Tools (ADT)

1.3.2 iOS

1.3.2.1 Development Envirement For iOS

 The iOS is the mobile operating system developed by the Apple

iPad, iPod Touch and Appel TV. The iOS is derived from the OS X. The OS

X is the operating system used in Apple computers.

 The iOS, earlier known as iPhone OS, is a mobile operating system for

Apple mobile. The first version of the iOS was released in 2007 with the name

nt

stable release, iOS 12.2 was released on March 2019.

 The iOS SDK (Software Development Kit) is used to develop iOS

applications. The iOS SDK was developed by Apple Company. The iOS SDK

 6

is a free download for the only Mac operating system users. It is not available

for the Microsoft Window operating system users. The SDK contains sets that

give developers access to various functions and services of iOS devices,

such as hardware and software attributes. The iOS SDK clubbed with Xcode

IDE.

1.3.2.2 Tools And Technology For iOS

 The tools that required developing iOS application is Xcode. The

Xcode is an integrated development environment (IDE) for iOS. It contains

software development tools developed by Apple for developing application for

iOS. The Xcode helps developers to write iOS applications using

programming languages such as Objective-C and Swift.

 Objective-C is a general-purpose and object-oriented programming

language. It was the main programming language supported by Apple for the

iOS operating systems. The Objective c was originally developed in the

1980 then Apple used it for its NeXTSTEP operating system, from where iOS

are derived.

 The Swift is the general purpose and compile programming language.

It was developed by the Apple Company for iOS in 2014. The Swift is

user interface framework for building applications that run on iOS. The latest

tive to

the Objective-C language that employs modern programming-language

theory concepts with simpler syntax.

1.3.3 WINDOW PHONE

1.3.3.1 Development Environment For Windows Phone

The Window phone is an operating system developed by the Microsoft.

10 Mobile operating system is available commercially with Lumia brand smart

phones from 2015. The aim of Window 10 Mobile is to provide new universal

 7

application platform that allows one application to run on multiple Window 10

devices such as personal computes and mobile

 The Window Phone platform never achieved any significant degree of

popularity or market share in comparison to Android or iOS. By 2017,

Microsoft had already begun to depreciate Windows 10 Mobile, having

discontinued active development due to a lack of user and developer interest

in the platform. Windows 10 Mobile will be deemed to end-of-life on

December 2019.

1.4 NATIVE MOBILE APPLICATION DEVELOPMENT

1.4.1 DEFINATION

specific programming

mobile application development is specific for a mobile operating system or device.

That means before actual development of mobile application, developer needs to

finalize that on which mobile operating system or device it will be executed. Native

application is built for the use on a particular mobile operating system, it has the

ability to use device specific hardware or software. Native apps work with the

device's OS in the way that enables them to perform faster and more flexibly than

alternative application types. Native applications can be either installed on the

specific mobile by default or downloaded from Mobile OS specific app store. Figure-

1 shows the native mobile application development approach.

Figure-1 Native Mobile Application Development Approach

 8

 A native app is specially made and coded for a specific mobile platform in its

native programming language. The Swift and Objective C language are used to

develop mobile applications that are supported by the iOS (Apple) phone. The Java

or Kotlin language is used to develop mobile applications that run on the android OS

based mobile. The C# language is for Window 10 Phone. These all are the example

of native mobile application development.

1.4.2 BYOD STRATEGY

The native mobile application development bring the trend of BYOD (Bring

Your Own Device). The BYOD refers to the policy of permitting employees to bring

their own mobile device to their workplace. The company needs to provide access

privilege to access company information and application on their mobile. We can find

many companies that provide mobile application to their employ through which they

can share company information. This kind of mobile applications mostly runs on

specific mobile operating system. Here it is compulsory that company employees

have mobile devices that have same mobile operating system.

The BYOD has some advantages. Employees can be more productive by

satisfaction and job satisfaction. The main disadvantage of adopting the BYOD in

the company is that they need to develop same application for the multiple mobile

operating system. The illegal way of information discloser is second disadvantage to

adopting BYOD strategy.

1.4.3 ADVANTAGES AND DISADVANTAGES OF NATIVE MOBILE

APPLICATION

Advantages

 The developers code the application for the specific mobile OS. So it runs

smoothly over it.

 Native applications achieve higher marks in speeds and performance.

 In native apps, the look n feel and experience are much than other types

of mobile app.

 Native apps offer fast access to inbuilt device utilities like the camera,

GPS, calendar, microphone, and other functions of the smartphone.

 9

Disadvantages

 Native apps need more time to develop. Creating and implementing the

design for every device takes more development time.

 Developers usually have specialization in a single platform. To develop a

native app, we need as many development teams as the platforms on

which we want the app to be created. Multiple development teams imply

multiple budgets.

1.5 CROSS PLATFORM (HYBRID) MOBILE APPLICATION
DEVELOPMENT

1.5.1 DEFINATION

re multiple platforms

stand for the any mobile operating system or devices. A cross platform mobile

application also called Hybrid mobile application. Hybrid mobile application

development is required some specialized code.

A hybrid application is created as a single app for the use on multiple

platforms like Android, iPhone, and Windows phone. It is a single product that works

on many operating systems like iOS, Android, Windows phone etc. Hybrid

applications perform differently compare to native apps in several ways.

The hybrid application is of two types:

 A Web View Based Hybrid Mobile Applications

 Cross Compiled Hybrid Mobile Applications

A native mobile application which runs the web applications by using a Web

View is called Web View- Based Hybrid Mobile Applications. Generally Web View

based hybrid applications are developed using HTML5, Java Script and CSS3. It has

numbers of Java Script based gesture detection library to handle touch interaction

on screen. It look and feel like a native application but is actually run by website, It is

basically a web-based program to be put in a native app shell and connected to the

device hardware. The IONIC, Cordova, Angular are some of the example of Web

 10

View based hybrid application development. Figure-2 shows the Web-View based

hybrid mobile applications development approach.

Figure-2 Web-View based hybrid mobile applications development approach

A Cross Compiled Hybrid Mobile Applications development allows developers

to convert a specific single language into native language component at either

compile time or during run time. It acts as an interface between native components

and constructor in the concern programming language.

Figure-3 Cross-Compiled hybrid mobile applications development approach

Figure-3 shows the Cross-Compiled hybrid mobile applications development

approach.Here cross compiler tool binds their API with native API, therefore the

 11

performance and user experience can be achieved almost the same as native

mobile application. The Xamarin with C#, Corona with C and Kony with Java Script

are the example of Cross Compiled Hybrid Mobile Applications.

1.5.2 MOBILE APPLICATION TECHNOLOGY STACK

Having a next-generation mobile app is the need of every small to large-scale

companies. Before the actual working model development of mobile application,

mobile app developers and management together to define the design, structure,

architecture, features, and functions of the mobile app. Before starting the

development, company management and developers have to select the most

suitable technologies, platforms, frameworks, and tools for the mobile application.

management and app developers have to participate in the process of selecting an

appropriate technology stack.

To build a robust mobile app in terms of scalability and performance, we need

to make smarter decision related to the technology aspects. We need to select any

one mobile application technology stack approach based on requirement. Now we

know that mobile application can be develop using any one of the given technology

stack.

 Using native mobile application development approach

 Using web-view based hybrid mobile applications development approach

 Using cross-compiled hybrid mobile applications development approach

When a high performance is necessary, native mobile application

development approach should be selected. It is a bit expensive approach but the

user experience and security is high compare to other approaches. In the

competitive age, each company reaches to customer speedily. The web-view based

hybrid mobile application development approach provides the speedy mobile

application development environment. In this approach we need to code once and

run on the multiple mobile platforms with less cost. When we want to take advantage

of native mobile application and web-view mobile application, we need to select

cross-compiled hybrid mobile applications development approach. As we know that

 12

in this approach, mobile application developed in single specific language and at

compile time (or run time) it converts it in to mobile specific native code.

1.5.3 ADVANTAGES AND DISADVANTAGES OF CROSS

PLATFORM MOBILE APPLICATION

Advantages

 Hybrid mobile applications are developed once for all platforms. So we do

not require to hire different programmer. Due to that the development cost

is very low.

 As we know hybrid apps are web apps incorporated in a native shell, so its

content can be updated as many times as you need or want. So, hybrid

apps have a low maintenance.

 Hybrid mobile applications need to develop once, so we require short time

to develop and place it quickly on app store.

Disadvantages

 Hybrid apps add an extra layer between the source code and the target

mobile platform, layer is call

performance.

 The extra layer from hybrid development framework also makes

debugging a bigger task.

 As compared to native app development, it is difficult to maintain a proper

user experience between the Android and iOS app. If you focus more on

iOS, the user experience will worsen for Android users and vice a versa.

1.6 BASIC REQUIREMENT FOR THE CROSS PLATFORM
MOBILE APPLICATION DEVELOPMENT

 Today, many tools and frameworks are available to develop cross platform

mobile applications. Below Table-1 shows the list of most popular tools used for

the cross platform mobile application development.

Tools / Approach Manufacturer

 13

Framework

Ionic Web View Drifty Co.

React JS Web View Facebook

jQuery Mobile Web View jQuery Project

Cordova Mobile development Framework Apache

PhoneGap Mobile development Framework Nitobi

Xamarin Cross Compiled Xamarin

Robo VM Cross Compiled Robo VM AB

Table-1 Tools / Framework for Cross Platform Mobile Application Development

Here, in this book we learn cross platform mobile application development

using Ionic. The Ionic is the web view based open source framework for the cross

platform mobile application development. Ionic offers mobile application

development based on Angular that is a Java Script frame work. So to learn Ionic,

user have to know of HTML5, Cascading Style Sheet (CSS) and Java Script.

1.7 LET US SUM UP

This unit we learnt about the types of mobile application development

points of the unit.

 At the end of 2019, number of smart phone user will be cross 5 billion.

 More than five million mobile applications available on leading app store.

 A mobile app that is coded for specific mobile OS called native app.

 Native application development require more time and cost.

 A mobile app which can be developed for multiple platform by using single

codebase is call cross platform mobile application. It also call hybrid

application.

 Hybrid app can be two type: Web view based or Cross compile base

 A mobile app which run the web applications by using web view is called web

view based hybrid app.

 Web view based app develop using HTML5, CSS and Java Script.

 14

 A mobile app which developed using specific language, will convert into

compile hybrid app.

 Ionic, React JS, jQuery, Xamarin etc. are the tools / framework to develop

cross platform mobile app.

1.8 CHECK YOUR PROGRESS

 Give the answer of the following MCQ.

1. Android was developed by ________?

 A. Google B. Samsung

 C. Apple D. Microsoft

2. Android is based on __________ operating system

 A. Window B. Unix

 C. Mac D. Linux

3. iOS was developed by ______ ?

 A. Google B. Samsung

 C. Apple D. Microsoft

4. Latest version of iOS is _______

 A. 10.2 B. 12.2

 C. 11.2 D. 13.2

5. To develop iOS app ______ tool is require.

 A. Y code B. X code

 C. Visual Studio D. Eclipse

6. A mobile app that developed for specific mobile platform is called ______ app

 A. Native B. Cross platform

 C. Hybrid D. None of all

7. BYOD stand for _____

 A. Best your Over Device B. Buy your Own Device

 C. Bring your Own Device D. Bring why Odd Device

8. A mobile app developed using one codebase and run on any mobile is called

_____.

 A. Cross platform mobile app B. Native mobile app

 C. iOS mobile app D. Android mobile app

 15

1.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A 2. D 3. C

4. B 5. B 6. A

7. C 8. A 9. D

10. B

1.10 FURTHER READING

 Peter Van Deput, Professional iOS Programming, Wiley.

 Lauren Darcey, Android Application Development in 24 hours, Pearson.

1.11 ASSIGNMENTS

 Write answer Of the following Questions

1. Explain Android development environment.

2. State the advantages and disadvantages of native mobile application

development.

3. Explain BYOD concept

4. What is native mobile application development? Explain with diagram.

5. Explain Web view based hybrid mobile applications development with

diagram.

6. Explain Cross compile based hybrid mobile applications development with

diagram.

9. A mobile app build using CSS, HTM5 and JavaScript is call ______

 A. Native mobile app B. Cross compile mobile app

 C. Android app D. Web view based mobile app

10. Cross compile mobile convert into native app at ______ or _____ time

 A. load, execute B. run, compile

 C. execute , compile D. run, load

 16

Unit 2: Basic Of Development
Environment - Angular

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Angular Framework

2.4 History of Angular

2.5 Features of Angular

2.6 Prerequisites for Angular

2.7 Let us sum up

2.8 Check your Progress

2.9 Check your Progress: Possible Answers

2.10 Further Reading

2.11 Assignments

2

 17

2.1 LEARNING OBJECTIVES
After studying this chapter, students should be able to understand:

 Angular framework.

 SPA (Single Page Application)

 Angular for mobile applications development.

 Angular architecture

 Advantages and disadvantages of Angular

 Necessary component to setup Angular environment.

 History of Angular

 Features of Angular4

 Perquisite of Angular4

2.2 INTRODUCTION

 In the previous unit we learnt about the cross platform mobile application

development environment. Various tools and frame works are available for the

same. Here in this book we will learn the cross platform mobile applications

development using Angular and Ionic framework. We also know that Ionic work is

based on Angular framework. So before learning Ionic framework we need to get

basic knowledge about Angular framework. This unit gives you insight of Angular.

We start with Angular framework and architecture follow by history of it. We also

discuss Angular environment and features of Angular4. This unit is explaining the

2.3 ANGULAR FRAMEWORK

 Angular is the framework for building web applications and mobile

applications using HTML, Java Script and CSS. Angular is open source Java Script

framework which binds the Java Script object and HTML UI elements. Angular was

developed by the Google. It not just Java Script library but it is a complete

framework that provides guideline in writing a proper architectured, maintainable and

testable client side code.

 18

 Angular provides inbuilt support for the animation, http services and many

more things. Angular empower developer who develops applications which live on

the web, mobile or the desktop. Angular is written in typescript.

2.3.1 EVOLUTION OF ANGULAR

 Angular is basically invented to provide a good support to develop web

applications. Angular is based on Java Script framework. We know that JavaScript is

handling dynamic content on web. Sometimes, web sites are open in the mobile

device, the Java Script need to decide that whether or not to render the mobile

version of the requested website. As sometime as a dynamic content manager, Java

Script needs to provide interface of the website on computer desktop or mobile

devices. To support on both kind of device, developers need to write thousands of

lines of code.

 In late 2013, web developer wanted to have their own custom JavaScript

libraries for reducing the number of code lines and implement complex functionalities

easily. A jQuery is the small and feature rich Java Script library that make things

easy for the web developer. But the main problem with jQuery is not real structure

which makes lot of confusion in larger projects. Here Angular comes into picture

and help a developer by providing structured environment. Angular is Java Script

framework that was specifically designed to help developer to build SPAs (Single

Page Applications) for web. A single-page application (SPA) is a web application or

website that interacts with the user by dynamic rewriting the current page rather than

loading entire new pages from a server. Figure-4 shows the different bewteen

traditional web page life cycle and SPA life cycle.

Figure-4 Traditional web v/s SPA web page life cycle

 19

2.3.2 FEATURES OF ANGULAR

 Before going into the detailed study of Angular, we need to learn the feature

of the Angular:

 It provides a cross platform support. Angular applications can be run on any

OS platforms.

 It gives high performance with easy way to write code.

 Using Angular, we can build native mobile application using Ionic framework.

 We can create desktop application version for Mac, Windows and Linux

operating system with the use of Angular.

 Angular provide support to use any technology along with it. We can use

node.js, PHP etc along with Angular framework.

 Angular apps load quickly with the new Component Router, which delivers

automatic code-splitting, so users only load code required to render the view

they request.

 It provides templates through which user can create UI views quickly.

 Using Command Line Interface (CLI) we can easily and quickly build and add

components. We can also test and deploy them easily with the help of CLI.

2.3.3 ARCHITECTURE OF ANGULAR

 Angular architecture consists of eight blocks. Any Angular app is made up of

eight essential constituents. The eight blocks are Modules, components, Templates,

Metadata, Data Binding, Directives, Services and Dependency Injection. Figure-5

shows the architectural view of Angular. Let us understand each block one by one.

 Modules

 Modules are logical boundaries of the application. Instead of writing everything

into one application, we can build separate modules for each functionality of the

application. Angular apps are modular and to maintain modularity, we have

Angular modules or we can say NgModules. Every Angular app contains at

least one Angular module called root module. Module is made of three parts

called Bootstrap Array, Export Array and Import Array. The details of its

functionality can be seen learn in the next block of this book.

20

Figure-5 Architecture of Angular

Components

Each application consists of Components. Each component is a logical

boundary of functionality for the application. Each application is made up of

modules. Each Angular application needs to have one Angular Root Module.

Each Angular Root module can then have multiple components to separate

the functionality. Each component consists of Class, Template and Metadata.

It is represented by the Figure-6.

Figure-6 Module Component Relationships

Angular Root Module

Componen
t

Componen
t

Class Template Metadata

Componen
t

 21

 Templates

 As the name suggests, templates are elements of Angular applications that

combine HTML with Angular markup, which are able to modify HTML

elements before displaying them on the screen. A template looks like regular

HTML, except for a few differences. Templates make use of pipes for

improving the user experience. Templates have two parameters like HTML

code and Class Properties.

 Metadata

 The information related to class is provided by metadata. This has an extra

data defined for the Angular class. It is defined with a decorator.A class

decorator is used for attaching metadata to a class. For providing the

necessary information required by Angular to create the component, class

Decorator makes use of configuration objects. Some of the configuration

options are directives, selector, and template URL.

 Data Binding

 If we are not using a framework, we have to push data values into the HTML

controls and turn user responses into some actions and value updates.

Angular supports data binding, a mechanism for coordinating parts of a

template with parts of a component. We should add binding markup to the

template HTML to tell Angular how to connect both sides. Binding markup is

responsible for connecting application data with the DOM. There are two

types of data binding, namely:

 Event Binding Allows the application to respond to user input in

the target environment. It does so by updating application data.

 Property Binding Allows interpolation of values, which are

computed from application data into the HTML.

 Directives

Angular templates are dynamic. When Angular renders them, it transforms

the DOM according to the instructions given by directives. A directive is a

 22

custom HTML element that is used to extend the power of HTML. Two kinds

of directives exist, structural and attribute directives.

 Structural directives alter layout by adding, removing, and

replacing elements in DOM.

 Attribute directives alter the appearance or behavior of an

existing element.

 Services

 Service is a broad category around any value, function, or feature which

application needs. A service is typically a class with a well-defined purpose.

Anything can be a service. It is a part of component. Examples include:

logging service, data service, and business logic and application

configuration.

 Dependency Injection

Dependency injection is the ability to add the functionality of components at

runtime.Most dependencies are services. Angular uses dependency injection

to provide new components with the services to the existing components.

2.3.4 ADVANTAGES AND DISADVANTAGES OF ANJULAR

Advantages

 Consistency

Code consistency is an important goal to strive for any code base

system. Angular is framework is based on components and

services. In components based structure always look same, we can

add additional thing in to component but overall structure is always

look same. All the components services start on the same way. By

 Productivity

With greater consistency, we get the benefit of productivity. When

we learn how to write one component we can write another

component by same general guidelines and code structure. Once

 23

one. So development of application possible on fast track and

sufficient productivity.

 Maintainability

Angular code can be built using TypeScript (it is improved

JavaScript) which provide lots of benefits along with easy

maintenance of the app.

 Modularity

Angular is all about organizing code into modules. Everything you

or directives has to

be organized into one or more modules.

 Catch Errors Early

Angular is built using TypeScript provide mechanism to find out

errors easily if any.

Disadvantages

 Angular manipulates actual DOM (Document Object Model) which

make it slower and less efficient.

need require more time to learn.

 Data Binding concept is difficult to implement in real world

applications.

 It is difficult to implements server templates.

 Testing is difficult. End to end tests are simplified only with Angular

CLI.

2.3.5 ANGULAR ENVIRONMENT

 To start with Anjular framework, we need to install several tools that Anjular

required. The detail installations of each components will be learned in block two

of the book.To setup the Angular environment we need the following component:

 Node js

Node.js is a cross-platform runtime library and environment for running

JavaScript applications outside the browser. This is a free and open

source tool used for creating server-side JS applications. Node.js is useful

 24

to build fast and scalable server-side networking applications. This

framework is best suited for building single-page client-side web

applications.

 Npm (Node Package Manager)

Npm is a package manager for the JavaScript programming language. It is

the default package manager for the JavaScript runtime environment

Node.js. NPM is a package manager for Node.js packages. The Angular

Framework, Angular CLI, and components used by Angular applications

are packaged as npm packages and distributed via the npm registry.

 Angular CLI (Command Line Interface)

Angular CLI makes it easy to start with any Angular project. Angular CLI

comes with commands that help us to create and start on our project very

fast. It provide command to create project, component and services.

 IDE for writing code.

It provide integrated development environment to write Angular code.

2.4 HISTORY OF ANGULAR

 Angular is the most well-known framework for SPA (Single page

application) development. Angular allows the developer to interact with both the

frontend and the backend. The first version of the framework AngularJS started

back in 2009. AnjularJS was a outcome of side project, by two developers Misko

Hevery and Adam Abrons at Google.

 Misko Hevery eventually began working on a project at Google called Google

Feedback. Misko Hevery and two other developers wrote 17,000 lines of code over

the period of 6 months for Google Feedback. However, the code size increased,

Misko Hevery began to grow frustrated with how difficult it was to test and modify the

code which the team had written. So Misko Hevery made bet with his manager that

he could rewrite the entire application using his side and get Angular project in two

weeks. Hevery lost the bet. Instead of two weeks, it took him three weeks to rewrite

the entire application, but he was able to cut the application from 17,000 lines to

1,500 lines. Because of Hev

 25

be powerful framework for the web development. Thus Angular.js development

began to accelerate.

 There are three major releases of Angular. The first version was released is

AngularJS, which is also called Angular1. Angular1 is followed by Angular2, which

came with a lot of changes compared to Angular1. AngularJS is totally different from

Angular2. Some of the differences between AngularJS and Angular2 are mentioned

below:

 The architecture of an Angular application is different from AngularJS.

AngularJS is completely based on controllers and the view communicates

using $scope. Whereas Angular is based on modules, components,

templates, metadata, data binding, directives, services and dependency

injection.

 Angular is a complete rewrite of AngularJS.

hierarchy of components as its main architectural concept.

 Angular has a simpler expression syntax for event binding compared to

AngularJS

 Mobile development and Desktop development is much easier.

 Angular follows modularity. Similar functionalities are kept together in same

modules. This gives Angular a lighter & faster core compared to AngularJS.

 We know that the structure of Angular is based on the components/services

architecture. Angular is based on the model view controller. Angular 4 was released

in March 2017 which proved to be a major breakthrough. Angular 4 is almost the

same as Angular 2. It has a backward compatibility with Angular 2. Angular4 has

advanced features compared to Angular2. Due to this, Angular framework becomes

more stable.

2018. However for the cross platform mobile applications development using Ionic,

we will learn Angular4.

 26

2.5 FEATURES OF ANGULAR4

Angular4 comes up with advance feature as compared to Angular2. The features

are:

-

 Angular4 is smaller and faster. It reduces bundle file size upto 60% which

improves the application speed.

 Angular4 is compatible with newer version of TypesScript2.2

 Majority of Angular Universal code has been merged into Angular core.

 Animations taken from the Angular core and set within their own package

ions, the excess code

2.6 PREREQUISITIES FOR ANGULAR

 Next block of this book will discuss Angular basics. The block will teach you,

how to write Angular code. Before moving to the next block, you should have a

basic understanding of HTML, CSS, Java Script and Document Object Model

(DOM).

2.7 LET US SUM UP

main points of the unit.

 Angular is the framework based on Java Script.

 Angular is use to develop web view based hybrid mobile applications.

 Angular is used to execute web application outside browser.

 Angular provide structure environment to develop large application.

 Angular held developer to build SPA (Single Page Application) for web.

 Using Angular CLI developer can easily and quickly build applications.

 Angular architecture is made of eight components.

 27

 The eight components are Modules, components, Templates, Metadata, Data

Binding, Directives, Services and Dependency Injection.

 Modules are logical boundaries of the application.

 Each application consists of Components. Each component is a logical

boundary of functionalities.

 Templates are elements of Angular applications that combine HTML with

Angular markup, which are able to modify HTML elements.

 Metadata is a information related to class used by Angular.

 Data binding is a mechanism for coordinating parts of a template with parts of

a component.

 Angular templates are dynamic. A service is typically a class with a well-

defined purpose. And Dependency injection is the ability to add the

functionality of components at runtime.

 To develop application using Angular, we should have a knowledge of

HTML5, CSS, JavaScript and DOM architecture.

2.8 CHECK YOUR PROGRESS

 Fill in the Blanks

1. Angular is frame work to develop mobile app using ______, ______, _______

.

2. Angular was developed by ______ company.

3. Angular provide _________ environment.

4. Angular CLI stand for ________

5. _______ is the logical boundaries of the application.

6. _______ is the logical boundaries of the functionality.

7. Each component consist of ______, _______, _______.

8. ________ modify HTML elements before displaying them on the screen.

9. _________ information related to class.

10. NPM stands for ______.

11. First version of Angular is called _________.

12. Angular is based _________ architecture.

 28

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. HTM5, CSS, Java Script 2. Google 3. Structured

4. Command Line Interface 5. Module 6. Component

7. Class, Template,

Metadata

8. Template 9. Metadata

10. Node Package Manager 11. Angular JS 12 MVC

2.10 FURTHER READING

 Angular web site : https://angular.io/guide/quickstart

2.11 ASSIGNMENTS

 Write answer of the following Questions

1. Explain the features of Angular.

2. Write a short note on Angular Architecture.

3. List the advantages and disadvantages of Angular.

4. Write a short note on history of Angular.

5. List the features of Angular4.

 29

Unit 3: Basic Of Development
Environment - IONIC

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Ionic Framework

3.4 History of Ionic

3.5 Understanding the Ionic Stack

3.6 Prerequisites for Ionic

3.7 Let us sum up

3.8 Check your Progress

3.9 Check your Progress: Possible Answers

3.10 Further Reading

3.11 Assignments

3

 30

3.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

 Ionic framework.

 Features of Ionic

 Advantages and disadvantages of Ionic

 Ionic Environment

 History of Ionic

 Ionic Stack

 Perquisite of Ionics

3.2 INTRODUCTION

 In this unit we will discuss about the basic fundamental of Ionic. Ionic

framework provides a facility to the mobile developers to develop cross platform

mobile application. Ionic based mobile application need to code once and run on any

mobile operating system like Android, iOs and Window phone. Ionic is an HTML5

mobile app development framework targeted at building hybrid mobile apps. Hybrid

apps are essentially small websites running in a browser shell in an app that have

access to the native platform layer. Hybrid apps have many benefits over pure native

apps, specifically in terms of platform support, speed of development, and access to

3rd party code.

 Ionic as the front-end UI framework handles all of the look and feel and UI

interactions that app needs in order to be compelled. Ionic provide a native style

mobile UI components and layouts that are the same as we get with native SDK on

iOS or Android. Here we will learn about the basic of the Ionic framework and

evolution of Ionic. After that we will talk about Ionic stack and prerequisites for Ionic

learning.

3.3 IONIC FRAMEWORK

 Ionic framework is the one of the popular frameworks for the cross platform

mobile application development. Using this framework, mobile app developer can

 31

create native-looking mobile applications. Ionic framework is based on web

technologies such as HTML5, CSS and JavaScript. All these three technologies are

open source. Ionic developer can build and upload mobile app on market place

without any cost because Ionic is also open source. Developers and users should

not pay any charge to use it.

 The developers of Ionic believe that HTML5 would rule on mobile over a time,

exactly as it has on desktop. Ionic is an HTML5 mobile app development framework

targeted at building hybrid mobile apps. Hybrid apps are essentially small websites

running in a browser shell in an app that have been accessed to the native platform

layer. Hybrid apps have many benefits over pure native apps, especially in terms of

platform support, speed of development, and access to 3rd party code.

 Those who are familiar to web development, will find the structure of an Ionic

That means we can use any kind of HTML, CSS, and JavaScript we want. The only

difference is, instead of creating a website that others will link to, we are building a

self-contained application experience. The bulk of an Ionic app will be written in

HTML, JavaScript, and CSS.

 Ionic framework is built with Angular, a widely used and well tested

framework. The combination of th

SPA (Single Page Application) based mobile application that is easier to organize.

Each mobile operating system has their requirement for UI components. Ionic

provides a readymade UI mobile component and feature of automatic

implementation based on the mobile operating system it built for. So mobile

application users fill the UI same at the native application provide. Ionic use SASS

(Syntactically awesome style sheets) to generate CSS that visualize the Ionic

application. SASS is a preprocessor scripting language that is interpreted or

compiled into Cascading Style Sheets (CSS). SASS provides several advantages

over writing CSS directly. Detail will be shown later in this book.

 Ionic also provides the JavaScript features for app developers for developing

Ionic applications. All the JavaScript features are built on Angular. App developers

use the JavaScript feature through the Angular.

 32

3.3.1 FEATURE OF IONIC

 Ionic help to build cross platform mobile applications using HTM5 with the use

of Angular framework. Ionic provides a great range of tools and service using the

framework. Let us see key features of Ionic framework.

 Ionic uses Angular MVC architecture for building SPA (Single Page App)

specifically for mobile devices.

 SASS provides plenty of UI components for creating robust and rich apps.

 It provides JavaScript components. These components are extending

CSS components with JavaScript functionalities that are specifically made

for the mobile elements, which is not possible only with HTML and CSS.

 Development of the app is very vital only once as well as it would be

compatible with all the mobile devices. Also, it needs very limited use of

time, resources and efforts, and helps in giving an integrated look and

feel. It provides easy and feasible cross platform mobile application

environment

 Ionic has CLI. It is nodeJS utility which is the command for starting,

building, running and emulating Ionic applications.

 Ionic View is very useful platform for uploading, sharing testing mobile

application on native devices.

 Ionic is released under MIT license. Ionic is free and open-source.

3.3.2 ADVANTAGES AND DISADVANTAGES OF IONIC

FRAMEWORK

Following are the advantages and disadvantages of Ionic framework:

Advantages

 Ionic framework provide cross platform mobile application environment. It

means we can build mobile application that run on iOS, Android, Window

Phone or other mobile operating system.

 To start mobile application is easy with the help of pre-generated app

setup with simple layout.

 33

 The mobile application is built in modular way, so it is easy to be

maintained and updated.

 Ionic framework is built with Angular framework, which is a product of

Google. So updates comes regularly that help fast and speedy mobile

development.

Disadvantages

 Testing of it is little tricky as browser does not always give right

information about mobile environment.

 Today lots of mobile devices and operating system are available in

market. Usually all need to cover them for Ionic framework support.

 It will be hard to combine different native functionalities.

 Sometimes compatibility issues arises, which leads to build errors that are

hard to debug.

 Cross platform applications are slower than native applications.

3.3.3 IONIC ENVIRONMENT

 To start with Ionic framework, we need to install several tools that Ionic

requires. It is little challenging task to install it. The detail installations of each

component will be shown in block three of the book. We need to setup two kinds

of components: The base of Ionic installation and platform specific SDK

installation. The base installation requires tools that need to build mobile

applications and preview in browser. The platform specific installation requires to

setup native development environment. As we know our mobile application will

be built based on web technologies, the platform specific installation gives

access of emulators to test the applications on mobile device.

 The base of Ionic Installation :

This section discusses the tools required to setup the Ionic environment.

 NodeJS

 The foundation for Ionic is built on NodeJS. It is a platform that

enables you to run JavaScript outside the browser. Based on NodeJS

(Simple sometime called Node) developer can build applications that are

 34

written in JavaScript that can be run anywhere. Both Cordova CLI and

Ionic CLI are written using Node.

 Git

 Ionic CLI holds Git for the management of templates. Git is a free and

open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency.

 Apache Cordova CLI

 Cordova provides a set of JavaScript APIs which enables a developer

to build a application using HTML5, CSS3 and JavaScript and trough

Cordovas APIs access native-specific functions like GPS, camera and

network.

The installation of Cordova CLI uses the Node package manager (npm) to

perform the installation. This is the SDK.

 Ionic CLI

 Ionic compatibility starts at iOS 6 and Android 4.1, older versions than

that will not be officially supported. The Ionic Framework also provides a

useful command line interface (CLI) that makes it easy to start, create,

compile and export mobile applications. The Ionic framework provides

some useful functions such as ionic.Platform.isIOS(),

ionic.Platform.isAndroid() and ionic.Platform.isWindowsPhone() which

can be used to detect on what OS the current application is running on.

Figure-7 Ionic Framework

 35

 Platform Specific SDK Installation:

 By setting up above component we can start developing applications

and test it in browser. But if we want to test it on either device emulator or

actual device we need to set up platform specific SDK. Currently Ionic

officially supports iOS, Android and Window Universal platform.

 iOS

 If we want to build application for iOS, we need to install Xcode

for emulation and distribution of app. Xcode is available for Mac os.

 Android

 If we want to build application for Android, Android can be done

on Window, Mac or Linux system. We need to install Android SDK

tools. If we require IDE then we should install Android Studio.

 Window Universal

 Window universal supports only on window machine. We need

3.4 HISTORY OF IONIC

 Ionic is an open-source SDK framework for hybrid mobile app development. It

was created by Max Lynch, Ben Sperry and Adam Bradley of Drifty Company in

2013. The first version was built on top of AngularJS and Apache Cordova. Ionic V1

is focused on building native mobile apps rather than mobile websites. Ionic 1x

supported by iOs 7+ and Android 4.1 and up. Ionic 2 is focused on building both

native/hybrid apps through Cordova, as well as adding the ability for Progressive

Web Apps and Electron. Ionic 2 supported by iOS8+, Window 10 and Android 4.4

and up versions of mobile operating system.

 The Ionic 3 or simply "Ionic", are built on Angular (web framework). However,

The Ionic3 release allows you to choose your User interface framework from Angular

(web framework), React (JavaScript library) and Vue.js. The latest release Ionic 4

 36

was come up in January, 2019. Every release come up with new components and

updates in framework.

3.5 UNDERSTANDING THE IONIC STACK

 We are clear about the fundamental of mobile application development. It is

time to look deeper into Ionic framework. The Ionic mobile application is built as part

of three layers of technology.

 Cordova

 The Cordova is used as an interface between the web view and the

between two technologies, web technology and native web view. Cordova is

provide mobile platform support form iOs, Android, Window Phone,

Blackberry and FireOS. It is an open source framework developed in 2009.

 Angular

 As we have discussed a lot about Angular in last unit, there is no need

to discuss it here in detail about Angular. Basically Angular provide SPA

(Single Page App) development with MVW (Model View Whatever) to

build complex web applications. Ionic team decides to take advantage of this

feature of Angular and they build the application upon it.

 Ionic Framework

 Ionic framework is an open source provided under MIT license. The

primary feature of the Ionic Framework is to provide the user interface

components that are not available to web-based application development. For

example, a tab bar is a common UI component found in many mobile

applications. But this component does not exist as a native HTML element.

The Ionic Framework extends the HTML library to create one. These

components are built with a combination of HTML, CSS, and JavaScript, and

each behaves and looks like the native controls it is recreating. Ionic also

provides some additional tooling to help build mobile applications.

 37

 Ionic CLI

 The Ionic CLI (Command Line Interface) is a command line tool that is

used to manage Ionic applications. It allows you to create an Ionic application

easily, and provides tooling for serving your application throughout

development, and building your application for production.

 Capacitor

 Capacitor is a separate project to Ionic (it is still created by the Ionic

team), but it is used in conjunction with Ionic. Capacitor provides a common

API for accessing native functionality across different platforms. This means

that if you want to access functionality like the camera, you can use the same

code for iOS and Android without worrying about the underlying native

implementation on each platform. Capacitor also allows you to build your

Ionic application as a native application for iOS/Android/Desktop.

 Appflow

Ionic Appflow is an optional platform which is also provided by the Ionic

team that you can use in conjunction with your Ionic applications. This is a

paid solution that provides functionality like continuous deployment and

automatic application builds.

3.6 PREREQUISITIES FOR IONIC

 To develop Ionic application we need to have some additional technical skills

that are not covered in this book. While you do not need to use an expert in these

skills, you should have general knowledge of these technical terms to understand

the concepts of Ionic.

 Ionic applications are built using HTML5, CSS and JavaScript. So you should

have basic knowledge of these technologies and how to implement these

technologies to build web applications. Here in this book Ionic application

development code used JavaScript based on Angular4, this means you should know

fundamental of Angular4. However we will learn the Angular4 in block2 in detail.

Ionic is all about cross platform mobile application development, so probably you

should have basic knowledge for the operating the iOS and Android devices.

 38

 In short Ionic is built on top of AngularJS and Apache Cordova, you will need

to have basic knowledge about web technologies. You should familiar with HTML,

CSS and JavaScript, if you want to understand all the information provided by the

book.

3.7 LET US SUM UP

main points of the unit.

 Ionic is the framework for developing hybrid mobile application.

 Ionic framework is based on web technologies such as HTML5, CSS and

JavaScript.

 Ionic is used to develop Single Page Application (SPA)

 Ionic environment consist of NodeJS, Git, Cordova CLI and Ionic CLI.

3.8 CHECK YOUR PROGRESS

3.9 CHECK YOUR PROGRESS: POSSIBLE ANSWER

1. Web 2. Hybrid 3. MVC

4. MIT 5. NodeJS 6. Command Line

Interface

7. Drifty 8. Ionic4 9. Capacitor

 Fill in the Blanks

1. Ionic framework is based on _______ technology.

2. Using Ionic developer can built ________ mobile application.

3. Ionic use _______ architecture.

4. Ionic is release under _____ license.

5. The foundation of Ionic is built on ______.

6. CLI stands for _____.

7. Ionic developed by ______ company.

8. Latest version of Ionic is ______.

9. _____ provide a common API for accessing native functionality.

 39

3.10 FURTHER READING

 Ionic web site : https://ionicframework.com/

3.11 ASSIGNMENTS

 Write answer of the following Questions

1. Explain Ionic framework.

2. List the features of Ionic.

3. List the advantages and disadvantages of Ionic.

4. Write a short note on Ionic environment.

5. Write a short note on Ionic Stack.

 40

 Block-2

Working with Angular

 41

Unit 1: Introduction to Angular

Unit Structure

1.1 Learning Objectives

1.2 Basic Introduction of Script

1.3 About Angular

1.4 General Features

1.5 Advanced Features

1.6 Advantages and Disadvantages of Angular

1.7 Difference between Angular and AngularJS

1.8 Let Us Sum Up

1.9 Check Your Progress

1.10 Check Your Progress: Possible Answers

1.11 Assignments

1

 42

1.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

 The history of SCRIPT and Why SCRIPT

 The Different available SCRIPTING languages

 Difference between AngularJS and Angular with syntax

 General and Core features of Angular

 Advantages and Disadvantages of Angular

1.2 BASIC INTRODUCTION OF SCRIPT

 All scripting languages are known as programming languages. The scripting

language is basically a language where instructions are written for a run time

environment. Scripting languages do not require the compilation step and

interpreted. It brings new functions to applications and attach complex system

together. A scripting language is a programming language designed for integrating

and communicating with other programming languages.

 Scripting languages are becoming more popular. Scripting languages are

intended to be very fast to learn and write in, either as short source code files or

interactively in a read eval print loop (REPL, language shell).This generally implies

relatively simple syntax and semantics; typically a "script" is executed from start to

finish, as a "script", with no explicit entry point.There are list of scripting languages

are available but among them JavaScript is known as popular scripting language.

 JavaScript is a very powerful client-side scripting language. JavaScript is

used mainly for interaction of a user with the webpage. You can make your webpage

more lively and interactive, with the help of JavaScript. JavaScript is also being used

widely in game development and Mobile application development.

 You should place all your JavaScript code within <script> tags (<script> and

</script>) if you are keeping your JavaScript code within the HTML document itself.

 This helps your browser distinguish your JavaScript code from the rest of the

code. As there are other client-side scripting languages (Example: VBScript), it is

highly recommended that you specify the scripting language you use. You have to

 43

use the type attribute within the <script> tag and set its value to text/ JavaScript like

this:

<script type="text/javascript">

 Hello World Example using JavaScript:

<html>

<head>

<title>My First JavaScript Example</title>

<script type="text/javascript">

</script>

</head>

<body>

</body>

</html>

There are many scripting languages some of them are discussed below:

 Ruby: It is a scripting language which is widely used for web development.

 Python: It is easy, free and open source. Python is an interpreted language

with dynamic and huge lines of code are scripted.

 bash: It is a scripting language to work in the Linux interface.

 Node js: It is a framework to write network applications using JavaScript.

Popular users of Node.js are IBM, LinkedIn, Microsoft, Netflix, PayPal, Yahoo

for real-time web applications.

 PHP (Hypertext Preprocessor):PHP is a server-side scripting language

designed for Web development. PHP code may be embedded into HTML

code, or it can be used in combination with various web template systems,

web content management systems, and web frameworks.

 Angular JS: AngularJS is a JavaScript framework. AngularJS extends HTML

attributes with Directives, and binds data to HTML with Expressions. It can be

added to an HTML page with a <script> tag.

 44

Scripting languages, on other hand, solves different problems:

 Building applications f

 Controlling applications that have a programmable interface

 Writing programs where speed of development is more important than run-

time efficiency.

1.3 ABOUT ANGULAR

 Successive versions of Angular are simply called Angular. Angular is one of

the most popular JavaScript framework. Angular is a complete rewrite of the Angular

framework. Angular is a platform that makes it easy to build an applications with the

web. Angular empowers developers to build applications that live on the web,

mobile, or the desktop. Angular is a faultless framework for developing Single Page

Applications.A SPA is web application that requires only a single page load in web

browser.

 Angular was created by Google and released in 2010 as AngularJS the 1.x

version . The initial release for the Angular 2.x version was on September 14, 2016.

The second major revision was initially referred to as AngularJS 2 or 2.0 but was

 Angular allows us to build applications for all platforms. It is free and an

open-source platform that uses TypeScript. TypeScript is a strict syntactical superset

of JavaScript, adds optional static typing to the language and maintained by

Mircrosoft.

Angular Version Release Date

Version 2 September 14, 2016

Version 4 March 23, 2017

Version 5 November 1, 2017

Version 6 May 4, 2018

Version 7(Latest) October 18, 2018

Table-2 Transparent and Incremental evolution of Angular

45

1.4 GENERAL FEATURE

Developers prefer this framework for their front-end development for a

development process much more efficient. These tools also seamlessly work

together in tandem providing you with an efficiently compiled program. Given below

are five features of Angular that make it the best for web development as framework.

The Perfect MVC Architecture

MVC stands for Model View Controller Architecture which is a software

pattern to develop applications. The model layer manages the application data, the

view layer is responsible for the display of data while the controller is what connects

the model and the view. in Angular, all you have to do is split the application into

MVC and it does the rest. This saves huge amount of time in coding.

Figure-8 MVC Architecture

Unit Testing assures Quality Code

One of the best and popular features of angular is the fact that it makes use

of a unit testing technique that helps developers to produce high quality apps. The

code is divided into the smallest testable parts i.e. units. This also helps you easily

detect any flaws or mistakes in each line of the code.

 46

injected and tested to see if the request is returned with the expected data. This

improves you make sure that each and every component of your application works

exactly as required.

Data binding is Efficient

 Data binding in Angular is a two way road. This means that the view layer of

the architecture is always an exact representation of the model. Unlike in other apps,

the model and view layers are continuously updated to remain in sync with one

another.

 So any changes you make in your model layer will automatically be reflected

in your view layer and vice versa. This again saves a significant amount of time in

coding the connection between the two whenever a change is made.

Figure-9 Data binding in Angular

 47

Requires Writing Less Code

Figure-10 Less Code

Angular needs a lot less coding than others. You do not have to write code to

manually, directives are separate from the app code and can be written parallelly

etc. All of these collectively decrease the amount of coding that is required,

significantly.

Developed by Google

Figure-11 Angular

Google develops, it will be great. Angular is maintained by a dedicated team of

highly skilled engineers who are readily available to solve any issues related to the

framework.

1.5 ADVANCED FEATURE

 Angular release is mainly focused on making Angular framework smaller,

faster, and easier to use. So for that Google introduced new advanced features of

Angular as below.

 48

 Progressive Web Application

 This feature of angular on application makes feel like native apps with mobile

web apps along with add-ons like offline experience and push notifications. This is

made possible as Angular can create code and configuration on its own with

Angular-CLI and it offers service workers through the @angular/service-worker.

Following command is used to activate PWA support in your application:

$ ng set apps.0.serviceWorker=true

Build Optimizer tool(Default tool)

 This tool is by default applied. The build optimizer tool makes the application

faster and lighter by removing additional parts and runtime code as well. This tool

decrease the size of script and enhance the speed of the application.

Angular Universal State Transfer API and DOM

 Angular team added the domino to the platform-server.it enhance the more

DOM manipulations are supported within server-side contexts. Team also added the

BrowserTransferModule and ServerTransferStateModule. Both modules enable you

to transfer information between the server and client-side versions of the application.

This is helpful for developers when their application accessing data over HTTP. This

means there is no need to make another HTTP request once the application

reached client-side.

HttpClient

 Using the HTTP Client developers can replace the HttpModule with

HttpClientModule from @angular/common/http, inject the HttpClient service, and

remove the map(res => rex.json()) calls that is no longer required.

Compiler and Typescript improvements

 This new feature brought a lot of improvements in Angular Compiler to make

re-builds of the applications faster, mainly for AOT and production builds. And the

 49

TypeScript is also upgraded to the latest version of TypeScript , which allows

connecting to the standard TypeScript compilati on pipeline

You can use this by running:

 ng serve

Multiple Export Alias

 This allows exporting, you can give multiple names to your directives and

components. Exporting a component/directive with multiple names can help users to

migrate smoothly without breaking changes.

Animation

 Angular now came with some updates in Animations, where you can animate

by using :increment and :decrement based on numerical value changes. you can

also activate and deactivate the animations using values that are associated with

data binding. The .disabled attribute of the trigger value is constrained to do this.

1.6 ADVANTAGES AND DISADVANTAGES OF ANGULAR

The advantages of Angular are:

 It provides the capability to create Single Page Application.

 Angular code is well structured

 Angular uses the Typescript.

 It provides data binding capability to HTML.

 It gives user a rich and responsive experience.

 Angular code is unit testable and easy to debug.

 Angular uses dependency injection and make use of separation of concerns.

 Angular provides reusable components.

 With Angular, the developers can achieve more functionality with short code.

 In Angular, views are pure html pages, and controllers written in JavaScript

do the business processing.

 50

Though Angular comes with a lot of merits, here are some points of concern as

demerits:

 Not Secure

are not safe. Server side authentication and authorization is must to keep an

application secure.

 Not degradable

visible except the basic page.

1.7 DIFFERENCE BETWEEN ANGULAR AND ANGULARJS

Angular was a ground-up note of AngularJS.

 Instead of scope or controller, Angular uses a hierarchy of components as its

primary architectural characteristic.

 As compare to AngularJS, Angular has a different expression syntax,

focusing on "[]" for property binding, and "()" for event binding.

 Modularity is a much core functionality has moved to modules.

 Angular recommends the use of Microsoft's TypeScript language, which

introduces the features like Class-based Object Oriented Programming,Static

Typing,Generics.

 TypeScript is a superset of ECMAScript 6 (ES6), and is backwards

compatible with ECMAScript 5 (i.e.: JavaScript). Angular also includes ES6:

Lambdas, Iterators, For/Of loops, Python-style generators, Reflection,

Dynamic loading

 Asynchronous template compilation

 Iterative callbacks provided by RxJS. RxJS limits state visibility and

debugging, but these can be solved with reactive add-ons like ngReact or

ngrx.

 Support Angular Universal, a technology that runs your Angular application on

the server

 Has its own suite of modern UI components that work across the web, mobile

and desktop, called Angular Material

 51

1.8 LET US SUM UP

 All scripting languages are known as programming languages.

 Scripting languages do not require the compilation step and interpreted.

 JavaScript is a very powerful client-side scripting language. JavaScript is

used mainly for interaction of a user with the webpage.

 There are many(Ruby,Python,bash,Nodejs,PHP) scripting languages

 Angular was created by Google and released in 2010 as AngularJS the 1.x

version

 Angular tools make it the best for web development as framework.

 Angular release is mainly focused on making Angular framework smaller,

faster, and easier to use.

 Build optimizer is by default tool.

 New feature brought a lot of improvements in Angular Compiler to make re-

builds of the applications faster, mainly for AOT and production builds.

 Some times angularbecome the not secure and not degradable.

 Modularity is a much core functionality has moved to modules.

1.9 CHECK YOUR PROGRESS

Give the answer of the following MCQ.

1. In AngularJS, JS stands for __________

A. Java Server

B. Java Script

C. Java Servlet

D. JSON ScripT

2. All scripting languages are known as ________ language.

A. Presentation

B. Process

C. Programming

D. POST JS

3. ________is a scripting language to work in the Linux interface.

A. Ruby

B. Perl

C. Bash

D. PHP

4. The latest version of Angular is _________.

A. Angular 7

B. Angular 6

C. Angular 5

D. Angular 6.9

 55

5. Angular follows the ________ architecture.

A. MVV

B. MVC

C. MMC

D. MV

6. In MVC, C stands for _______

A. Controller

B. Center

C. Core

D. Co-operative

7. Latest version of Angular comes with _______

A. Animation

B. Http Client

C. Only A

D. Both A and B

8. Angular is Developed by _________

A. Facebook

B. Alibaba

C. Google

D. Amazon

9. Angular uses the _______ script for the core programming.

A. Java

B. Type

C. Ruby

D. Paython

10. To compile the Angular Application ______ command is used.

A. ng open

B. ng run

C. ng compile

D. ng serve

1.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. Java Script

2. Programming

3. Bash

4. Angular 7

5. MVC

6. Controller

7. Both A and B

8. Google

9. Type

10. ng serv

 56

1.11 ASSIGNMENTS

Write the answer for the following questions.

1. What is Script? Explain the different scripting programming language.

2. Explain the Angular and list out the available versions for angular.

3. Explain the general features of Angular.

4. List and Explain the advanced features of angular.

5. Explain the advantages and disadvantages of angular.

6. Differentiate Angular and Angularjs

 57

Unit 2: The Basic of Angular

Unit Structure

2.1 Learning Objectives

2.2 What and Why Framework

2.3 Environment setup

2.4 Hello World in Angular

2.5 Directives and String interplolation

2.6 Angular Events

2.7 Let Us Sum Up

2.8 Check Your Progress

2.9 Check Your Progress: Possible Answers

2.10 Assignments

2

 58

2.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

 The nature of framework and what is the important of framework

 Why only Angular and settingup the environment of Angular

 The Compilation and Running process of angular

 Entire folder structure of Angular

 Basic use of the events and event handling

2.2 WHAT AND WHY FRAMEWORK

 Angular is a modern web application platform. That promises to provide

developers with a comprehensive set of tools and capabilities to build large, complex

and robust applications. The core advantage of Angular is to make it possible to

build applications that work for any platform like mobile, web, or desktop. The

Angular team has focused on building much more than a robust application

framework.

 2.2.1 WHY ANGULAR

 To build web applications that can meet the needs of users is not a small

task. The quality and complexity of applications is ever increasing, and so are users

expectations for quality and capabilities. Angular exists to help developers deliver

applications to meet these demands.

Angular is inspired by web standards, enhanced by modern capabilities

 Angular tries to design its framework and the development process around

common standards like the latest JavaScript language features, using modern

capabilities like Typescript.

Development tooling included, customizations available

 Angular provides a common developer experience through its CLI tooling

which includes the generating, building, testing and deploying apps.

 59

Powerful ecosystem with a large community

 Angular supports number of third-party libraries, UI libraries, blog posts, and

events. Angulars active community provides a great foundation on which to learn

and should instill confidence that it will remain a valuable technology.

Sponsored by Google, open source community driven

 The Google has a team of engineers, managers, and evangelists only

dedicated to bringing Angular to the rest of Google and the entire web community.

2.2.2 ANGULAR: A PLATFORM, NOT A FRAMEWORK

 Some important distinctions between a framework and a platform are a

frame-work is usually just the code library used to build an good application,

whereas a platform is more holistic and includes tooling and support beyond a

framework. Angular was focused solely on building web applications in the browser

and was clearly a frame-work. It had a large ecosystem of third-party modules that

could be easily used to add features to your application, but at the heart of it all, it

simply built web applications in the browser. Angular comes with a leaner core

library and makes additional features available as separate packages that can be

used as needed. It also has many tools that push it beyond a simple framework,

including the following features:

 Dedicated CLI for application development, testing, and deployment

 Offline rendering capabilities on many back-end server platforms

 Desktop-, mobile-, and browser-based application execution environments

 Comprehensive UI component libraries, such as Material Design

2.3 DOWNLOADING AND INSTALLING ANGULAR

 Angular helps to you build dynamic applications for mobile, web and desktop.

The following steps shows you how to install and build you app in angular.

AngularJS is based on MVC, whereas Angular 2 is based on component structure.

But the version Angular 4 works on the same structure as Angular2 but is faster

when compared to Angular2.

60

Angular4 uses TypeScript 2.2 version whereas Angular 2 uses TypeScript

version 1.8. This brings a lot of difference in the performance. To install Angular 4,

the Angular team came up with Angular CLI which eases the installation. You need

to run through a few commands to install Angular 4.

Follow the Following steps to install Angular 4.

Step 1: Install the nodejs and npm

We first need to install nodejs and npm with latest version to get started installation

of Angular. The npm package gets installed along with nodejs.

To download node js go to the nodejs site

https://nodejs.org/en/

Angular requires nodejs version 8.x or 10.x.

To check your version, run node -v in a terminal/console window.

Figure-12 Console

To check the version of npm, type command npm v in the consol. It will display the

version of npm as shown below.

61

Figure-13 Check Version

Step 2: Install the Angular CLI(Command Line Interface)

Now that we have nodejs and npm installed as step 1 shown, let us run the angular

cli commands to install Angular 4. You use the Angular CLI to create projects,

generate application and library code, and perform a variety of ongoing development

tasks such as testing, bundling, and deployment.Install the Angular CLI globally.

To install the CLI using npm, open a terminal/console window and enter the

following command:

npm install -g @angular/cli

Step 3: Create a workspace and initialize application

Workspace contains the files structure for one or more projects. A project is the set

of files that comprise an app, a library tests.

To create a new workspace and initial app project:

Run the CLI command ng new and provide the name my-app, as shown here:

ng new first

 62

It also creates the following workspace and starter project files:

 A new workspace, with a root folder named first

 An initial skeleton app project, also called first (in the src subfolder)

 An end-to-end test project (in the e2e subfolder)

 Related configuration files

Step 4: Serve the application

Angular includes a server, so that you can easily build and serve your app locally.

1. Go to the workspace folder (my-app).

2. Launch the server by using the CLI command ng serve, with the --open

option.

cd first

ng serve open

Step 5: Edit the application

The project first is created successfully. Internaly its install all the package which are

required to Angular 4. Now we have to change the view and behavior of app so for

the need a one smart editor.You can use the IDE like Visual Studio Code IDE, Atom,

Webstrom, Sublime Text, etc.

To download the Sublime Text go to https://www.sublimetext.com/3 and click on

windows and download.

63

2.4 FIRST EXAMPLE IN ANGULAR

To create an application in Angular, Angular CLI is an awesome tool to start.

It creates fully functional well-structured project which we can take forward.

1. Check angular version using ng -v.

2. Create our first app using command ng new hello-world It will take a

while and create a fully-fledged app for you.

3. Now you will have your folder created called hello-world. Navigate to

it using cd hello-world and then do ng serve. You can see server is

started.

4. Open your browser and visit localhost:4200

printed on screen.

After performing this steps open your project in sublime or visual studio code

to use and understand the project structure.

The project structure of Angular 4 application which Angular CLI created for

us. We have already created HELLO-WORLD project, so we will use that project to

get idea about project structure.When we open the Angular 4 project in editor, we

can see three main folders e2e, node_modules, src and different configuration files.

Figure-14 project structure of Angular 4 application

 64

Following table describe the basic use of this files and folders.

File Name Purpose

E2e/ This folder contain the test cases from live the End-to-End

cycle covered.This must be a separate to test your app.

Node_modules Node.js creates this folder and puts all third party modules

listed in package.json .

Src/ This folder contain different three folders: app, assets ,

environments

It also has other configuration files for src directory.

 65

editor.config It contains the setting of your editor. It has parameter like

style, size of character, line length.It works for UI.

.gitignore We can define all the folders and files which we want to

exclude from our repository in our git.

karma.conf.js It has configuration for writing unit tests. karma is the test

runner and it uses jasmine as framework. These both tester

and framework are developed by angular team for writing

unit tests.

package.json The Jason based file contains all the dependency modules

which are required for our application. if you want to use _js

library or any other library just add name and version of that

dependency library in package.json and execute command

npm install. It will execute all the dependencies and

download in node_modules folder.

README.md Is contains basic documentation for your project, pre-filled

with CLI command information. Just make sure to enhance

it with project documentation so that anyone checking out

the reputation can build your application.

protector.conf.js It contains testing configurations.

tsconfig.json The ts stands for typescripts. Typescripts are used for

developing angular applications since Angular 2 came out.

It contains the configurations for typescripts.

tslint.json Used for building application with consistent code style. We

can change the configuration that defines how our

application should be build.

Src/favicon.ico Its favicon icon for your website or an application.

Src/index.html It contains html code with head, and body section. It is

starting point of your application.

Src/main.ts It is starting point of typescript file in your angular

application. It contains library which are imported by your

angular project.

Src/polyfill.ts It is used for browser compatibility.

Src/style.css It has all the styles and css for your angular 4 project.

 66

Src/test.ts This file is used to write unit tests.

Src/tsconfig.app.json It contains the configuration about how your application

should compile.

App/* This folder contains component and ts files.

app /app.module.ts It contains the entire library which are imported and used in

Angular how to assemble the application. Currently it

declares only the App_componenet.

app/app.component.

{ts,html,css,spec.ts}

It has AppComponent with an HTML template, CSS style

 root component of what will

become a tree of nested components as the application

evolves.

assets/* In this folder you can put images and anything else to be

copied wholesale when you build your application.

environments/* In this folder one file for each of your destination

environments, each exporting simple configuration

variables to use in your application. The files are replaced

on-the-fly when you build your app. You might use a

different API endpoint for development than you do for

production or maybe different analytics tokens. You might

even use some mock services. Either way, the CLI has you

covered.

Table-3 Use of Angular 4 application files and Folder

 67

2.5 ANGULAR DIRECTIVES AND STRING INTERPOLATION

2.5.1 DIRECTIVES

 Directives are the most fundamental unit of Angular applications. As a matter

of fact, the most used unit, which is a component, is actually a directive.

Components are high-order directives with templates and serve as building blocks of

Angular applications. Directives in Angular are a js class, which is declared as

@directive. We have 3 directives in Angular.

1. Components directives with a template.

2. Structural directives change the DOM layout by adding and removing DOM

elements.

3. Attribute directives change the appearance or behavior of an element,

component, or another directive.

Component Directives

These form the main class having details of how the component should be

processed, instantiated and used at runtime.

Structural Directives

A structure directive basically deals with manipulating the dom elements. Structural

directives have a * sign before the directive. For example, *ngIf and *ngFor.

Attribute Directives

Attribute directives deal with changing the look and behavior of the dom element.

You can create your own directives as shown below.

2.5.2 STRING INTERPOLATION

 String interpolation is a part of data binding. Data biding is robust feature of

Angular, which allow us to communicate between the component and its view. Data

biding can be either one way or two way biding.

 68

 In one-way data binding, the value of the Model is inserted into an HTML

(DOM) element and there is no way to update the Model from the View. In two-

way binding automatic synchronization of data happens between the Model and

the View.

 String Interpolation also known as Angular Interpolation, uses template

expressions in double curly {{ }} braces to display data from the component,

the special syntax {{ }}, also known as moustache syntax. The {{ }} contains

JavaScript expression which can be run by Angular and the output will be inserted

into the HTML.

Say if we put {{ 2 + 2 }} in the template 4 will be inserted into the HTML

String Interpolation Uses

Display main properties Interpolation can be used to display and evaluate

strings into the text between HTML element tags and within attribute assignments.

Sample Example:

Evaluate arithmetic expressions Another usage of interpolation is to evaluate

arithmetic expressions present within the curly braces.

Sample Example:

<h2>{{3 + 3}}</h2> //outputs 6 on HTML browser

Display array items We can use interpolation along with ngFor directive to

display an array of items.

DomainObject.ts

export class DomainObject

{

 constructor(public id: number, public name: string) {

 69

 //code

 }

}

app.component.ts

import { DomainObject } from './domain';

@Component({

 selector: 'app-root',

 template: `

 <h1>{{title}}</h1>

 <h2>The name is : {{domainObjectItem.name}}</h2>

 <p>Data Items:</p>

 <li *ngFor="let d of domainObjects">

 {{ d.name }}

`

})

export class AppComponent

{

 title = 'App Title';

 domainObjects = [

 new DomainObject(1, 'A'),

 new DomainObject(2, 'B'),

 new DomainObject(3, 'C'),

 new DomainObject(4, 'D')

];

 domainObjectItem = this.domainObjects[0];

}

 70

2.6 ANGULAR EVENT

 Angular event is known as Angular event binding. Event binding is used to

build interactive web application with the flow of data. The flow of data various from

component to element and from element to component.

 In some cases user will not only just view the information or data on web

application, but also would like to interact with these application using different user

action like clicks, keystrokes and change event.

 To define event binding syntax will have a target event name within

parentheses on the left of an equal sign, and a quoted template statement on the

right.

Syntax: (name of event)

Example: onclick()

Lets consider an example where we are binding an event Onlick() on button

element. When user click on button, eve

and calls the components onClick() method.

File name: ex.componet.ts

import { Component } from "@angular/core";

@Component({

 selector: 'app-ex',

 template: `

 <div>

 <button (click)="onClick()">Click Here!</button>

 </div>

 71

 })

export class ExComponent {

 onClick(){

 alert("You Clicked on button!");

 }

}

Angular also provides the different way to handle events.

Target Event Binding

The target event is identified by the name within the parenthesis, ex: (click), which

represents the click event. In the example, above we saw the target click event

bound to the 'onClick()' method, which will listen to the button's click event.

<button (click) = "onClick()">Click me!</button>

We can also use the prefix on-, in event binding this is known as canonical form.

<button on-click = "onClick()">Click me!</button>

If the name of the target event does not match with the element's event, then

Angular will throw an error "unknown directive".

2.7 LET US SUM UP

 Angular is a modern web application platform. That promises to provide

developers with a comprehensive set of tools and capabilities to build large,

complex and robust applications

 The Angular quality and complexity of applications is ever increasing, and so

are users expectations for quality and capabilities

 72

 Angular provides a common developer experience through its CLI tooling

which includes the generating, building, testing and deploying apps.

 Angular supports number of third-party libraries, UI libraries, blog posts, and

events

 Angular comes with a leaner core library and makes additional features

available as separate packages that can be used as needed.

 Angular4 uses TypeScript 2.2 version whereas Angular 2 uses TypeScript

version 1.8

 To setup the Angular 4 need to install nodejs and npm.

 Angular works on command thatswhy need the CLI.

 Angular project is known as workspace.

 The description knowledge of files and folder of angular project is important.

 All the files and folder have a meaning ful files

 Angular supports the three types of directives.

 String Interpolation also known as Angular Interpolation, uses template

expressions in double curly {{ }} braces to display data from the component,

 String Interpolation also evaluated the string expression.

2.8 CHECK YOUR PROGRESS

Give the answer of the following MCQ.

1.___________ is a modern web application platform.

A. JS

B. ANGULAR

C. ANGULARJS

D. JAVA

2. Angular sponsored by the _________.

A. Yahoo

B. Bing

C. Google

D. Amazon

3. Angular CLI need the nodejs and ______.

A. HTTP

B. MMP

C. NPM

D. DSN

 56

4. To serve the angular ______ command is used.

A. ng serve

B. serve

C. ng

D. ds Server

5. Angular events known as angular event______.

A. Binding

B. Lunching

C. Serve

D. Start

6. _______can be used to display and evaluate strings into the text between HTML

element tags and within attribute assignments.

A. String

B. Interpolation

C. Binding

D. Event

7. A ________ directive basically deals with manipulating the dom elements.

A. Attribute

B. DOM

C. Structure

D. Property

8. Angular Supports the ______ types of directives.

A. 3

B. 4

C. 2

D. 5

9. ______ folder contain different three folders: app, assets , environments

 It also has other configuration files for src directory.

A. Src

B. App

C. Main

D. Project

2.9 CHECK YOUR PROGRESS: POSSIBLE ANSWER

Give the answer of the following MCQ.

1. ANGULAR

2. Google

3. NPM

4. ng serve

5. Binding

6. Interpolation

7. Structure

8. 3

9. Src

 76

2.10 ASSIGNMENTS

Write the answer for the following questions.

1. What is Framework?

2. State the reason: Angular is a platform not a framework.

3. Write down the steps for angular setup.

4. Explain the file structure of angular application.

5. Explain the string interpolation with example.

6. Explain the event with sample code.

 77

Unit 3: Introduction to MVC

Unit Structure

3.1 Learning Objectives

3.2 Design Pattern

3.3 The Model View Controller

3.4 Introduction to the Pipes

3.5 Custom Pipes

3.6 Event binding

3.7 Let Us Sum Up

3.8 Check Your Progress

3.9 Check Your Progress: Possible Answer

3.10 Assignments

3

 78

3.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

 The complete design pattern of MVC.

 Architecture of MVC in detail.

 Various use of pipes in angular applications.

 How to create the custom pipes.

 How to handle the user interaction on screen means event handling.

3.2 DESIGN PATTERN

 Angular (Angular 2, 4,

the ground up, replacing the now well-known AngularJS framework (Angular 1.x).

More that just a framework, Angular should be considered as a whole platform which

comes with a complete set of tools like its own CLI, debug utilities or performance

tools.

 Angular was designed for the use of design patterns you may not be

accustomed to, like reactive programming, unidirectional data flow and

centralized state management.

Reactive programming

The Angular is now a reactive system by design. Although you are not forced to use

reactive programming patterns, they make the core of the framework and it is

definitely recommended to learn them if you want to leverage the best of

Angular.Angular uses RxJS to implement the Observable pattern.An Observable is a

stream of asynchronous events that can be processed with array-like operators.

Unidirectional data flow

The AngularJS where one of its selling points was two-way data binding which

ended up causing a lot of major headaches for complex applications, Angular now

enforces unidirectional data flow. It means that change detection cannot cause

cycles, which was one of AngularJS problematic points. It also helps to maintain

 79

simpler and more predictable data flows in applications, along with substantial

performance improvements.

Centralized state management

As applications grow in size may be complex, keeping track of the all its individual

components state and data flows can become tedious, and tend to be difficult to

manage and debug. The main goal of using a centralized state management is to

make state changes predictable by imposing certain restrictions on how and when

updates can happen, using unidirectional data flow.

3.3 THE MODEL VIEW CONTROLLER

 Generally AngularJS follows the MVC architecture, the diagram of the MVC

framework as shown below.

Figure-15 MVC Framework

 Models are used to represent your real data. The data in your model can be

as simple as just having primitive declarations. If you are maintaining a employee

application, your data model could just have a empid and empname.

 Views are used to represent the presentation layer which is provided to the

end users.

 80

 The Controller represents the layer that has the business logic. User events

trigger the functions which are stored inside your controller. The user events are part

of the controller.

Angular Architecture

Depends on the Component classes.The Architecture of an Angular Application is

based on the idea of Components. An Angular application starts with a Top level

component called Root Component. Every Angular application has at least one

component, the root component that connects a component hierarchy with the page

document object model (DOM). Each component defines a class that contains

application data and logic, and is associated with an HTML template that defines a

view to be displayed in a target environment.

The @Component() decorator identifies the class immediately below it as a

component, and provides the template and related component-specific metadata.

Main part of the development with Angular 4 is done in the components.

Components are basically classes. That classes are interact with the .html file of the

component, which gets displayed on the browser. The file structure has the app

component and it consists of the following files

 app.component.css

 app.component.html

 app.component.spec.ts

 app.component.ts

 app.module.ts

if we open the app.module.ts which shows some libraries which are imported like

 81

The declaration becomes the parent component. This include the AppComponent

variable. This is in build component. If you would like to create a component form

command line then follows this syntax.

 ng g component new-cmp

When you run the above command in the command line, you will receive the

following output

installing component

 create src\app\new-cmp\new-cmp.component.css

 create src\app\new-cmp\new-cmp.component.html

 create src\app\new-cmp\new-cmp.component.spec.ts

 create src\app\new-cmp\new-cmp.component.ts

 update src\app\app.module.ts

The following files are created in the new-cmp folder

 new-

style.

 new-

 new-

 new-cmp.component.ts used to define the module, properties, etc.

 82

3.4 INTRODUCTION TO PIPES

 Pipes were earlier called filters in Angular1 and called pipes in Angular 2 and

4+.Sometimes application starts out with what seems like a simple task: get data,

transform them, and display them to users. Getting data could be as simple as

creating a local variable or as complex as streaming data over a WebSocket.

 Once data arrives, you could push their raw toString values directly to the

view, but that rarely makes for a good user experience.

 For example, in most use cases, users prefer to see a date in a simple format

like April 15,2019 rather than the raw string format Fri Apr 15 2019 00:00:00 GMT-

0700 (Pacific Daylight Time).

 Angular pipes is used display-value transformations that you can declare in

your HTML. The |(pipe sign) character is used to transform data.

Example:

{{ Hello World | lowercase}}

Using Pipes

Pipes takes any integers, strings, arrays, and date as input separated with | to be

converted in the format as required and display the same in the browser.

In the app.component.ts file, we have defined the title variable

The following line of code goes into the app.component.html file.

 83

Will convert the title variable in uppercase and lowercase.

A pipe takes in data as input and transforms it to a desired output. In next example

pipes to transform a component's birthday property into a human-friendly date.

In component.ts file

Component.html will be look like

Built-in Pipes

Angular comes with a stock of pipes such as DatePipe, UpperCasePipe,

LowerCasePipe, CurrencyPipe, and PercentPipe. They are all available for use in

any template.

Pipe Usage Example

DatePipe date {{ dateObj | date }} output is 'Jun 15, 2015'

UpperCasePipe uppercase {{ value | uppercase }} output is 'SOMETEXT'

LowerCasePipe lowercase {{ value | lowercase }} output is 'sometext'

CurrencyPipe currency {{ 31.00 |

currency:'USD':true }}

 output is '$31'

PercentPipe percent {{ 0.03 | percent }} output is %3

Table-4 Usage of Angular Pipes

 84

Example of Built in pipes

Componenet.ts file

Component.html file

Output

Welcome back Nirav Suthar

On Jun 26, 2016 at 7:18 you reserved room 205 for Nov 14, 2025 for a total cost of

$99.99.

Parameterizing a pipe

A pipe can accept any number of optional parameters to output. To add parameters

to a pipe, follow the pipe name with a colon (:) and then the parameter value (such

as currency:'EUR'). If the pipe accepts multiple parameters, separate the values with

colons (such as slice:1:5)

 85

Component.html file

<p>Your birthday is {{ birthday | date:"MM/dd/yy" }} </p>

The parameter value can be any valid template expression, such as a string literal or

a component property. In other words, you can control the format through a binding

the same way you control the birthday value through a binding.

Chaining Pipe

Pipes may be chained. The combination of more then one pipe is called chaining

pipe. we can use chain pipes together in potentially useful combinations.

Component.html

<p>your birthday is

{{ birthday | date | uppercase}}</p>

This example which displays FRIDAY, APRIL 15, 2019

chains the same pipes as above with passes in a parameter to date as well.

<p>your birthday is

{{ birthday | date:'fullDate' | uppercase}}</p>

3.5 CUSTOME PIPES

 You can write your own custom pipes. To create a custom pipe, we have to

create a new ts file.

Steps to create a new custom pipe:

1. Create a new ts file which you want to use as pipe.

2. Add custom created pipe in to module.ts file

3. Use pipe name in component.html file.

 86

Below example shows how to create a custom pipe.

Here, we want to create the cube custom pipe. We have given the same name to

the file and it looks as follows

app.cube.ts

import {Pipe, PipeTransform} from '@angular/core';

@Pipe ({

 name : 'cube'

})

export class cubePipe implements PipeTransform {

 transform(val : number) : number {

 return Math.cbrt(val);

 }

}

To create a custom pipe, we have to import Pipe and Pipe Transform from

Angular/core. In the @Pipe directive, we have to give the name to our pipe, which

will be used in our .html file. Since, we are creating the cube pipe, we will name it

cube.

As we proceed further, we have to create the class and the class name is cubePipe.

This class will implement the PipeTransform.

we need to add the same in app.module.ts.

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

import { NewCmpComponent } from './new-cmp/new-cmp.component';

import { ChangeTextDirective } from './change-text.directive';

import { cubePipe } from './app.cube';

 87

@NgModule({

 declarations: [

 cubePipe,

 AppComponent,

 NewCmpComponent,

 ChangeTextDirective

],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

now to call cube file in app.component.html file

<h1>Custom Pipe</h1>

Cube root of 64 is: {{64 | cube}}

Will give the output as Cube root of 64 is 4

3.6 EVENT BINDING

 Event binding refers to the data binding. Data binding is very important

feature of Angular. Data binding is used for front-end framework, Interpolation and

property binding in Angular.

Data can be bind in form of Event binding and two-way binding.

Event Binding in Angular

 A user expects a UI to respond to her/his actions on the single page. Every

such action would trigger an event on the page and the page has to respond by

 88

listening to these events. The event binding system provides us the way to attach a

method defined in a component with an event. Event binding is built on top of the

events defined in the DOM objects.

 With Angular, there are two ways to handle an event on an HTML element.

The following line of code shows both the ways for handling a click event on a

button:

<button class='btn' (click)='save()'>Save</button>

<button class='btn' on-click='save()'>Save</button>

 The method save has to be defined in the component class. Any DOM event

can be either prefixed with on- or can be enclosed inside parentheses to bind it with

a method in the component class.

 Functionally there is no difference in the two ways of handling events, you

involve any abstractions which has to be written for any event on the page, this

model is extensible. Any new events added to a DOM element can be bound to

functions in the component using this syntax without writing any piece of new code.

Events can be used to run a piece of logic based on the action taken by the user. It

may include changing values of a few fields in the component, posting data to a

REST API, moving to a different page or anything else. As the events directly

 an entry to the event loop.

triggered. So, any values modified by the event handler will be detected by the

change detection system and the changes are applied on the page.

The following component shows an example of event binding:

@Component({

 selector: 'app-demo',

 template: `<div>{{submitText}}</div>

 <button class="btn" (click)='save()'>Save</button>`

 89

})

export class DemoComponent {

 public submitText: string = 'Not submitted yet.';

 save(){

 this.saveText = 'Submitted successfully!';

 }

}

The above component has a div element and a button. The div element has an

interpolation applied, text of the interpolated expression is modified in the click event

handler of the button. You will see that the text inside the expression is modified

after clicking the button.

If an event has to perform a single action like changing a simple value, it can be

done in the HTML instead of writing a separate method. The following snippet shows

an example:

<button class='btn' (click)='color="green"'>Save</button>

But if the event involves a few more lines of logic, it should be kept outside HTML to

separate the concerns. This way, the code in the event handler can be unit tested as

well. The event handling method gets access to the event object, which is same as

the object passed into any DOM event handler. This object gives us access to the

information about the event. The following snippet shows how to pass the event

object from HTML to the event handling object:

<button class='btn' (click)='save($event)'>Save</button>

The $event object is same as the object that the browser sends when an event is

triggered on an HTML element. We can get details of the event like source of the

event, target element, type of the event, co-ordinates on the page and screen where

the event triggered, as well as many other details.

 90

The following snippet shows a component handling two events on a button:

@Component({

 selector: 'app-demo',

 template: `<div>{{saveText}}</div>

 <button class="btn" (click)='save($event)'

(mousemove)="mouseMove($event)">Save</button>

 <div>{{x}} {{y}}</div>`

})

export class DemoComponent {

 public submitText: string = 'Not submitted yet.';

 public x: number;

 public y: number;

 submit($event: Event){

 this.saveText = 'Submitted successfully!';

 console.log($event);

 }

 mouseMove($event: MouseEvent) {

 this.x = $event.x;

 this.y = $event.y;

 }

}

The component in the above snippet has a button, on which the click and mouse

move events are handled using methods in the component. The click event changes

the text displayed in the div element and the mouse move event updates values of

the co-ordinates displayed on the screen.

Two-way Binding in Angular

 The feature two-way binding in Angular is derived from the property and event

bindings. The property and event bindings are directed one way with the former

receiving data into view from the component object and the later sending data from

 91

the view to the component. The two-way binding is a combination of these two

bindings; it gets the data from the component object to the view and sets the data

from view to the component object.

 The following line of code shows an example of a directive, ngModel to show

how two-way binding can be used:

Name: <input type="text" [(ngModel)]="name" />

<div>{{name}}</div>

 The field name is two-way bound on the input box. When it is rendered on a

page, it shows the existing value of the field and when the value is modified on the

screen, it updates the value in the field. The change in the value of the field is

immediately reflected in the interpolation in the div element next to the input

control.To use the ngModel directive, the FormsModule has to be added to the

applicatio

FormsModule:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { FormsModule } from '@angular/forms'; // Importing forms module to this

file

import { AppComponent } from './app.component';

import { DemoComponent } from './demo.component';

@NgModule({

 imports: [

 BrowserModule,

 FormsModule // Importing forms module to application module

],

 declarations: [

 AppComponent,

 DemoComponent

],

 bootstrap: [AppComponent]

 92

})

export class AppModule { }

The following component uses the ngModel directive:

@Component({

 selector: 'app-demo',

 template: `

 Name: <input type='text' [(ngModel)]='name' />

 <div>Name is: {{name}}</div>

 `

})

export class DemoComponent {

 public name: string = "Virat";

}

The textbox is bound to the field name in the template. When you type something in

the textbox, you will see that the content in the div changes automatically.

3.7 LET US SUM UP

the ground up, replacing the now well-known AngularJS framework (Angular

1.x)

 Angular was designed for the use of design patterns

 The Angular is now a reactive system by design

 The AngularJS where one of its selling points was two-way data binding

which ended up causing a lot of major headaches for complex applications,

Angular now enforces unidirectional data flow.

 The main goal of using a centralized state management is to make state

changes predictable by imposing certain restrictions on how and when

updates can happen, using unidirectional data flow.

 Models are used to represent your real data. The data in your model can be

as simple as just having primitive declarations. If you are maintaining a

 93

employee application, your data model could just have a empid and

empname.

 Views are used to represent the presentation layer which is provided to the

end users.

 The Controller represents the layer that has the business logic. User events

trigger the functions which are stored inside your controller. The user events

are part of the controller.

 Architecture of an Angular Application is based on the idea of Components.

An Angular application starts with a Top level component called Root

Component

 The @Component() decorator identifies the class immediately below it as a

component, and provides the template and related component-specific

metadata.

 Pipes were earlier called filters in Angular1 and called pipes in Angular 2 and

4+.Sometimes application starts out with what seems like a simple task: get

data, transform them, and display them to users.

 Pipes may be a user pipes, buil-in pipes and custom pipes.

 Event binding refers to the data binding. Data binding is very important

feature of Angular. Data binding is used for front-end framework, Interpolation

and property binding in Angular.

 The event binding system provides us the way to attach a method defined in

a component with an event. Event binding is built on top of the events defined

in the DOM objects.

3.8 CHECK YOUR PROGRESS

1. The Angular is now a _____ system by design.

A. reactive

B. template

C. structure

D. dynamic

2. MVC stands for _______.

 94

3. _____ are used to represent the presentation layer which is provided to the end

users.

A. Model

B. View

C. Controller

D. Server

4. The ______ represents the layer that has the business logic

A. Model

B. View

C. Controller

D. Layer

5. DOM stands for _______.

6. Components are basically _____.

A. Union

B. Objects

C. Classes

D. Strucure

7. Pipes are also known as ______.

A. filters

B. looping

C. conditions

D. comments

8. _____ takes any integers, strings, arrays, and date as input separated with | to be

converted in the format as required and display the same in the browser.

A. looping

B. comments

C. pipes

D. var

9. A pipe can accept any number of optional parameters to output is known as_____

A. parameter pipe

B. custom pipe

C. buil-in pipes

D. pipe

10. Create a new ts file which you want to use as pipe is a part of____.

A. parameter pipe

B. custom pipe

C. built-in pipes

 D. pipe

 95

3.9 CHECK YOUR PROGRESS:POSSIBLE ANSWER

1. reactive

2. Model View Controller

3. View

4. Controller

5. Document Object Model

6. Classes

7. Filters

8. pipes

9. parameter pipe

10. custom pipe

3.10 ASSIGNMENTS

Write the answer for the following questions.

1. Explain the MVC in detail.

2. What is pipes in angular.

3. Explain how to use pipes and also explain the built in pipes with example.

4. What is custom pipes write down the sample code for it.

5. What is event binding? Explain the two way event binding in detail.

 96

Unit 4: Angular Directives

Unit Structure

4.1 Learning Objectives

4.2 Introduction to Directives

4.3 Using the Directives

4.4 Structure Directives

4.5 Attribute Directives

4.6 Let Us Sum Up

4.7 Check Your Progress

4.8 Check Your Progress: Possible Answer

4.9 Assignments

4

 97

4.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

 What is Directives and how useful in angular app.

 How to use the directives.

 The use of Ngif, Ngfor and Ngswitch with example.

 How to create a different CSS files to define the style in HTML.

4.2 INTRODUCTION

 In a programming structure class is very important concept. Directives in

Angular is a js class which is declared as @directive. A directive is a custom HTML

element that is used to extend the power of HTML. Angular provides a number of

built-in directives, which are attributes we add to our HTML elements that give us

dynamic behavior.

 Angular Directive is basically a class with a @Directive decorator.

Decorators are functions that modify JavaScript classes. Decorators are used for

attaching metadata to classes, it knows the configuration of those classes and how

they should work. a component is also a directive-with-a-template. A @Component

decorator is actually a @Directive decorator extended with template-oriented

features. Angular renders a directive, it changes the DOM according to the

instructions given by the directive. Directive appears within an element tag similar to

attributes.

There are three kinds of directives in Angular:

Figure-16 Angular Directives

 98

1. Components directives directives with a template, how the component

should be processed, instantiated and used at runtime..

2. Structural directives change the DOM layout by adding and removing DOM

elements. It is denoted by using * sign.

3. Attribute directives change the appearance or behavior of an element,

component, or another directive.

4.3 USING COMPONENT DIRECTIVES

 The Component processed is processed by component directives. It is mainly

used to specify the HTML templates. It is the most commonly used directive in an

Angular project. It is decorated with the @component decorator. This directive is a

class. The component directive is used to specify the template/HTML for the Dom

Layout. Its built-in is @component.

 app.component.css: contains all the CSS styles for the component

 app.component.html: contains all the HTML code used by the component to

display itself

 app.component.ts: contains all the code used by the component to control its

behavior

 A root component is the first Angular component that gets bootstrapped when

the application runs. Two things are special about this component:

First, if you open the application module file src/app/app.module.ts

 99

Added to the bootstrap array of the module definition.

Second, if you open the src/index.html file

it's called inside the document <body> tag.

Now, let's open the component file src/app/app.component.ts,

import { Component } from '@angular/core';

@Component({

 selector: 'my-app',

 template: `<h2>{{title}}</h2>

<p *ngIf="showElement">Show Element</p>

<div [ngSwitch]="inpvalue">

<p style='color:blue' *ngSwitchCase="1">You have selected Aadhar Card</p>

<p style='color:blue' *ngSwitchCase="2">You have selected Passport</p>

<p style='color:blue' *ngSwitchCase="3">You have selected Voter ID</p>

<p style='color:red' *ngSwitchDefault>Sorry! Invalid selection....</p>

 100

</div>`

})

export class AppComponent {

 inpvalue: number = 4;

}

 In decorator part that is @component is the component decorator. We had

customized own selector my-app to map in HTML files. In the template, I put the

name property which will fetch its value from the name string from AppComponent

class.

Output

4.4 STRUCTUREL DIRECTIVES

 The structural directive is used to add or remove the HTML Element in the

Dom Layout, typically by adding, removing, or manipulating elements... Its built-in

types are *NgIf,*NgFor,*NgSwitch. Structural directives are easy to recognize by

using an asterisk (*).

Types of built-in structural directive

 NgIf

 NgFor

 NgSwitch

NgIf

It is used to create or remove a part of the DOM tree depending on a condition.

 101

import { Component } from '@angular/core';

@Component({

 selector: 'my-app',

 template: `<div style='color:blue' *ngIf="true">You can See Passport....</div>`

})

export class AppComponent {

 inpvalue: number = 2;

}

Here If ngif= true the text will be visible on the web page.

NgFor

It is used to customize data display. It is mainly used for displaying a list of items

using repetitive loops.

App.component.ts file

import { Component } from '@angular/core';

@Component({

 selector: 'my-app',

 templateUrl: './app.component.html',

})

export class AppComponent {

 cust: any[] = [

 {

 code: '1001', name: 'Nirav', gender: 'Male',

 total: 1255, dateOfBirth: '25/6/1990'

 },

 {

 code: '1002', name: 'Pooja', gender: 'Female',

 total: 1355, dateOfBirth: '9/6/1992'

 102

 },

 {

 code: '1003', name: 'Nishant', gender: 'Male',

 total: 1455, dateOfBirth: '12/8/1995'

 },

 {

 code: '1004', name: 'Neha', gender: 'Female',

 total: 1555, dateOfBirth: '14/10/1989'

 },

];

}

App.component.html

<!DOCTYPE html>

<html>

<head>

 <title></title>

 <meta charset="utf-8" />

 <style>

 table {

 font-family: arial, sans-serif;

 border-collapse: collapse;

 width: 100%;

 }

 td, th {

 border: 1px solid #dddddd;

 text-align: left;

 padding: 8px;

 }

 103

 tr:nth-child(even) {

 background-color: #dddddd;

 }

 </style>

</head>

<body>

 <table align="center" border="1" cellpadding="4" cellspacing="4">

 <thead>

 <tr>

 <th style="background-color: Yellow;color: blue">Cust_Code</th>

 <th style="background-color: Yellow;color: blue">C_Name</th>

 <th style="background-color: Yellow;color: blue">C_Gender</th>

 <th style="background-color: Yellow;color: blue">Total</th>

 <th style="background-color: Yellow;color: blue">Date of Birth</th>

 </tr>

 </thead>

 <tbody>

 <tr *ngFor='let c of cust'>

 <td>{{c.code}}</td>

 <td>{{c.name}}</td>

 <td>{{c.gender}}</td>

 <td>{{c.total}}</td>

 <td>{{c.dateOfBirth}}</td>

 </tr>

 </tbody>

 </table>

</body>

</html>

 104

Output

Ngswitch

A structural directive that adds or removes templates when the next match

expression matches the switch expression.

The [ngSwitch] directive on a container specifies an expression to match against.

The expressions to match are provided by ngSwitchCase directives on views within

the container.

 Every view that matches is rendered.

 If there are no matches, a view with the ngSwitchDefault directive is rendered.

 Elements within the [NgSwitch] statement but outside of any NgSwitchCase

or ngSwitchDefault directive are preserved at the location.

import { Component } from '@angular/core';

@Component({

 selector: 'my-app',

 template: `<h2>{{title}}</h2>

<div [ngSwitch]="inpvalue">

<p *ngSwitchCase="1">Monday</p>

<p *ngSwitchCase="2">Tuesday</p>

<p *ngSwitchCase="3">Wednesday</p>

<p *ngSwitchDefault>Sorry Invalid selection!!</p>

</div>`

})

export class AppComponent {

 105

 inpvalue: number = 1;

}

Output

4.5 ATTRIBUTE DIRECTIVES

 The attribute directive changes the appearance or behavior of a DOM

element. These directives look like regular HTML attributes in templates. The

ngModel directive which is used for two-way is an example of an attribute directive.

Some of the other attribute directives are listed below:

 NgStyle: Based on the component state, dynamic styles can be set by using

NgStyle. Many inline styles can be set simultaneously by binding to NgStyle.

 NgClass: It controls the appearance of elements by adding and removing

CSS classes dynamically.

NgStyle

 Ngstyle used to change the look and feel of elements.The NgStyle directive

lets you set a given DOM elements style properties. One way to set styles is by

using the NgStyle directive and assigning it an object literal.

<div [ngStyle]="{'background-color':'red'}"></<div>

This will change the div background color to red.

ngStyle is a very useful when its value is dynamic. The values in the object literal

that we assign to ngStyle can be javascript expressions which are evaluated and the

result of that expression is used as the value of the css property.

 106

like this:

<div [ngStyle]="{'background-color':person.country === 'USA' ? 'green' : 'red'

}"></<div>

The above code uses the ternary operator to set the background color to green if

the persons country is the USA else red.But the be

inline, we can call a function on the component instead.

To demonstrate this lets define full example.

<!DOCTYPE html>

<html>

<head>

 <title></title>

</head>

<body>

 <div [style.background-color]="'yellow'">

 Uses fixed yellow background

 </div>

</body>

</html>

Output

Another way to set fixed values is by using the NgStyle attribute and using key value

pairs for each property you want to set, like this:

<!DOCTYPE html>

<html>

<head>

 <title></title>

 107

</head>

<body>

 <div [ngStyle]="{color: 'white', 'background-color': 'blue'}">

 Uses fixed yellow background

 </div>

</body>

</html>

Here we are setting both the color and the background-color properties. But the real

power of the NgStyle directive comes with using dynamic values.

In our example, we are defining two input boxes with an apply settings button:

<!DOCTYPE html>

<html>

<head>

 <title></title>

</head>

<body>

 <div class="ui input">

 <input type="text" name="color" value="{{color}}" #colorinput>

 </div>

 <div class="ui input">

 <input type="text" name="fontSize" value="{{fontSize}}" #fontinput>

 </div>

 <button class="ui primary button" (click)="apply(colorinput.value,

fontinput.value)">

 Apply settings

 </button>

</body>

 108

</html>

This will apply the color and fontsize after apply button click on element.

NgClass

The NgClass directive, represented by a ngClass attribute in your HTML template,

allows you to dynamically set and change the CSS classes for a given DOM

element.

The first way to use this directive is by passing in an object literal. The object is

expected to have the keys as the class names and the values should be a

truthy/falsy value to indicate whether the class should be applied or not.

that adds a dashed black border

to an element:

Src/style.css

.bordered {

border: 1px dashed black;

 background-color: #eee; }

always having the border) and another one never having it:

componenet.html

<div [ngClass]="{bordered: false}">This is never bordered</div>

<div [ngClass]="{bordered: true}">This is always bordered</div>

4.6 LET US SUM UP

 Directives in Angular is a js class which is declared as @directive. A directive

is a custom HTML element that is used to extend the power of HTML. Angular

provides a number of built-in directives, which are attributes we add to our

HTML elements that give us dynamic behavior.

 Decorators are functions that modify JavaScript classes. Decorators are used

for attaching metadata to classes, it knows the configuration of those classes

and how they should work. a component is also a directive-with-a-template.

 Three types of directives-Component, Structural, Attribute

 109

 Components directives directives with a template, how the component

should be processed, instantiated and used at runtime..

 Structural directives change the DOM layout by adding and removing DOM

elements. It is denoted by using * sign.

 Attribute directives change the appearance or behavior of an element,

component, or another directive.

 The component directive is used to specify the template/HTML for the Dom

Layout.

 The structural directive is used to add or remove the HTML Element in the

Dom Layout, typically by adding, removing, or manipulating elements... Its

built-in types are *NgIf,*NgFor,*NgSwitch. Structural directives are easy to

recognize by using an asterisk (*).

 The attribute directive changes the appearance or behavior of a DOM

element. These directives look like regular HTML attributes in

templates(Ngstyle,Ngclass)

4.7 CHECK YOUR PROGRESS

1. _______ in Angular is a js class which is declared as @directive.

A. Style

B. Template

C. Structure

D. Directives

2. Directives are declared by using _____ symbol.

A. $

B. @

C. !

D. &

3. ______ directives with a template, how the component should be processed,

instantiated and used at runtime.

A. Component

B. Structure

C. Attribute

D. Class

4. ______ change the appearance or behavior of an element, component, or another

directive.

A. Component

B. Structure

C. Attribute

D. Class

 110

5. app.component.css: contains all the ______ for the component.

A. html file

B. ts file

C. css style

D. confing file

6. Structural directives are easy to recognize by using an ______ symbol.

A. &

B. #

C. .

D. *

7. ____is used to create or remove a part of the DOM tree depending on a condition.

A. ngif

B. ngswitch

C. ngstyle

D. ngfor

8. ______ controls the appearance of elements by adding and removing CSS

classes dynamically.

A. ngstyle

B. ngclass

C. ngswitch

D. ngif

9. app.component.ts: contains all the _____ used by the component to control its

behavior.

A. html

B. ts

C. code

D. css

10. _____are functions that modify JavaScript classes.

A. Style

B. JS

C. Decorators

D. Server

4.8 CHECK YOUR PROGRESS: POSSIBLE ANSWER

1. Directives

2. @

3. Component

4. Attribute

5. css style

6. *

7. ngif

8. ngclass

9. code

10.Decorators

 111

4.9 ASSIGNMENTS

Write the answer for the following questions.

1. What is directives?

2. Explain the component directive in detail with example.

3. Explain the Structurel directive in detail with example.

4. Explain the attribute directive in detail with example.

 112

Unit 5: Working with Forms

Unit Structure

5.1 Learning Objectives

5.2 Introduction to Forms

5.3 Key Difference

5.4 Reactive Form Use

5.5 Template Driven Form Use

5.6 Form Validation

5.7 Let Us Sum Up

5.8 Check Your Progress

5.9 Check Your Progress: Possible Answer

5.9 Assignments

5

 113

5.1 LEARNING OBJECTIVES

After studying this chapter, students should be able to understand:

 The importance of Form in application.

 Difference between the forms types.

 Use of Reactive form and Template driven form with code

 How to collect the correct information from form using validation.

5.1 INTRODUCTION

 Forms are critical to any modern front-end application, and they're a feature

that we use every day, even if don't realize it. Forms are required for securely

logging in a user to the app, searching for all the available hotels in a particular city,

booking a cab, building a to-do list, and doing tons of other things that we are used

to. Some forms have just a couple of input fields, whereas other forms could have an

array of fields that stretch to a couple of pages or tabs.

 Interface,Forms are the most important aspect of any web application. To

handle the various events of user need to design a meaningful form. Events get in

like from clicking on links or moving the mouse it is through forms where we get the

crucial data inputs from the end users.

 Angular, being a full-fledged front-end framework, has its own set of libraries

for building complex forms. The latest version of Angular has two powerful form-

building strategies. They are:

 Reactive forms - more scalable, reusable, and testable

 Template-driven forms - adding a simple form to an app, such as an email list

signup form

 Both the technologies belong to the @angular/forms library and are based on

the same form control classes. They differ remarkably in their philosophy,

programming style, and technique. Choosing one over the other depends on your

personal taste and also on the complexity of the form that you are trying to create. In

 114

my opinion, you should try both the approaches first and then choose one that fits

your style and the project at hand.

5.3 KEY DIFFERENCE INTRODUCTION

The table below summarizes the key differences between reactive and template-

driven forms.

Differs Reactive Template-driven

Setup More explicit, created in component

class

Less explicit, created by

directives

Data model Structured UnStructured

Predictability Synchronous Asynchronous

Form

validation

Functions Directives

Mutability Immutable Mutable

Scalability Low-level API access Abstraction on top of APIs

Use More flexible, but needs a lot of

practice

Easy to use

Data Binding No data binding is done Two way data binding

Testing Easier unit testing Unit testing is another

challenge

Table-5 key differences between reactive and template-driven forms

Both reactive and template-driven forms share underlying building blocks.

 FormControl tracks the value and validation status of an individual form

control.

 FormGroup tracks the same values and status for a collection of form

controls.

 FormArray tracks the same values and status for an array of form controls.

 ControlValueAccessor creates a bridge between Angular FormControl

instances and native DOM elements.

 115

5.4 REACTIVE FORMS

 Reactive forms are more powerful. They are more scalable, reusable, and

testable. If forms are a key part of your application, or you're already using reactive

patterns for building your application, use reactive forms.

 A reactive wired up with RxJS to

manage its state as a realtime stream. This means you can listen to changes to its

value as an Observable and react accordingly with validation errors, feedback,

database operations, etc. Each change to the form state returns a new state, which

maintains the integrity of the model between changes. Reactive forms are built

around observable streams, where form inputs and values are provided as streams

of input values, which can be accessed synchronously. Reactive forms also provide

a straightforward path to testing because you are assured that your data is

consistent and predictable when requested. Any consumers of the streams have

access to manipulate that data safely.

5.4.1 CREATING A FORM

To create a reactive form we have to import certain modules and need to generate

form controls. So for that follow the below steps.

Step 1 : Registering the reactive module.

To use the reactive forms in angular need to import ReactiveFormsModule from the

angular /forms package and add it to NgModules import array.(app.module.ts)

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { ReactiveFormsModule} from '@angular/forms';

@NgModule({

 116

 declarations: [

 AppComponent,

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 ReactiveFormsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Step 2: Generating and importing new form control

To generate a component for the control run the following command.

ng generate component NameEditor

The main class called FormControl class which used to define building blocks. For

the single form conrol import the FormControl class into your component class and

create a new instance to save as class property.

Step 3: Registering the controls in the Form

Once you created the control in the component class you must associated with form

control element in the template. Update the template with the form control using the

 117

formControl binding provided by FormControlDirective included in

ReactiveFormsModule.(nameeditor.component.html)

<label>

 Name:

 <input type="text" [formControl]="name">

</label>

5.4.2 MANAGING CONTROL VALUES

Powerful Reactive forms give you access to the form control state and value at a

point in time. Any one can manipulate the current state and value through the

component class or the component template. The following examples display the

value of the form control instance and change it.

Displaying a form control value

To display the value in follow these ways:

 Through the valueChanges observable where you can listen for changes in

the form's value in the template using AsyncPipe or in the component class

using the subscribe() method.

 With the value property. which gives you a snapshot of the current value.

(name-editor.component.html)

<label>

 Name:

 <input type="text" [formControl]="name">

</label>

<p>

 Value: {{ name.value }}

</p>

Reactive forms provide access to information about a given control through

properties and methods provided with each instance. These properties and methods

 118

of the underlying AbstractControl class are used to control form state and determine

when to display messages when handling validation.

Replacing a form control value

Methods are used to change the control values. Reactive forms have methods to

change a control's value programmatically, which gives you the flexibility to update

the value without user interaction. A form control instance provides a setValue()

method that updates the value of the form control and validates the structure of the

value provided against the control's structure. The following example adds a method

to the component class to update the value of the control to Angular using the

setValue() method.

(name-editor.component.ts)

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-name-editor',

 templateUrl: './name-editor.component.html',

 styleUrls: ['./name-editor.component.css']

})

export class NameEditorComponent implements OnInit {

 constructor() { }

 ngOnInit() {

 }

 updateName() {

 this.name.setValue('Angular');

 }

}

 119

5.4.3 GROUPING FORMS CONTROL

Angular will provide the facility to group multiple controls. Form control can give the

access over single input field, a form group will provide the group of control access.

Each control in a form group instance is tracked by name when creating the form

group.

So for that need to create one more component in our project.

ng generate component ProfileEditor

and import below line of code

import { FormGroup, FormControl } from '@angular/forms';

Step 1 : Creating an instance of Form Group

First need to Create a property in the component class named profileForm and set

the property to a new form group instance. To initialize the form group, provide the

constructor with an object of named keys mapped to their control.

For the profile form, add two form control instances with the names firstName and

lastName.

(profileeditor.component.ts)

import { Component } from '@angular/core';

import { FormGroup, FormControl } from '@angular/forms';

@Component({

 selector: 'app-profile-editor',

 templateUrl: './profile-editor.component.html',

 styleUrls: ['./profile-editor.component.css']

})

export class ProfileEditorComponent {

 profileForm = new FormGroup({

 firstName: new FormControl(''),

 120

 lastName: new FormControl(''),

 });

}

Step 2: Associating the FormGroup model and view

A form group tracks the status and changes for each of its controls, so if one of the

controls changes, the parent control also emits a new status or value change. The

model for the group is maintained from its members. After you define the model, you

must update the template to reflect the model in the view.

(profile-editor.component.html)

<form [formGroup]="profileForm">

 <label>

 First Name:

 <input type="text" formControlName="firstName">

 </label>

 <label>

 Last Name:

 <input type="text" formControlName="lastName">

 </label>

</form>

Saving form data

The ProfileEditor component accepts input from the user, but in a real scenario you

want to capture the form value and make available for further processing outside the

component. The FormGroup directive listens for the submit event emitted by the

form element and emits an ngSubmit event that you can bind to a callback function.

Add an ngSubmit event listener to the form tag with the onSubmit() callback method.

 121

(profile-editor.component.html)

<form [formGroup]="profileForm" (ngSubmit)="onSubmit()">

 <label>

 First Name:

 <input type="text" formControlName="firstName">

 </label>

 <label>

 Last Name:

 <input type="text" formControlName="lastName">

 </label>

</form>

The onSubmit() method in the ProfileEditor component captures the current value of

profileForm. Use EventEmitter to keep the form encapsulated and to provide the

form value outside the component. The following example uses console.warn to log

a message to the browser console.

export class ProfileEditorComponent {

 profileForm = new FormGroup({

 firstName: new FormControl(''),

 lastName: new FormControl(''),

 });

 onSubmit() {

 // TODO: Use EventEmitter with form value

 console.warn(this.profileForm.value);

 }

}

Displaying the component

To display the ProfileEditor component that contains the form, add it to a component

template.

 122

(app.component.html)

<app-profile-editor></app-profile-editor>

5.5 TEMPLATE DRIVEN FORMS

 Forms are mainly used to attract the user. Forms enhance the look of the

interface of app. Forms are the mainstay of business applications. You use forms to

log in, submit a help request, place an order, book a flight, schedule a meeting, and

perform countless other data-entry tasks.

 Developing forms requires design skills (which are out of scope for this page),

as well as framework support for two-way data binding, change tracking, validation,

and error handling, Template driven forms are forms where we write logic,

validations, controls etc, in the template part of the code (html code). The template is

responsible for setting up the form, the validation, control, group etc. Template

driven forms are suitable for simple scenarios, uses two way data binding using the

[(NgModel)] syntax, easier to use though unit testing might be a challenge.

Template driven form is one complete form.

Code for creating a simple Template driven form. In this code we show how

template-driven forms in Angular can be created. This code uses the FormsModule

and NgModel directive to register form controls on an out NgForm.

(app.module.ts)

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';

import { FormComponent } from './form.component';

@NgModule({

 imports: [BrowserModule, FormsModule],

 declarations: [AppComponent, FormComponent],

 123

 bootstrap: [AppComponent]

})

export class AppModule {}

(app.component.ts)

import { Component } from '@angular/core';

@Component({

 selector: 'my-app',

 templateUrl: 'app/app.component.html'

})

export class AppComponent { }

Create a new component named form using below syntax inside app folder.

Ng generate component form

(app/form.component.ts)

import { Component } from '@angular/core';

@Component({

 selector: 'form-component',

 template: `

 <form #form="ngForm" (ngSubmit)="submit(form.value)">

 <div>

 <label>Firstname:</label>

 <input type="text" name="firstname" ngModel>

 </div>

 <div>

 <label>Lastname:</label>

 <input type="text" name="lastname" ngModel>

 </div>

 <div>

 124

 <label>Street:</label>

 <input type="text" name="street" ngModel>

 </div>

 <div>

 <label>Zip:</label>

 <input type="text" name="zip" ngModel>

 </div>

 <div>

 <label>City:</label>

 <input type="text" name="city" ngModel>

 </div>

 <button type="submit">Submit</button>

 </form>

 <pre>

{{form.value | json}}

 </pre>

 <h4>Submitted</h4>

 <pre>

{{value | json }}

 </pre>

 `

})

export class FormComponent {

 value: any;

 submit(form) {

 this.value = form;

 }

}

 125

(app.component,html)

<form-component></form-component>

Create one more ts file inside the app folder and set the below code for design using

the bootstrap.

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app.module';

platformBrowserDynamic().bootstrapModule(AppModule);

Save your entire project and output should be like.

After submitting the data it look like

 126

5.6 FORM VALIDATION

 User Interface play the vital role in any apps. To give the dynamic look at the

app must have to forms in app. Forms are almost always present in any website or

application. Forms can be used to perform countless data-entry tasks such as

authentication, order submission or a profile creation.

Improve overall data quality by validating user input for accuracy and

completeness.To design a form is easy but it must be well maintained. That means a

form must be a validate form. Because forms are used to collection of information so

information must be a in correct format so forms are need to be a validated.

 127

5.6.1 TEMPLATE DRIVEN VALIDATION

To add validation to a template-driven form, you add the same validation attributes

as you would with native HTML form validation. Angular uses directives to match

these attributes with validator functions in the framework.

Every time the value of a form control changes, Angular runs validation and

generates either a list of validation errors, which results in an INVALID status, or

null, which results in a VALID status.

You can then inspect the control's state by exporting ngModel to a local template

variable. The following example exports NgModel into a variable called name:

Code of example.

<input id="name" name="name" class="form-control"

 required minlength="4" appForbiddenName="bob"

 [(ngModel)]="hero.name" #name="ngModel" >

<div *ngIf="name.invalid && (name.dirty || name.touched)"

 class="alert alert-danger">

 <div *ngIf="name.errors.required">

 Name is required.

 </div>

 <div *ngIf="name.errors.minlength">

 Name must be at least 4 characters long.

 </div>

 <div *ngIf="name.errors.forbiddenName">

 Name cannot be dob.

 </div>

</div>

 128

Explanation of code

 <input> element carries the HTML validation attributes: required and

minlength.

 #name="ngModel" exports NgModel into a local variable called name.

NgModel mirrors many of the properties of its underlying FormControl

instance.

 The *ngIf on the <div> element reveals a set of nested message divs but only

if the name is invalid and the control is either dirty or touched.

 Each nested <div> can present a custom message for one of the possible

validation errors. There are messages for required, minlength, and

forbiddenName.

5.6.2 REACTIVE FORM VALIDATION

The most important part of application is form validation. To validate the Reactive

form component class become the main class. Instead of adding validators through

attributes in the template, you add validator functions directly to the form control

model in the component class. Angular then calls these functions whenever the

value of the control changes.

We can perform the validation on Reactive form in two ways, either using validators

functions or using built-in validators.

Validator functions

There are two types of validator functions: sync validators and async validators.

 Sync validators: Is a functions that take a control instance and immediately

return either a set of validation errors or null. You can pass these in as the

second argument when you instantiate a FormControl.

 Async validators: Is a functions that take a control instance and return a

Promise or Observable that later emits a set of validation errors or null. You

can pass these in as the third argument when you instantiate a FormControl.

 129

Built-in validators

Similar to the built-in validators that are available as attributes in template-driven

forms, such as required and minlength, are all available to use as functions from the

Validators class. For a full list of built-in validators

5.7 LET US SUM UP

 Forms are required for securely logging in a user to the app, searching for all

the available hotels in a particular city, booking a cab, building a to-do list,

and doing tons of other things that we are used to

 Interface, Forms are the most important aspect of any web application.

 Events get in like from clicking on links or moving the mouse it is through

forms where we get the crucial data inputs from the end users.

 Angular, being a full-fledged front-end framework, has its own set of libraries

for building complex forms

 Two types of form: Reactive and Template-driven

 Reactive forms - more scalable, reusable, and testable

 Template-driven forms - adding a simple form to an app, such as an email list

signup form

 Both the technologies belong to the @angular/forms library and are based on

the same form control classes

 Reactive forms are more explicit, created in component class as compare to

template driven form.

 Unit Testing is complex in template driven forms.

 Reactive forms are more powerful. They are more scalable, reusable, and

testable. If forms are a key part of your application, or you're already using

reactive patterns for building your application, use reactive forms.

 To use the reactive forms in angular need to import ReactiveFormsModule

from the angular /forms package and add it to NgModules import

array.(app.module.ts)

 Powerful Reactive forms give you access to the form control state and value

at a point in time.

 130

 Forms are mainly used to attract the user. Forms enhance the look of the

interface of app. Forms are the mainstay of business applications

 Code for creating a simple Template driven form

 To give the dynamic look at the app must have to forms in app. Forms are

almost always present in any website or application. Forms can be used to

perform countless data-entry tasks such as authentication, order submission

or a profile creation.

 To add validation to a template-driven form, you add the same validation

attributes as you would with native HTML form validation.

 To validate the Reactive form component class become the main class.

Instead of adding validators through attributes in the template, you add

validator functions directly to the form control model in the component class.

Angular then calls these functions whenever the value of the control changes.

5.8 CHECK YOUR PROGRESS

1._____ are critical to any modern front-end application

A. Forms

B. Pages

C. CSS

D. Design

2. Angular supports the ____ types of forms.

A. 1

B. 3

C. 4

D. 2

4. _____ forms are more scalable, reusable, and testable

A. Template

B. Reactive

C. Normal

D. A & B

5. _____ forms adding a simple form to an app, such as an email list signup.

A. Template

B. Reactive

C. Normal

D. A & B

6. _____ tracks the value and validation status of an individual form control.

A. FormArray

B. FormGroup

C. FormValue

D. FormControl

 131

7.______ tracks the same values and status for an array of form controls.

A. FormArray

B. FormGroup

C. FormValue

D. FormControl

8. To use the reactive forms in angular need to import ______

A. ReactiveFormsModule

B. ReactiveForms

C. ReactiveModule

D. ReactiveCore

9. to create the new componet _____ syntax is used.

A. ng generate

B. ng generate component

C. ng generate component

comp_name

D. generate component

10. There are two types of validator functions: sync validators and _____ validators.

A. void

B. null

C. empty

D. asyn

5.9 CHECK YOUR PROGRESS:POSSIBLE ANSWER

1. Forms

2. 2

4. Reactive

5. Template

6. FormControl

7. FormArray

8. ReactiveFormsModule

9. ng generate component

comp_name

10. async

5.10 ASSIGNMENTS

Write the answer for the following questions.

1. What is forms?

2. List the types of form in angular with definition.

3. Differentiate reactive form and template driven form

 132

4. How to create reactive form explain in detail.

5. How to create template driven form explain in detail.

6. What is form validation.

7. Explain how to validate reactive form with validation functions.

 133

 Block-3

Working With IONIC

 134

Unit 1: Setting up the
Environment for IONIC

Unit Structure

1.12 Learning Objective

1.13 Ionic Framework

1.14 How to build Mobile Apps

1.15 Node.js

1.16 Installing CLI

1.17

1.18 iOS setup

1.19 Android setup

1.20 Let Us Sum Up

1.21 Check Your Progress

1.22 Check Your Progress: Possible Answers

1.23 Activities

1

 135

1.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

 How Ionic Framework works.

 All about mobile app thought process.

 Node.js installation

 CLI installation

 iOS and Android setup

1.2 IONIC FRAMEWORK

source (https://github.com/ionic-team/ionic) and has over 35,000 stars on GitHub,

the popular social coding platform. Ionic framework is not the only player in hybrid

recommended as the first choice by many developers. Ionic is popular for the

following reasons:

 Based on Web Components standards and is framework agnostic. Web

Components are W3C specifications of components for the web platform.

Ionic components are built as custom elements using its own open source

tool, Stencil. Being framework agnostic makes Ionic components work

with any framework. Developers are free to choose the framework to use,

including Angular, React, and Vue.

 Provides beautifully designed out-of-box UI components that work across

different platforms. Common components include lists, cards, modals,

menus, and pop- ups. These components are designed to have a similar

look and feel as native apps. With these built-in components, developers

can quickly create prototypes with good enough user interfaces and

continue to improve them.

 Leverages Apache Cordova as the runtime to communicate with native

platforms. Ionic apps can use all the Cordova plugins to interact with the

 136

native platform. Ionic Native further simplifies the use of Cordova plugins

in Ionic apps.

 Performs great on mobile devices. The Ionic team devotes great effort to

make it perform well on different platforms.

The current release version of Ionic framework is 4.0. Ionic 4 is the first version of

Ionic to be framework agnostic. Ionic Core is the set of components based on Web

Components. Ionic Angular is the framework binding of Ionic Core with Angular. This

book focuses on Ionic Angular with Angular 6.

Apart from the open source Ionic framework, Ionic also provides a complete solution

Ionic Pro for mobile app development, which includes the following products:

 Ionic Creator Ionic Creator is a desktop app to create Ionic apps using

drag-and-drop. It helps nontechnical users to quickly create simple apps

and prototypes.

 Ionic View Ionic View allows viewing Ionic apps shared by others

di app testing and demonstration.

 Ionic Deploy Ionic Deploy performs hot updates to apps after they are

published to app stores.

 Ionic Package Ionic Package builds Ionic apps and generates bundles

ready for p

manage local build systems and can use the cloud service instead.

 Ionic Monitor Ionic Monitor can monitor apps and report runtime errors.

1.3 HOW TO BUILD MOBILE APPS

 Even with the frameworks

task to build mobile apps. There are multiple stages in the whole development life

cycle from ideas to published apps. A typical process may include the following

major steps:

 137

 Ideas brainstorming. This is when we identify what kind of mobile apps

to build. It usually starts from vague ideas and expands to more concrete

solutions.

 Wire-framing and prototyping. This is when we draw on the whiteboard

to identify main usage scenarios. Prototypes may be created to

demonstrate core usage scenarios for better communications with

stakeholders.

 User experiences design. This is when all pages and navigation flows

are finalized, and we are now clear what exactly needs to be built.

 Implementation. This is when the development team implements the

pages to fulfill requirements.

 Testing. Unit testing should be part of implementation of pages and

components. End-to-end testing is also required to verify all usage

scenarios. All these tests should be executed automatically.

 Continuous integration. Continuous integration is essential for code

quality. If every code commit can be tested automatically, then the

 Publishing. This is when the app is published to app stores.

 Operations. After the app is published, we still need to continuously

monitor its running status. We need to capture errors and crash logs

1.4 NODE.JS

 Node.js is the runtime platform for Ionic CLI. To use Ionic CLI, we first need to

install Node.js (https://nodejs.org/) on the local machine. Node.js is a JavaScript

on the desktop machines and servers. Ionic CLI itself is written in JavaScript and

executed using Node.js. There are two types of release versions of Node.js the

 138

to use Node.js version 6 or greater, especially the latest LTS version (8.12.0 at the

time of writing).

 Installing Node.js also installs the package management tool npm. npm is

used to manage Node.js packages used in projects. Thousands of open source

packages can be found in the npmjs registry (https://www. npmjs.com/). If you have

background with other programming languages, you may find npm is similar to

Apache Maven (https://maven.apache. org/) for Java libraries or Bundler

(http://bundler.io/) for Ruby gems.

1.5 INSTALLING CLI

Ionic CLI

 After Node.js is installed, we can use npm to install the Ionic command- line

tool and Apache Cordova.

 $ npm i -g cordova ionic

Note : You may need to have system administrator privileges to install these two

packages. For Linux and macOS, you can use sudo. For Windows, you can start a

command-

using sudo when possible, as it may cause permission errors when installing native

packages. treat this as the last resort. the permission errors usually can be resolved

by updating the file permissions of the node.js installation directory.

After finishing installation of Ionic CLI and Cordova, we can use the command ionic

to start developing Ionic apps.

You are free to use Windows, Linux, or macOS to develop Ionic 4 apps. Node.js is

supported across different operating systems. One major limitation of Windows or

Linux is that you cannot test iOS apps using the emulator or real devices. Some

open source Node.js packages may not have the same test coverage on Windows

as Linux or macOS. So they are more likely to have compatibility issues when

running on Windows. But this should only affect the CLI or other tools, not Ionic 4

itself.

 139

After Ionic CLI is installed, we can run ionic info to print out current runtime

environment information and check for any warnings in the output; see Listing 1-1.

The output also provides detailed information about how to fix those warnings.

Ionic:

ionic (Ionic CLI) : 4.12.0 (/usr/local/lib/node_modules/ionic)

Ionic Framework : @ionic/angular 4.3.1

@angular-devkit/build-angular : 0.13.8

@angular-devkit/schematics : 7.3.8

@angular/cli : 7.3.8

@ionic/angular-toolkit : 1.5.1

System:

NodeJS : v8.9.4 (/usr/local/bin/node)

npm : 5.6.0

OS : macOS Mojave

 You are free to use your favorite IDEs and editors when developing Ionic

apps. IDEs and editors should have good support for editing HTML, TypeScript, and

Sass files. For open source alternatives, Visual Studio Code

(https://code.visualstudio.com/) and Atom (https://atom.io/) are both popular choices

tools. For commercial IDEs, WebStorm (https://www. jetbrains.com/webstorm/) is

recommended for its excellent support of various programming languages.

1.6.1 LEARNING MORE ABOUT VISUAL STUDIO CODE

Setting up Visual Studio Code

Getting up and running with Visual Studio Code is quick and easy. It is a small

download so you can install in a matter of minutes and give VS Code a try.

 140

Cross platform

VS Code is a free code editor which runs on the macOS, Linux and Windows

operating systems.

Follow the platform specific guides below:

 macOS

 Linux

 Windows

VS Code is lightweight and should run on most available hardware and platform

versions. You can review the System Requirements to check if your computer

configuration is supported.

Extensions

VS Code extensions let third parties add support for additional:

 Languages - C++, C#, Go, Java, Python

 Tools - ESLint, JSHint , PowerShell

 Debuggers - Chrome, PHP XDebug.

 Keymaps - Vim, Sublime Text, IntelliJ, Emacs, Atom, Visual Studio, Eclipse

Extensions integrate into VS Code's UI, commands, and task running systems so

you'll find it easy to work with different technologies through VS Code's shared

interface.

Some useful extension:

1. Ionic Extension Pack

2. Ionic 4 Snippets

3. Prettier - Code formatter

4. TSLint

5. Peacock

6. Auto Rename Tag

 141

7. Angular Language Service

8. Angular v7 Snippets

9. angular2-switcher

Next steps

Once you have installed and set up VS Code, these topics will help you learn more

about VS Code:

 Additional Components - Learn how to install Git, Node.js, TypeScript and

tools like Yeoman.

 User Interface - A quick orientation to VS Code.

 Basic Editing - Learn about the powerful VS Code editor.

 Code Navigation - Move quickly through your source code.

 Debugging - Debug your source code directly in the VS Code editor.

 Proxy Server Support - Configure your proxy settings.

1.7 IOS SETUP

 Developing iOS apps with Ionic requires macOS and Xcode

(https://developer.apple.com/xcode/)You need to install Xcode and Xcode

command-line tools on macOS. After installing Xcode, you can open a terminal

window and type command shown below.

 $ xcode-select p

If you see output like that below, then command-line tools have already been

installed.

 /Applications/Xcode.app/Contents/Developer

Otherwise, you need to use the following command to install it.

 $ xcode-select --install

 142

After the installation is finished, you can use xcode-select p to verify.

To run Ionic apps on the iOS simulator using Ionic CLI, package ios-sim is required.

Another package ios-deploy is also required for deploying to install and debug apps.

You can install both packages using the following command.

 $ npm i -g ios-sim ios-deploy

1.8 ANDROID SETUP

 To develop Ionic apps for Android, Android SDK must be installed.Before

installing Android SDK, you should have JDK installed first. Read this guide

(https://docs.oracle.com/javase/8/docs/technotes/ guides/install/) about how to install

(https://developer.android.com/studio/index.html), which provides a nice IDE and

bundled Android SDK tools.

Note: Android APi level 22 is required to run ionic apps. Make sure that the required

SdK platform is installed.

 Stand-alone SDK tools is just a ZIP file; unpack this file into a directory and

Android platform or third-party libraries. You need to install the platform tools and at

least one version of the Android platform. Run android in tools directory to start

Android SDK Manager to install platform tools and other required libraries.

 -tools

 be

found by Ionic. Suppose that the SDK tools is unpacked into /Development/android-

sdk, then add /Development/ android-sdk/tools and /Development/android-

sdk/platform-tools to PATH environment variable. For Android Studio, the Android

SDK is installed into directory /Users/<username>/Library/Android/sdk.

 To modify PATH environment variable on Linux and macOS, you can edit

~/.bash_profile file to update PATH as shown below. The PATH environment below

 143

uses the Android SDK from Android Studio. You can replace it with another directory

if stand-alone SDK tools is used.

export PATH=${PATH}/:/Users/<username>/Library/Android/sdk/platform-tools \

: /Users/<username>/Library/Android/sdk/tools

To modify the PATH environment variable on Windows, you can follow the steps

below.

1 Click Start menu, then right-click Computer and select Properties.

2 Click Advanced System Settings to open a dialog.

3 Click Environment Variables in the dialog and find PATH variable in the list,

then click Edit.

4 Append the path of tools and platform-tools directories to the end of PATH

variable.

-alone SDK tools.

Stand-alone SDK tools is more likely to have configuration issues.

1.9 LET US SUM UP

 Use and application of Ionic framework

 All brief thought for build mobile apps

 Installing all the pre-requisite

 Visual studio code and its extension

 Setting up iOS and Android environment.

1.10 CHECK YOUR PROGRESS

1. Ionic is used to build _______ mobile apps

A. Native B. Hybrid

C. Web app D. Standard

 144

2. Ionic used ________ to interact with native platform.

 A. Angular B. Swift

C. Java D. Apache Cordova

3. Lastest version of Ionic is _______.

A. 2.0 B. 2.5

C. 3.0 D. 4.0

4. _________ is the runtime platform for Ionic CLI.

A. React.js B. Node.js

C. Vue.js D. Angular.js

5. __________ command is used to the complete information of Ionic

A. ionic info B. ionic getdata

C. ionic detail D. ionic i

6. Full form of IDE.

A. Integrated Demand Environment

B. Internal Development Engine

C. Integrated Development Environment

D. Intel Development Environment

1.11 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

Answer

1. B 2. D 3. D

4. B 5. A 6. C

 145

1.12 ACTIVITIES

 Install NodeJS

o Try to get information about NPM

 Install Ionic and Cordova

 Install IDE(Visual Studio Code)

 Install all the required extension for IDE, So that development can be more

productive.

 Setup Android

 Setup iOS (MacOS system are mandatory)

 146

Unit 2: Developing First Mobile
Application

Unit Structure

2.1 Learning Objective

2.2 Introduction

2.3 Create your first hybrid app

2.4 Scaffolding Ionic

2.5 Working with Simulator

2.6 Running the Mobile Application on Android Phone

2.7 Running the Mobile Application on Apple Phone

2.8 Android Debugging

2.9 iOS Debugging

2.10 WebView

2.11 Let Us Sum Up

2.12 Check your Progress

2.13 Check your Progress: Possible Answers

2.14 Assignments

2

 147

2.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

 First app in Ionic

 Folder structure of Ionic

 Working with simulator

 Debugging

2.2 INTRODUCTION

new Ionic apps. The easiest way to create Ionic apps is using Ionic CLI. Before we

can create Ionic 4 apps using Ionic CLI, we need to enable the feature project-

angular first by running the following command.

 $ ionic config set -g features.project-angular true

Apps are created using the command ionic start. Below is the syntax of using ionic

start.

 $ ionic start <name> <template> [options]

The first argument of ionic start is the name of the new app, while the second

argument is the template name. We can also pass extra options after these two

arguments. If not enough arguments are provided, Ionic CLI can help you to finish

the setup interactively with prompts. Ionic CLI supports creation of projects of three

types. Project types are specified using the option --type, for example, --

type=angular.

 angular Ionic Angular projects for Ionic 4.

 ionic-angular Ionic 2/3 projects.

 ionic1 Ionic 1 projects.

For project templates, Ionic provides different types of application templates.

All available templates can be listed with the following command. A template may

have versions for different project types.

 148

$ ionic start --list

 We can choose a proper template to create the skeleton code of

also possible to pass URLs of other Git repositories as the templates to use. Ionic

also maintains a marketplace (https://market.ionicframework.com/starters/) for the

community to share project starters. You can find many paid or free project starters

in the marketplace. Below are the available options of ionic start.

 --type Allowed values are angular, ionic-angular and ionic1.

 --cordova Enable Cordova integration.

 --capacitor - Enable Capacitor integration.

 --pro-id Link this app with Ionic Dashboard.

 --no-deps Do not install npm dependencies. Useful when you only want to

explore the content of a project starter.

 --no-git Do not initialize a Git repo.

 --no-link Skip the prompt about connecting the app with Ionic Dashboard.

 --project-id Specify the slug for the app. The slug is used for the directory

name and npm package name.

 --package-id Specify the bundle ID/application ID for the app. This is the

unique ID of the app when publishing to the Apple store or Goog

highly recommended to set this value when Cordova integration is enabled.

The value of this option should be in the reverse domain format, for example,

com. mycompany.myapp. If not specified, the default value io.ionic.starter is

used.

2.3 CREATE YOUR FIRST HYBRID APP

Blank App

This template blank only generates basic code for the app. This template should be

used when you want to start from a clean code base

 149

$ ionic start blankApp blank

$ cd blankApp

$ ionic serve

This will open the browser with the preview of your app which will reload

automatically once you change anything inside your project.

 -

Table-6 Project Starter

Starters are constructed within the Ionic Starters repository by overlaying a starter

app onto a set of base files, constructing a compressed archive of the files, and

uploading it around the world. The Ionic CLI then downloads and extracts the starter

template archive and personalizes files for each new app.

Local Development

After a new app is created using ionic start, we can navigate to the app directory and

run ionic serve to start the local development server. The browser should

 150

automatically open a new window or tab that points to the address

http://localhost:8100/. You should see the UI of this Ionic app. Ionic sets up

livereload by default, so when any HTML, TypeScript or Sass code is changed, it

automatically refreshes the page to load the page with updated code. There is no

need for a manual refresh.

The default port for the Ionic local development server is 8100. The port can be

configured using the option --port or -p. For example, we can use ionic serve -p 9090

to start the server on port 9090.

2.4 SCAFFOLDING IONIC

we have a typical Cordova project structure where we can install native plugins, and

create platform-specific project files.

Figure-17: Scaffolding Ionic

 151

 Config Files

-

-

 152

-

-

 153

 Cordova Files

Besides the config.xml in the root directory, the directories hooks, platforms, plugins,

and www are all managed by Cordova.

 154

 App Files

n the directory src. The directory resources

contains the image files for the app icons and the splash screen.

-

-

 Environment Files

The directory environments contains configuration files for different environments.

Development and production environments are defined by default.

-

--

--

 Skeleton Code

The template blank already includes some basic code. It has only one page.

 155

-

 156

- -

- -

-

-

-

 157

- -

- -

-

 158

 -

- -

-

- - - -

-

 159

- -

 160

2.5 WORKING WITH SIMULATOR/EMULATORS

device emulators.

Ionic CLI have no platforms added by default.

2.6 RUNNING THE MOBILE APPLICATION ON ANDROID
PHONE

To add the Android platform, we can use the following command.

 $ ionic cordova platform add android --save

Then we need to finish several tasks before building the app for Android.

 Install Gradle. Gradle is the build tool for Android apps. Follow the official

instructions (https://gradle.org/install/) to install Gradle on your local machine.

 Accept Android SDK licenses. Use the sdkmanager tool in Android SDK to

accept all SDK package licenses by running sdkmanager --licenses. The tool

sdkmanager can be found in the directory of <Android_Home>/sdk/ tools/bin.

 Create an Android Virtual Device (AVD). Follow the official instructions

(https://developer.android.com/studio/run/managing-avds) to create a new

AVD.

Now the app can be built for the Android platform using the following command.

 $ ionic cordova build android

We can start the emulator and test the app; Ionic app running on the Android 8.1

emulator. If the emulator is not started, the following command will try to start it.

 $ ionic cordova emulate android

 161

When running on the emulator, we can also use the option --livereload to enable

livereload, so the app refreshes automatically when the code changes.

2.7 RUNNING THE MOBILE APPLICATION ON APPLE
PHONE

We can use the following command to add iOS platform support.

 $ ionic cordova platform add ios save

Then the app can be built for iOS platform using the following command. If you just

installed Xcode, you may need to open Xcode to install additional components first.

 $ ionic cordova build ios

Now you can start the emulator and test your app.

 $ ionic cordova emulate ios

Running the code above will launch the default iOS emulator. If you want to use a

different emulator, you can use --target flag to specify the emulator name. To get a

list of all the targets available in your local environment, use the following command.

 $ cordova emulate ios list

Then you can copy the target name from the output and use it in the command ionic

cordova emulate ios, see the code below to use the iPhone 8 with the iOS 11.3

emulator.

 $ ionic cordova emulate ios --target=" iPhone-8, 11.3"

2.8 ANDROID DEBUGGING

Use Chrome for Development

Using iOS or Android emulators to test and debug Ionic apps is not quite convenient

because emulators usually consume a lot of system resources and take a long time

to start or reload apps. A better alternative is to use Chrome browser for basic

testing and debugging. To open Chrome DevTools, you can open the Chrome

system menu and select More Tools Developer Tools. Once the developer tools

 162

window is opened, you need to click the mobile phone icon on the top menu bar to

enable device mode. Then you can select different devices as rendering targets: for

example, Apple iPhone X or Nexus 6P.

Use Chrome DevTools for Android Debugging

For Android platform, when an Ionic app is running on the emulator or a real device,

we can use Chrome DevTools (https://developers.google.com/web/tools/chrome-

devtools/) to debug the running app. Navigate to chrome://inspect/#devices in

Chrome and you should see a list of running apps. Clicking inspect launches the

DevTools to inspect the running app. If you cannot see the app in the list, make sure

that the device is listed in the result of the command adb devices.

2.9 IOS DEBUGGING

Use Safari Web Inspector for iOS Debugging

For an iOS platform, when an Ionic app is running on the emulator or a real device,

we can use Safari Web Inspector (https://developer.apple.com/safari/tools/) to debug

the running app. After opening Safari, in the Develop menu, you should see a menu

item like Simulator iPhone X - iOS 11.3 (15E217). This menu item has a subitem

called localhost - index. html. Clicking this menu item opens the Web Inspector for

debugging.

2.10 WEB VIEW

The Web View powers web apps in native devices. Ionic maintains a Web View

plugin for apps integrated with Cordova. The plugin is provided by default when

using the Ionic CLI. For apps integrated with Capacitor, the Web View is

automatically provided.

Ionic apps are built using web technologies and are rendered using Web Views,

which are a full screen and full-powered web browser.

Modern Web Views offer many built-in HTML5 APIs for hardware functionality such

as cameras, sensors, GPS, speakers, and Bluetooth, but sometimes it may also be

 163

necessary to access platform-specific hardware APIs. In Ionic apps, hardware APIs

can be accessed through a bridge layer, typically by using native plugins which

expose JavaScript APIs.

Figure-18 Structure of Ionic App

The Ionic Web View plugin is specialized for modern JavaScript apps. For both iOS

and Android, app files are always hosted using the http:// protocol with an optimized

HTTP server that runs on the local device.

2.11 LET US SUM UP

 Understanding the predefined starters of Ionic framework

 Learning structure of Ionic project.

 Emulators

 Create, Build and Run the individual platform

o iOS

o Android

 164

 Debugging the platform

o iOS

o Android

 Understanding webview

2.12 CHECK YOUR PROGRESS

1. Command for ionic start <name> ____________, to create app with tabs.

A. blank B. tabs

C. super D. No possible

2. Is it possible to configure the port on which ionic app will be serve.

A. True B. False

3. ________________ file contains metadata of ionic apps.

A. config.xml B. package.json

C. angular.json D. ionic.config.json

4. ________________ file contains Name of the ionic apps.

A. config.xml B. package.json

C. angular.json D. ionic.config.json

5. Platform folder is managed by __________

A. Cordova B. Angular

C. Ionic D. Javascript

6. The __________ is the entry point of the whole Ionic app.

A. index.html B. index.js

C. package.json D. angular.json

7. The file ______________ declares the root module of the app

A. index.html B. app.module.ts

C. app.component.ts D. app.html

 165

8. The ___________ file contains the logic to bootstrap the Ionic app

A. app.ts B. index.html

C. main.ts D. app.component.ts

9. ionic cordova platform add ___________ --save

A. angular B. ionic

C. android D. none of above

10. ionic cordova __________ ios. To build the platform

A. start B. build

C. compile D. serve

11. __________ browser is used to debug ios app

A. Chrome B. Safari

C. Internet explorer D. Firefox

12. Ionic apps are built using web technologies and are rendered using

A. Serve B. Server

C. Web Views D. HTML

2.13 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A 2. A 3. B

4. D 5. A 6. A

7. B 8. C 9. C

10. B 11. B 12. C

 166

2.14 ASSIGNMENTS

 Create & Run a si

 Checkout all the config files.

 Go through the files and folder of project

 Try to debug the platform

o iOS

o Android

 167

Unit 3: Typescript

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Why Typescript ?

3.4 Basic Types

3.5 Functions

3.6 Interface and Classes

3.7 Let us sum up

3.8 Assignments

3

 168

3.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

 Typescript

 Variables

 Function, Interface and Classes

 Decorators

 Angular

3.2 INTRODUCTION

 Building hybrid mobile apps with Ionic requires mostly front-end skills,

including HTML, JavaScript, and CSS. You should have basic knowledge of these

programming languages before reading this book.

 Ionic Angular is

also the framework. Other than standard JavaScript, Ionic Angular uses TypeScript

(https://www. typescriptlang.org/) by default. This is because Angular uses

TypeScript by default. You are still fre

new programming language. But TypeScript is strongly recommended for enterprise

applications development. As the name suggests, TypeScript adds type information

to JavaScript. Developers with knowledge of other static-typing programming

languages, for example, Java or C#, may find TypeScript very easy to understand.

The official TypeScript documentation

(https://www.typescriptlang.org/docs/index.html) is a good starting point to learn

TypeScript.

3.3 WHY TYPESCRIPT?

The reason why TypeScript is recommended for Ionic apps development is because

TypeScript offers several benefits compared to standard JavaScript.

 169

Compile-Time Type Checks

TypeScript code needs to be compiled into JavaScript code before it can run inside

called transpiling. During the compiling, the compiler does type checks using type

declarations written in the source code. These static type checks can eliminate

potential errors in the early stage of development. JavaScript has no static-typing

information in the source code. A variable declared with var can reference to any

type of data. Even though this provides maximum flexibility when dealing with

variables in JavaScript, it tends to cause more latent issues due to incompatible

types in the runtime. For most of the variables and function arguments, their types

when assigning a string to a variable that should only contain a number. This kind of

error can be reported by the TypeScript compiler in the compile time.

In the below example, the variable port represents the port that a server listens on.

Even though this varia

string 9090 to port in JavaScript. This error may only be detected in the runtime.

var port = 8080;

port = '9090';

// -> valid assignment

However, the TypeScript code in below example declares the type of port is number.

The following assignment causes a compiler error. So developers can find out this

error immediately and fix it right away.

let port: number = 8080;

port = '9090';

// -> compiler error!

 170

Rich Feature Sets

Apart from the essential compile-time type checks, TypeScript is also a powerful

programming language with rich feature sets. Most of these features come from

current or future versions of ECMAScript, including ES6, ES7, and ES8. Using these

features can dramatically increase the productivity of front-

see the usages of these features in the code of the sample app.

Better IDE Support

With type information in the TypeScript source code, modern IDEs can provide

smart code complete suggestions to incre

also do refactoring for TypeScript code. Navigation between different files, classes,

or functions is easy and intuitive. Front- end developers can enjoy the same coding

experiences as Java and C# developers.

3.4 BASIC TYPES

The key point of writing TypeScript code is to declare types for variables, properties,

and functions. TypeScript has a predefined set of basic types. Some of those types

come from JavaScript, while other types are unique in TypeScript.

3.4.1 BOOLEAN

Boolean type represents a simple true or false value. A Boolean value is declared

using type boolean in TypeScript.

let isActive: boolean = false;

isActive = true;

3.4.2 NUMBER

Numbers are all floating-point values in TypeScript. A number is declared using type

number in TypeScript. TypeScript supports decimal, hexadecimal, binary, and octal

literals for numbers. All these four numbers in the code below have the same

decimal value 20.

let p1: number = 20; // decimal

 171

let p2: number = 0x14; // hexadecimal

let p3: number = 0b10100; // binary

let p4: number = 0o24; // octal

3.4.3 STRING

String type represents a textual value. A string is declared using type string in

TypeScript. Strings are surrounded by double quotes (") or single

to the development team to choose whether to use double quotes or single quotes.

The key point is to remain consistent across the whole code base. Single quotes are

more popular because they are easier to type than double quotes that require the

shift key.

let text: string = 'Hello World';

TypeScript also supports ES6 template literals, which allow embedded expressions

in string literals. Template literals are surrounded by backticks (`). Expressions in the

template literals are specified in the form of ${expression}.

let a: number = 1;

let b: number = 2;

let result: string = `${a} + ${b} = ${a + b}`;

// -> string "1 + 2 = 3"

3.4.4 NULL AND UNDEFINED

null and undefined are special values in JavaScript. In TypeScript, null and

undefined also have a type with name null and undefined, respectively. These two

types only have a single value.

let v1: null = null;

let v2: undefined = undefined;

types. For example, the code below assigns null to the variable v with type string.

let v: string = null;

 172

However, null values generally cause errors in the runtime and should be avoided

when possible. TypeScript compiler supports the option --strictNullChecks. When

this option is enabled, TypeScript compiler does a strict check on null and undefined

values. null and undefined can only be assigned to themselves and variables with

type any. The code above will have a compile error when strictNullChecks is

enabled.

3.4.5 ARRAY

Array type represents a sequence of values. The type of an array depends on the

type of its elements. Appending [] to the element type creates the array type. In the

code below, number[] is the type of arrays with numbers, while string[] is the type of

arrays with strings. Array type can also be used for custom classes or interfaces. For

example, Point[] represents an array of Point objects.

let numbers: number[] = [1, 2, 3];

let strings: string[] = ['a', 'b', 'c'];

3.4.6 TUPLE

The elements of an array are generally of the same type, that is, a homogeneous

array. If an array contains a fixed number of elements of different types, that is, a

element types. In the code below, the tuple points has three elements with types

number, number, and string.

let points: [number, number, string] = [10, 10, 'P1'];

Tuples are useful when returning multiple values from a function because a function

can only have at most one return value. Tuples of two elements, a.k.a. pairs, are

commonly used. Be careful when using tuples with more than two elements,

because elements of tuples can only be accessed using array indices, so it reduces

the code readability. In this case, tuples should be replaced with objects with named

 173

3.4.7 ENUM

Enum type represents a fixed set of values. Each value in the set has a meaningful

name and a numeric value associated with the name. In the code below, the value of

status is a number with value 1. By default, the numeric values of enum members

start from 0 and increase in sequence. In the enum Status, Status.Started has value

0, Status.Stopped has value 1, and so on.

enum Status { Running, Stopped, NotWorking };

let status: Status = Status.Stopped;

below, enum values Read, Write, and Execute have their assigned values. The

value of permission is 3.

enum Permission { Read = 1, Write = 2, Execute = 4 };

let permission = Permission.Read | Permission.Write;

To convert an enum value back to its textual format, we can do the lookup by

treating the enum type as an array.

let status: string = Status[1];

// -> 'Stopped'

3.4.8 ANY

Any type is the escape bridge from the TypeScript world to the JavaScript world.

When a value is declared with type any, no type checking is done for this value.

While type information is valuable, there are some cases when type information is

not available, so we need the any type to bypass the compile-time check. Below are

two common cases of using the type any.

 Migrate a JavaScript code base to TypeScript. During the migration, we can

annotate unfinished values as any to make the TypeScript code compile.

 174

 Integrate with third-party JavaScript libraries. If TypeScript code uses a third-

party JavaScript library, we can declare values from this library as any to

bypass type checks for this li

for this kind of libraries, either by loading type definitions from community-

driven repositories or creating your own type definitions files.

In the code below, the variable val is declared as any type. We can assign a string, a

number, and a Boolean value to it.

let val: any = 'Hello World';

val = 100; // valid

val = true; // valid

3.4.9 VOID

return a value. The return type of the sayHello function below is void.

function sayHello(): void {

 console.log('Hello');

}

void can also be used as a variable type. In this case, the only allowed

values for this variable are undefined and null.

3.4.10 UNION

Union type represents a value that can be one of several types. The allowed types

are separated with a vertical bar (|). In the code below, the type of the variable

stringOrNumber can be either string or number.

let stringOrNumber: string | number = 'Hello World';

stringOrNumber = 44;

stringOrNumber = 'Test';

 175

Union types can also be used to create enum-like string literals. In the code below,

the type TrafficSignalColor only allows three values.

type TrafficSignalColor = 'Red' | 'Green' | 'Yellow';

let color: TrafficSignalColor = 'Red';

3.5 FUNCTIONS

Functions are important building blocks of JavaScript applications. TypeScript adds

type information to functions. The type of a function is defined by the types of its

arguments and return values.

As shown in below example, we only need to declare function types either on the

variable declaration side or on the function declaration side. TypeScript compiler can

infer the types from context information.

let size: (str: string) => number = function(str) {

 return str.length;

};

let multiply = function(v1: number, v2: number): number {

 return v1 * v2;

}

Function types are useful when declaring high-order functions, that is, functions that

take other functions as arguments or return other functions as results. When

specifying types of functions used as arguments or return values, only type

information is required, for example, (string) => number or (number, number) =>

number

forEach is a high-order function that takes functions of type (any) => void as the

second argument.

function forEach(array: any[], iterator: (any) => void) {

 for (let item in array) {

 176

 iterator(item);

 }

}

forEach([1, 2, 3], item => console.log(item));

// -> Output 1, 2, 3

Arguments

JavaScript uses a very flexible strategy to handle function arguments.

A function can declare any number of formal parameters. When the function is

invoked, the caller can pass any number of actual arguments. Formal parameters

are assigned based on their position in the arguments list. Extra arguments are

ignored during the assignment. When not enough arguments are passed, missing

formal parameters are assigned to undefined. In the function body, all the arguments

can be accessed using the array-like arguments object. For example, using

arguments[0] to access the first actual argument. This flexibility of arguments

handling is a powerful feature and enables many elegant solutions with arguments

manipulation in JavaScript. However, this flexibility causes an unnecessary burden

on developers to understand. TypeScript adopts a stricter restriction on arguments.

The number of arguments passed to a function must match the number of formal

parameters declared by this function. Passing more or fewer arguments when

invoking a function is a compile- time error.

If a parameter is optional, we can add ? to the end of the parameter name, then the

function. Optional parameters must come after all the required parameters in the

therwise, there is no way to correctly assign

arguments to those parameters. For example, given a function func(v1?: any, v2:

value 1 should be assigned to v1 or v2.

We can

or the value is undefined, the parameter will use the default value. The parameter

timeout of function delay has a default value 1000. The first invocation of delay

 177

function uses the default value of timeout, while the second invocation uses the

provided value 3000.

function delay(func: () => void, timeout = 1000) {

 setTimeout(func, timeout);

}

delay(() => console.log('Hello'));

// -> delay 1000ms

delay(() => console.log('Hello'), 3000);

// -> delay 3000ms

3.6 INTERFACE AND CLASSES

TypeScript adds common concepts from object-oriented programming languages.

This makes it very easy for developers familiar with other object-oriented

programming languages to move to TypeScript.

Interfaces

Interfaces in TypeScript have two types of usage scenarios. Interfaces can be used

to describe the shape of values or act as classes contracts.

Describe the Shape of Values

In typical JavaScript code, we use plain JavaScript objects as the payload of

communication. But the format of these JavaScript objects is opaque. The caller and

receiver need to implicitly agree on the data format, which usually involves

collaboration between different team members. This type of opacity usually causes

maintenance problems.

For example, a receiver function may accept an object that contains the properties

name, email, and age. After a later refactoring, the development team found that the

date of birth should be passed instead of the age. The caller code was changed to

pass an object that contains the properties name, email, and dateOfBirth. Then the

 178

receiver code failed to work anymore. These kinds of errors can only be found in the

runtime if developers failed to spot all those places that rely on this hidden data

format contract during refactoring. Because of this potential code breaking,

developers tend to only add new properties while still keeping those old properties,

to the code base and makes future maintenance much harder.

Interfaces in TypeScript provide a way to describe the shape of an object. As shown

in below example, if we update interface User to remove the property age and add a

new property dateOfBirth, TypeScript compiler will throw errors on all the places

where the age property is used in the whole code base. This is a huge benefit for

code refactoring and maintenance.

interface User {

 name: string;

 email: string;

 age: number;

}

function processUser(user: User) {

 console.log(user.name);

}

processUser({

 name: 'Alex',

 email: 'alex@example.org',

 age: 34,

});

Classes

Class is the fundamental concept in object-oriented programming languages. ES6

added the classes concept to JavaScript. TypeScript also supports classes.

 179

Below example shows important aspects of classes in TypeScript. A class can be

abstract. An abstract class cannot be instantiated directly, and it contains abstract

methods that must be implemented in derived classes. Classes also support

inheritance. The members of a class are public by default. public, protected, and

private modifiers are supported with similar meanings as in other object-oriented

programming languages.

Classes can have constructor functions to create new instances. In the constructor

function of a subclass, the constructor of its parent class must be invoked using

super(). The constructor of Rectangle takes two parameters width and height, but

the constructor of the subclass Square takes only one parameter, so super(width,

width) is used to pass the same value width for both parameters width and height in

the Rectangle constructor function.

abstract class Shape {

 abstract area(): number;

}

class Rectangle extends Shape {

 private width: number;

 private height: number;

 constructor(width: number, height: number) {

 super();

 this.width = width;

 this.height = height;

}

area() {

 return this.width * this.height;

 }

}

class Square extends Rectangle {

 180

 constructor(width: number) {

 super(width, width);

 }

}

class Circle extends Shape {

 private radius: number;

 constructor(radius: number) {

 super();

 this.radius = radius;

 }

 area() {

 return Math.PI * this.radius * this.radius;

 }

}

let rectangle = new Rectangle(5, 4);

let square = new Square(10);

let circle = new Circle(10);

console.log(rectangle.area());

// -> 20

console.log(square.area());

// -> 100

console.log(circle.area());

// -> 314.1592653589793

 181

3.7 LET US SUM UP

 Understanding Typescript

 Data Types in Typescript

 Understanding Function

 Understanding interface and Classes

 Create the following class with proper data type.

3.8 ASSIGNMENTS

Try to implement the below diagram. It contain class, variable, and function.

 182

 Block-4

Advance of IONIC

 183

Unit 1: Ionic UI Controls

Unit Structure

4.1 Learning Objective

4.2 Introduction

4.3 Input

4.4 Labels

4.5 Checkbox

4.6 Radio Button

4.7 Selects

4.8 Toggles

4.9 Ranges

4.10 Header and Footer

4.11 Toolbar

4.12 Card Layout

4.13 List

4.14 Grid Layout

4.15 Let Us Sum Up

4.16 Activities

1

 184

1.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

 Basic UI Controls of Ionic

1.2 INTRODUCTION

standard HTML form elements like inputs, checkboxes, radio buttons and selects;

and components designed for mobile platforms, like toggles or ranges. Ionic

provides out-of-box components with beautiful styles for different requirements.

1.3 INPUT

The component ion-input is for different types of inputs. This component supports

the following properties.

 type The type of the input. Possible values are text, password, email,

number, search, tel, or url. The default type is text.

 value The value of the input.

 placeholder The placeholder of the input.

 disabled Whether the input is disabled or not.

 clearInput Whether to show the icon that can be used to clear the text.

 clearOnEdit Whether to clear the input when the user starts editing the text.

If the type is password, the default value is true; otherwise the default value is

false.

 accept If the type is file, this property specifies a comma-separated list of

content types of files accepted by the server.

 autocapitalize Whether the text should be automatically capitalized. The

default value is none.

 autocomplete Whether the value should be automatically completed by the

browser. The default value is off.

 185

 autocorrect Whether auto-correction should be enabled. The default value

is off.

 autofocus Whether the control should have input focus when the page loads.

 debounce The amount of time in milliseconds to wait to trigger the event

ionChange after each keystroke. The default value is 0.

 inputmode The hint for the browser for the keyboard to display.

 max The maximum value.

 maxlength The maximum number of characters that

 the user can enter.

 min The minimum value.

 minlength The minimum number of characters that the user can enter.

 step The increment at which a value can be set. This property is used with

min and max.

 multiple Whether the user can enter multiple values. It only applies when

the type is email or file.

 name Name of the control.

 pattern A regular expression to check the value.

 readonly Whether the value can be changed by the user.

 required Whether the value is required. spellcheck Whether to check the

spelling and grammar.

 size The initial size of the control.

ion-input also supports following events.

 ionBlur Fired when the input loses focus.

 ionFocus Fired when the input has focus.

 ionChange Fired when the value has changed.

 ionInput Fired when a keyboard input occurred.

 186

Below is a basic sample of using ion-input.

<ion-input type="text" [(ngModel)]="name" name="name" required></ion-input>

1.4 LABEL

Labels can be used to describe different types of inputs. ion-label is the component

for labels. It supports different ways to position the labels relative to the inputs using

the property position.

 fixed - Labels are always displayed next to the inputs.

 floating - Labels will float above the inputs if inputs are not empty or have

focus.

 stacked - Labels will always appear on the top of inputs.

We can add the property position to the ion-label to specify the position.

Below is a basic sample of using ion-label.

 <ion-label floating>Username</ion-label>

1.5 CHECKBOX

The component ion-checkbox creates checkboxes with Ionic styles. It has the

following properties.

 color - The color of the checkbox. Only predefined color names like primary

and secondary can be used.

 checked - Whether the checkbox is checked. The default value is false.

 disabled - Whether the checkbox is disabled. The default value is false.

ion-checkbox also supports following events.

 ionBlur Fired when the input loses focus.

 ionFocus Fired when the input has focus.

 187

 ionChange Fired when the value has changed.

Below is a basic sample of using ion-checkbox.

 <ion-checkbox [(ngModel)]="enabled"></ion-checkbox>

1.6 RADIO BUTTON

Radio buttons can be checked or unchecked. Radio buttons are usually grouped

together to allow the user to make selections. A radio button is created using the

component ion-radio. ion-radio supports properties color, checked, and disabled with

the same meaning as the ion- checkbox. ion-radio also has a property value to set

the value of the radio button. ion-radio supports the event ionSelect that fired when

A radio buttons group is created by the component ion-radio-group, then all the

descendant ion-radio components are put into the same group. Only one radio

button in the group can be checked at the same time. It has the following properties.

 checked - Whether the radio-button is selected. The default value is false.

 color - The color of the radio-button. Only predefined color names like primary

and secondary can be used.

 disabled - Whether the radio-button is disabled. The default value is false.

ion-radio also supports following events.

 ionBlur Fired when the input loses focus.

 ionFocus Fired when the input has focus.

 ionChange Fired when the value has changed.

In the example below, we create a group with three radio buttons.

<ion-radio-group>

 <ion-list>

 <ion-list-header>

 188

 Traffic colors

 </ion-list-header>

 <ion-item>

 <ion-label>Red</ion-label>

 <ion-radio slot="start" value="red"></ion-radio>

 </ion-item>

 <ion-item>

 <ion-label>Green</ion-label>

 <ion-radio slot="start" value="green"></ion-radio>

 </ion-item>

 <ion-item>

 <ion-label>Blue</ion-label>

 <ion-radio slot="start" value="blue"></ion-radio>

 </ion-item>

 </ion-list>

</ion-radio-group>

Figure-19 Radio Button

 189

1.7 SELECTS

The component ion-select is similar to the standard HTML <select> element, but its

UI is more mobile friendly. The options of ion-select are specified using ion-select-

option. If the ion-select only allows a single selection, each ion-select-option is

rendered as a radio button in the group. If the ion-select allows multiple selections,

then each ion-select-option is rendered as a checkbox. Options can be presented

using alerts or action sheets. Below are configuration options for ion-select.

 multiple Whether the ion-select supports multiple selections.

 disabled Whether the ion-select is disabled.

 interface The interface to display the ion-select. Possible values are alert,

popover, and action-sheet. The default value is alert.

 interfaceOptions Additional options passed to the interface.

 okText The text to display for the OK button.

 cancelText The text to display for the cancel button.

 placeholder The text to display when no selection.

 selectedText The text to display when selected.

ion-select also supports the following events.

 ionChange Fired when the selection has changed.

 ionCancel Fired when the selection was canceled.

 ionBlur Fired when the select loses focus.

 ionFocus Fired when the select has focus.

The ion-select in the below example renders a single selection select.

<ion-select placeholder="Select a color">

<ion-select-option value="red">Red</ion-select-option>

<ion-select-option value="green" selected>

 190

Green

</ion-select-option>

 <ion-select-option value="blue">Blue</ion-select-option>

</ion-select>

Figure-20 Select with single selection

 191

Multiple selections select

<ion-

 <ion-select-option>IE</ion-select-option>

 <ion-select-option selected>Chrome</ion-select-option>

 <ion-select-option selected>Firefox</ion-select-option>

</ion-select>

-

Figure-21 Select with multi-selection

192

Use action sheet to display

<ion-select interface="action-sheet" placeholder="your

response">

<ion-select-option>Yes</ion-select-option>

<ion-select-option>No</ion-select-option>

<ion-select-option>Maybe</ion-select-option>

</ion-select>

Figure-22 Select using action sheet

 193

1.8 TOGGLES

Like checkboxes, toggles represent Boolean values but are more user friendly on

the mobile platforms. ion-toggle supports the same properties and events as ion-

checkbox. See the code below for a sample of ion-toggle.

 <ion-toggle [(ngModel)]="enabled"></ion-toggle>

1.9 RANGES

Range sliders allow users to select from a range of values by moving the knobs. By

default, a range slider has one knob to select only one value. It also supports using

dual knobs to select a lower and upper value. Dual knobs range sliders are perfect

controls for choosing ranges, that is, a price range for filtering.

The component ion-range has the following properties. Standard properties,

including color and disabled, are omitted.

 min and max - Set the minimum and maximum integer value of the range.

The default values are 0 and 100, respectively.

 step - The value granularity of the range that specifies the increasing or

decreasing values when the knob is moved. The default value is 1.

 snaps - Whether the knob snaps to the nearest tick mark that evenly spaced

based on the value of step. The default value is false.

 pin - Whether to show a pin with current value when the knob is pressed. The

default value is false.

 debounce - How many milliseconds to wait before triggering the ionChange

event after a change in the range value. The default value is 0.

 dualKnobs - Whether to show two knobs. The default value is false.

To add labels to either side of the slider, we can use the property slot of the child

components of the ion-range. Labels can be texts, icons, or any other components.

 194

Labels of ion-range

<ion-range min="1" max="5">

 <ion-icon name="sad" slot="start"></ion-icon>

 <ion-icon name="happy" slot="end"></ion-icon>

</ion-range>

Step and snaps

<ion-range step="10" snaps="true" pin="true">

 <ion-label slot="start">Min</ion-label>

 <ion-label slot="end">Max</ion-label>

</ion-range>

Double knobs

<ion-range dual-knobs="true" min="0" max="10000">

<ion-label slot="start">Low</ion-label>

 <ion-label slot="end">High</ion-label>

</ion-range>

Figure-23 Range control

 195

1.10 HEADER AND FOOTER

Header is a parent component that holds the toolbar component. It's important to

note that ion-header needs to be the one of the three root elements of a page.

Headers are fixed regions at the top of a screen that can contain a title label, and

left/right buttons for navigation or to carry out various actions.

Footer is a root component of a page that sits at the bottom of the page. Footer can

be a wrapper for ion-toolbar to make sure the content area is sized correctly.

<ion-header>

<ion-navbar>

<ion-title>Header</ion-title>

</ion-navbar>

<ion-toolbar>

<ion-title>Subheader</ion-title>

</ion-toolbar>

</ion-header>

<ion-content></ion-content>

<ion-footer>

<ion-toolbar>

<ion-title>Footer</ion-title>

</ion-toolbar>

</ion-footer>

1.11 TOOLBARS

A toolbar is a generic container for text and buttons. It can be used as a header,

sub-header, footer, or sub-footer. Toolbars are created using the component ion-

toolbar.

 196

Buttons in a toolbar should be placed inside of the component ion-buttons. We can

use the property slot to configure the position of the ion-buttons inside of the toolbar.

 secondary - On iOS, positioned to the left of the content; on Android and

Windows phones, positioned to the right.

 primary - On iOS, positioned to the right of the content; on Android and

Windows phones, positioned to the far right.

 start - Positioned to the left of the content in LTR, and to the right in RTL.

 end - Positioned to the right of the content in LTR, and to the left in RTL.

<ion-app>

<ion-header>

<ion-toolbar>

<ion-buttons slot="start">

<ion-button>

<ion-icon name="menu" slot="icon-only">

</ion-icon>

</ion-button>

</ion-buttons>

<ion-title>My App</ion-title>

<ion-buttons slot="end">

<ion-button>

<ion-icon name="settings" slot="icon-only">

</ion-icon>

</ion-button>

</ion-buttons>

</ion-toolbar>

</ion-header>

<ion-content padding>

 197

App content

</ion-content>

</ion-app>

1.12 CARD LAYOUT

Cards are a great way to display important pieces of content, and are quickly

emerging as a core design pattern for apps. They are a great way to contain and

organize information, while also setting up predictable expectations for the user.

With so much content to display at once, and often so little screen realestate, cards

have fast become the design pattern of choice for many companies, including the

likes of Google, Twitter, and Spotify.

For mobile experiences, Cards make it easy to display the same information visually

across many different screen sizes. They allow for more control, are flexible, and

can even be animated. Cards are usually placed on top of one another, but they can

also be used like a "page" and swiped between, left and right.

Cards are created using the component ion-card. A card can have a header and

content that can be created using ion-card-header and ion-card-content,

respectively. Below example shows a simple card with a header and content.

<ion-card>

<ion-card-header>

Header

</ion-card-header>

<ion-card-content>

Card content

</ion-card-content>

</ion-card>

In the ion-card-content, we can include different kinds of components. The

component ion-card-title can be used to add title text to the content. The component

 198

ion-card-subtitle adds a subtitle to the content. Below example shows a card with an

image and a title.

<ion-card>

<ion-card-content>

<ion-card-title>Item 1</ion-card-title>

<ion-card-subtitle>Another item</ion-card-subtitle>

<p>

This is item 1.

</p>

</ion-card-content>

</ion-card>

Figure-24 Card layout

1.13 LIST

Lists are one of the most common interface elements in mobile applications. They

are an efficient way to display lots of information in a small space and the act of

 199

scrolling through a list is basically second nature for most mobile users. Facebook

uses a list for their news feed, as does Instagram and many others.

Given the importance of lists, the Ionic team have put a lot of effort into creating an

optimised list component that has smooth scrolling, inertia, acceleration and

deceleration, and everything

Both the list, which contains items, and the list items themselves can be any HTML

element.

Using the List and Item components make it easy to support various interaction

modes such as swipe to edit, drag to reorder, and removing items.

<ion-list>

<ion-item>

<ion-label>Apple</ion-label>

</ion-item>

<ion-item>

<ion-label>Apricots</ion-label>

</ion-item>

<ion-item>

<ion-label>Avocado</ion-label>

</ion-item>

<ion-item>

<ion-label>Banana</ion-label>

</ion-item>

<ion-item>

<ion-label>Blueberries</ion-label>

</ion-item>

</ion-list>

 200

1.14 GRID LAYOUT

The grid is a powerful mobile-first flexbox system for building custom layouts. It is

composed of three units a grid, row(s) and column(s). Columns will expand to fill

their row, and will resize to fit additional columns. It is based on a 12 column layout

with different breakpoints based on the screen size.

In the item card, we need to display two or three buttons. These buttons should take

up the same horizontal space of the line. This layout requirement can be easily

archived by using the grid layout. The grid layout is implemented using the CSS3

flexbox layout (https://css- tricks.com/snippets/css/a-guide-to-flexbox/).

The grid layout uses three components: ion-grid, ion-row, and ion-col. ion-grid

represents the grid itself, ion-row represents a row in the grid, ion-col represents a

column in a row. Rows take up the full horizontal space in the grid and flow from top

to bottom. Horizontal space of a row is distributed evenly across all columns in the

row. Grid layout is based on a 12-column layout. We can also specify the width for

each column using attributes from col-1 to col-12. The number after col- is the

number of columns it takes in the 12-column layout, for example, col-3 means it

takes 3/12 of the whole width. By default, columns in a row flow from the left to the

right and are placed next to each. We can use the property offset-* to specify the

offset from the left side. We can the same pattern as in col-* to specify the offset, for

example, offset-3 and offset-6. Columns can also be reordered using attributes

push-* and pull-*. The attributes push-* and pull-* adjust the left and right of the

columns, respectively. The difference between offset-* and push-* and pull-* is that

offset-* changes the margin of columns, while push-* and pull-* change the CSS

properties left and right, respectively.

For the alignment of rows and columns, we can add attributes like align-items-start,

align-self-start, and justify-content-start to ion-row and ion-col. These attribute

names are derived from flexbox CSS properties and values. For example, align-

items-start means using start as the value of the CSS property align-items.

<ion-grid>

<ion-row>

<ion-col>

 201

<ion-button expand="full">1</ion-button>

</ion-col>

<ion-col>

<ion-button expand="full">2</ion-button>

</ion-col>

<ion-col>

<ion-button expand="full">3</ion-button>

</ion-col>

</ion-row>

<ion-row>

<ion-col>

<ion-button expand="full">4</ion-button>

</ion-col>

<ion-col>

<ion-button expand="full">5</ion-button>

</ion-col>

<ion-col>

<ion-button expand="full">6</ion-button>

</ion-col>

</ion-row>

<ion-row>

<ion-col>

<ion-button expand="full">7</ion-button>

</ion-col>

<ion-col>

<ion-button expand="full">8</ion-button>

 202

</ion-col>

<ion-col>

<ion-button expand="full">9</ion-button>

</ion-col>

</ion-row>

<ion-row>

<ion-col col-4>

<ion-button expand="full">0</ion-button>

</ion-col>

<ion-col col-8>

<ion-button expand="full" color="secondary">=</ion-button>

</ion-col>

</ion-row>

</ion-grid>

1.15 LET US SUM UP

 All the basic UI control of Ionic 4.

 How control are used, in respect to scenario.

1.16 ACTIVITIES

 With help of ion-list and ion-card create a list of country.

 With help of ion-select create a multi select for restaurant menu.

 With the help of ion-range create a RGB color screen value from 0 to 255.

 203

Unit 2: Advanced Components

Unit Structure

2.1 Learning Objective

2.2 Introduction

2.3 Action Sheet

2.4 Popover

2.5 Slides

2.6 Tabs

2.7 Menu

2.8 Loading

2.9 Check Your Progress

2.10 Check Your Progress: Possible Answers

2.11 Activities

2

 204

2.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

 Advance Ionic component

2.2 INTRODUCTION

When implementing those user stories for the app, we already use many Ionic built-

in components. There are still some Ionic components that are useful but not

included in the app. We are going to discuss several important components,

including action sheet, popover, slides, tabs, modal, and menu. After reading this

chapter, you should know how to use these components.

2.3 ACTION SHEET

An action sheet is a special kind of dialog that lets user choose from a group of

-alert we mentioned before, but only buttons are

allowed in an action sheet. It can also be used as menus. An action sheet contains

an array of buttons. There are three kinds of buttons in action sheets: destructive,

normal, or cancel. This can be configured by setting the property role to destructive

or cancel. Destructive buttons usually represent dangerous actions, for example,

deleting an item or canceling a pending request. Destructive buttons have different

styles to clearly convey the message to the user, and they usually appear first in the

array buttons. Cancel buttons always appear last in the array buttons.

Just like alerts and loading indicators, there are two Ionic components for action

sheets. The component ion-action-sheet-controller is responsible for creating,

presenting, and dismissing action sheets. The component ion-action-sheet is the

actual component displayed to the user. Action sheets are created using the method

create() of ion-action- sheet-controller.

 205

The method create() takes an options object with the following possible properties.

 header - The title of the action sheet.

 subHeader - The subtitle of the action sheet.

 cssClass - The extra CSS classes to add to the action sheet.

 backdropDismiss - Whether the action sheet should be dismissed when the

backdrop is tapped.

 buttons - The array of buttons to display in the action sheet.

Each button in the of array of buttons is a JavaScript object with the following

possible properties.

 text - The text of the button.

 icon - The icon of the button.

 handler - The handler function to invoke when the button is pressed.

 cssClass - The extra CSS classes to add to the button.

 role - The role of the button. Possible values are destructive, selected, and

cancel.

The return value of create() is a Promise<HTMLIonActionSheet Element> instance.

After the promise is resolved, we can use methods present() or dismiss() of

HTMLIonActionSheetElement to present or dismiss the action sheet, respectively.

When the action sheet is dismissed by user tapping the backdrop, the handler of the

button with role cancel is invoked automatically. When working with Angular, we can

use the service ActionSheetController from Ionic Angular.

Action sheets also emit different life-cycle related events.

 ionActionSheetDidLoad - Emitted after the action sheet has loaded.

 ionActionSheetDidUnload - Emitted after the action sheet has unloaded.

 ionActionSheetDidPresent - Emitted after the action sheet has presented.

 ionActionSheetWillPresent - Emitted before the action sheet is presented.

 ionActionSheetWillDismiss - Emitted before the action sheet is dismissed.

 206

 ionActionSheetDidDismiss - Emitted after the action sheet is dismissed.

export class ActionSheetComponent {

actionSheet: HTMLIonActionSheetElement;

constructor(private actionSheetCtrl: ActionSheetController) { }

async chooseAction() {

this.actionSheet = await this.actionSheetCtrl.create({

header: 'Choose your event',

backdropDismiss: true,

buttons: [{

text: 'Remove',

role: 'destructive',

icon: 'trash',

handler: this.removeFile.bind(this),

}, {

text: 'Move',

icon: 'move',

handler: this.moveFile.bind(this),

}, {

text: 'Cancel',

role: 'cancel',

icon: 'close',

handler: this.close.bind(this),

}]

});

return this.actionSheet.present();

 207

}

close() {

this.actionSheet.dismiss();

}

removeFile() {

}

moveFile() {

}

}

2.4 POPOVER

A popover floats on top of the current page. Popovers are created by wrapping

existing components. We use the method create() of the component ion-popover-

controller to create popovers. The method create() has only one parameter, which is

a JavaScript object containing the following properties.

 component -

 componentProps - The data object to pass to the popover component.

 showBackdrop - Whether to show the backdrop.

 backdropDismiss - Whether the backdrop should be dismissed when

clicking outside of the popover.

 cssClass - Extra CSS classes to add.

 enterAnimation - Animation to use when the popover is presented.

 event - The click event object to determine the position of showing the

popover.

The return value of create() is a Promise<HTMLIonPopoverElement> instance. The

popover can be dismissed by invoking dismiss() of the resolved

HTMLIonPopoverElement instance. The method dismiss() can accept an optional

object that passed to the callback function configured by onDidDismiss() of the

 208

HTMLIonPopoverElement instance. This is how data is passed between the

component wrapped by the popover and the component that creates the popover.

Now we use an example to demonstrate how to pass data when using popovers;

see the example below. The component contains some text, and we want to use a

popover to change the font size. In the PopOverComponent, we use the injected

PopoverController instance to create a new HTMLIonPopoverElement. When

invoking create(), the component to show is FontSizeChooserComponent, and we

pass the current value of fontSize to the component in the componentProps. The

event object of the click event is passed as the value of the property event, so the

popover is positioned based on the position of the click event. If no event is passed,

the popover will be positioned in the center of the current view. We use present() to

show the popover. We then use onDidDismiss() to add a callback function to receive

the updated value of fontSize from the popover.

import { Component } from '@angular/core';

import { PopoverController } from '@ionic/angular';

import { PopoverComponent } from '../../component/popover/popover.component';

@Component({

selector: 'popover-example',

templateUrl: 'popover-example.html',

styleUrls: ['./popover-example.css']

})

export class PopoverExample {

constructor(public popoverController: PopoverController) {}

async presentPopover(ev: any) {

const popover = await this.popoverController.create({

component: PopoverComponent,

event: ev,

 209

translucent: true

});

return await popover.present();

}

}

Popover also emit different life-cycle related events.

 ionPopoverDidDismiss - Emitted after the popover has dismissed.

 ionPopoverDidPresent - Emitted after the popover has presented.

 ionPopoverWillDismiss - Emitted before the popover has dismissed.

 ionPopoverWillPresent - Emitted before the popover has presented.

2.5 SLIDES

The slides component is a container for multiple views. The user can swipe or drag

between different views. Slides are commonly used for tutorials and galleries.

Slides are created using components ion-slides and ion-slide. ion- slides is the

container component for ion-slide components inside of it. When creating the ion-

slides, we can use the property options to configure it. Ionic slides uses Swiper as its

implemenation. The property options takes the same value as in the Swiper API

(http://idangero.us/swiper/api/). The property pager controls whether to show the

pagination bullets.

After the slides component is created, we can also programmatically control the slide

transitions using the following methods.

 slideTo(index, speed, runCallbacks) - Transition to the slide with the

specified index.

 slideNext(speed, runCallbacks) - Transition to the next slide.

 slidePrev(speed, runCallbacks) - Transition to the previous slide.

 getActiveIndex() - Get the index of the active slide.

 210

 getPreviousIndex() - Get the index of the previous slide.

 length() - Get the total number of slides.

 isBeginning() - Get whether the current slide is the first slide.

 isEnd() - Get whether the current slide is the last slide.

 startAutoplay() - Start autoplay.

 stopAutoplay() - Stop autoplay.

In below example, we create an ion-slides component with the reference variable set

to slides. It contains three ion-slide components.

<ion-slides #slides>

<ion-slide>

Slide 1

</ion-slide>

<ion-slide>

Slide 2

</ion-slide>

<ion-slide>

Slide 3

</ion-slide>

</ion-slides>

<div>

<ion-button (click)="prev()">Prev</ion-button>

<ion-button (click)="next()">Next</ion-button>

</div>

It has two buttons to go to the previous or next slide. The component

SlidesComponent in below example has a @ViewChild property slides that binds to

an ElementRef object. The property nativeElement returns the ion-slides element.

The property loaded is used to check whether the slides component is loaded. The

 211

method componentOnReady returns a Promise that resolved when the component

is ready. The method isValid() is required to check whether the Slides component is

ready to use.

import { Component, ViewChild, ElementRef, OnInit } from

'@angular/core';

@Component({

selector: 'app-slides',

templateUrl: './slides.component.html',

styleUrls: ['./slides.component.css']

})

export class SlidesComponent implements OnInit {

@ViewChild('slides') slidesElem: ElementRef;

loaded = false;

slides: any;

ngOnInit() {

this.slides = this.slidesElem.nativeElement;

this.slides.componentOnReady().then(() => {

this.loaded = true;

});

}

prev() {

if (this.isValid()) {

this.slides.slidePrev();

}

}

next() {

 212

if (this.isValid()) {

this.slides.slideNext();

}

}

isValid(): boolean {

return this.loaded && this.slides != null;

}

}

Slider also emit different life-cycle related events.

 ionSlideDidChange - Emitted after the active slide has changed.

 ionSlideDoubleTap - Emitted when the user double taps on the slide's

container.

 ionSlideDrag - Emitted when the slider is actively being moved.

 ionSlideNextEnd - Emitted when the next slide has ended.

 ionSlideNextStart - Emitted when the next slide has started.

 ionSlidePrevEnd - Emitted when the previous slide has ended.

 ionSlidePrevStart - Emitted when the previous slide has started.

 ionSlideReachEnd - Emitted when the slider is at the last slide.

 ionSlideReachStart - Emitted when the slider is at its initial position.

 ionSlidesDidLoad - Emitted after Swiper initialization

 ionSlideTap - Emitted when the user taps/clicks on the slide's container.

 ionSlideTouchEnd - Emitted when the user releases the touch.

 ionSlideTouchStart - Emitted when the user first touches the slider.

 ionSlideTransitionEnd - Emitted when the slide transition has ended.

 ionSlideTransitionStart - Emitted when the slide transition has started.

 ionSlideWillChange - Emitted before the active slide has changed.

 213

2.6 TABS

Tabs are commonly used components for layout and navigation. Different tabs can

take the same screen estate, and only one tab can be active at the same time.

Tabs components are created using the component ion-tabs, while individual tabs

are created using ion-tab. ion-tabs supports the standard properties color and mode

and the following special properties.

 tabbarHidden - When this property is true, hide the tab bar.

 tabbarLayout - The layout of the tab bar. Possible values are icon-top, icon-

start, icon-end, icon-bottom, icon-hide, title-hide.

 tabbarPlacement - The position of the tab bar. Possible values are top and

bottom.

 tabbarHighlight - Whether to show a highlight bar under the selected tab. The

default value is false.

Once ion-tabs is created, we can get the ion-tab instance of this component. The

component ion-tabs instance provides different methods to interact with the tabs.

 select(tabOrIndex) - Select a tab by its index or its ion-tab instance.

 getTab(index) - Get the ion-tab instance by the index.

 getSelected() - Get the selected ion-tab instance.

Each ion-tab also supports the following properties to configure it.

 active - Whether the tab is active.

 href - The URL of the tab.

 label - The title of the tab.

 icon - The icon of the tab.

 badge - The badge to display on the tab button.

 badgeStyle - The color of the badge.

 disabled - Whether the tab button is disabled.

 show - Whether the tab button is visible.

 214

 tabsHideOnSubPages - Whether the tab is hidden on subpages.

ion-t

In the template file below, we create an ion-tabs with the reference name set to tabs.

Each ion-tab has its title and icon. The first tab has a button to go to the second tab.

<ion-tabs tabbar-placement="top" #tabs>

<ion-tab label="Tab 1" icon="alarm">

Tab One

<ion-button (click)="gotoTab2()">Select Tab 2</ion-button>

</ion-tab>

<ion-tab label="Tab 1" icon="albums">

Tab Two

</ion-tab>

<ion-tab label="Tab 1" icon="settings">

Tab Three

</ion-tab>

</ion-tabs>

In the TabsComponent below,we use the decorator @ViewChild to get the reference

to the ion-tabs element and use its method select() to select the second tab.

import { Component, OnInit, ViewChild, ElementRef } from

'@angular/core';

@Component({

selector: 'app-tabs',

templateUrl: './tabs.component.html',

styleUrls: ['./tabs.component.css']

 215

})

export class TabsComponent implements OnInit {

@ViewChild('tabs') tabsElem: ElementRef;

tabs: any;

constructor() { }

ngOnInit() {

this.tabs = this.tabsElem.nativeElement;

}

gotoTab2() {

this.tabs.select(1);

}

}

2.7 MENU

Using ion-menu-toggle is generally enough to control the visibility of the menu.

However, when there are multiple menus at both sides, or the visibility of the menu

-menu-controller. It has the following

methods.

 open(menuId) - Open the menu with specified id or side.

 close(menuId) - Close the menu with specified id or side. If no menuId is

specified, then all open menus will be closed.

 toggle(menuId) - Toggle the menu with a specified id or side.

 enable(shouldEnable, menuId) - Enable or disable the menu with a

specified id or side. For each side, when there are multiple menus, only one

of them can be opened at the same time. Enabling one menu will also disable

other menus on the same side.

 216

 swipeEnable(shouldEnable, menuId) - Enable or disable the feature to

swipe to open the menu.

 isOpen(menuId) - Check if a menu is opened.

 isEnabled(menuId) - Check if a menu is enabled.

 get(menuId) - Get the ion-menu instance with a specified id or side.

 getOpen() - Get the opened ion-menu instance.

 getMenus() - Get an array of all ion-menu instances.

 isAnimating() - Check if any menu is currently animating.

We create two menus at the start and end side. The ion-menu-button toggles the

menu at the start side. If the property contentId is not specified for the ion-menu, it

looks for the element with the attribute main in its parent element as the content.

<ion-app>

<ion-menu side="start">

<ion-header>

<ion-toolbar>

<ion-title>Start Menu</ion-title>

</ion-toolbar>

</ion-header>

<ion-content>

<ion-list>

<ion-item>

<ion-button (click)="openEnd()">Open end</ion-button>

</ion-item>

</ion-list>

</ion-content>

</ion-menu>

 217

<ion-menu side="end">

<ion-header>

<ion-toolbar>

<ion-title>End Menu</ion-title>

</ion-toolbar>

</ion-header>

</ion-menu>

<div main>

<ion-header>

<ion-toolbar>

<ion-buttons slot="start">

<ion-menu-button menu="start">

<ion-icon name="menu"></ion-icon>

</ion-menu-button>

</ion-buttons>

<ion-title>App</ion-title>

</ion-toolbar>

</ion-header>

<ion-content>

Content

</ion-content>

</div>

</ion-app>

The MenuComponent uses MenuController to open the menu at the end side.

 218

import { Component } from '@angular/core';

import { MenuController } from '@ionic/angular';

@Component({

selector: 'app-menu',

templateUrl: './menu.component.html',

styleUrls: ['./menu.component.css']

})

export class MenuComponent {

constructor(private menuCtrl: MenuController) { }

openEnd() {

this.menuCtrl.open('end');

}

}

2.8 LOADING

An overlay that can be used to indicate activity while blocking user interaction. The

loading indicator appears on top of the app's content, and can be dismissed by the

app to resume user interaction with the app. It includes an optional backdrop, which

can be disabled by setting showBackdrop:false upon creation.

Creating

Loading indicators can be created using a Loading Controller. They can be

customized by passing loading options in the loading controller's create method. The

spinner name should be passed in the spinner property, and any optional HTML can

be passed in the content property. If a value is not passed to spinner the loading

indicator will use the spinner specified by the platform.

 219

Dismissing

The loading indicator can be dismissed automatically after a specific amount of time

by passing the number of milliseconds to display it in the duration of the loading

options. To dismiss the loading indicator after creation, call the dismiss() method on

the loading instance. The onDidDismiss function can be called to perform an action

after the loading indicator is dismissed.

Loading controllers supports this properties.

 animated - the loading indicator will animate.

 backdropDismiss - If true, the loading indicator will be dismissed when the

backdrop is clicked.

 cssClass - Additional classes to apply for custom CSS. If multiple classes are

provided they should be separated by spaces.

 duration - Number of milliseconds to wait before dismissing the loading

indicator.

 enterAnimation - Animation to use when the loading indicator is presented.

 keyboardClose - If true, the keyboard will be automatically dismissed when

the overlay is presented.

 leaveAnimation - Animation to use when the loading indicator is dismissed.

 message - Optional text content to display in the loading indicator.

 spinner - The name of the spinner to display("bubbles" | "circles" | "crescent" |

"dots" | "lines" | "lines-small" | null | undefined.

Events:

ionLoadingDidDismiss - Emitted after the loading has dismissed.

ionLoadingDidPresent - Emitted after the loading has presented.

ionLoadingWillDismiss - Emitted before the loading has dismissed.

ionLoadingWillPresent - Emitted before the loading has presented.

 220

import { Component } from '@angular/core';

import { LoadingController } from '@ionic/angular';

@Component({

selector: 'loading-example',

templateUrl: 'loading-example.html',

styleUrls: ['./loading-example.css']

})

export class LoadingExample {

constructor(public loadingController: LoadingController) {}

async presentLoading() {

const loading = await this.loadingController.create({

message: 'Hellooo',

duration: 2000

});

await loading.present();

const { role, data } = await loading.onDidDismiss();

console.log('Loading dismissed!');

}

async presentLoadingWithOptions() {

const loading = await this.loadingController.create({

spinner: null,

duration: 5000,

message: 'Please wait...',

 221

translucent: true,

cssClass: 'custom-class custom-loading'

});

return await loading.present();

}

}

2.9 CHECK YOUR PROGRESS

1. Strings are surrounded by _____________ or _____________

A. Single slash or Double slash

B. Single quote or Double quote

2. _____________ enabled will have a compile error when for null.

A. nullCheck B. strictNullChecks

C. nullNotAllowed D. noNullAllowed

3. let strings: = ['1', '2', '3'] will create ________ kind of array

A. number B. char

C. string D. letter

4. Enum type represents _________ set of values.

 A. fixed B.variable

 C. alike D.same

5. __________ type is the escape bridge from the TypeScript world to the

JavaScript world

 A. Free B. Zone

 C. NoRule D. Any

 222

6. Void means ______ type

 A. no B. null

 C. undefined D. nil

7. _________ added the classes concept to JavaScript

 A. ES6 B. Compiler

 C. Microsoft D. Google

2.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A 2. B 3. C

4. A 5. D 6. A

 7. A

2.11 ACTIVITIES

 Try to replicate you mobile setting page.

 Try to replicate Sign in page of Google.

 Try to replicate BookMyShow movie page.

 223

Unit 3: Advanced Topics in
IONIC

Unit Structure

3.1 Learning Objective

3.2 Platform

3.3 Themes

3.4 Storage

3.5 Publish

3.6 Check your Progress

3.7 Check your Progress: Possible Answers

3.8 Activities

3

 224

3.1 LEARNING OBJECTIVE

After studying this chapter, students should be able to understand.

 Working with different platform

 How theming working in Ionic

 Working with storage

 Publishing Ionic app.

3.2 PLATFORM

We have class Platform. It can be used to interact with the underlying platform. We

used the method ready() of Platform to wait for the Cordova platform to finish

initialization. The class Platform also has other methods.

 platforms() Depends on the running device, the return value can be an

array of different platforms. Possible values of platforms are android, cordova,

core, ios, ipad, iphone, mobile, mobileweb, phablet, tablet, windows, and

electron. When running on the iPhone emulator, the return value of

platforms() is ["ios","iphone"].

 is(platformName) Checks if the running platform matches the given

platform name. Because the method platforms() can return multiple values,

the method is() can return true for multiple values.

 versions() Gets version information for all the platforms. When running on

the iPhone emulator, the return value of versions() is [{"name":"iphone"},

{"name":"ios", "settings":{"mode":"ios","tabsHigh

light":false,"statusbarPadding":false,"keyboard

Height":250,"isDevice":true,"deviceHacks":true}}].

 isRTL() Checks if the language direction is right to left.

 width() and height()

respectively.

 225

 isPortrait() and isLandscape() Checks if the app is in portrait or landscape

mode, respectively.

 ready() This method returns a promise that is resolved when the platform is

ready and we can use the native functionalities. The resolved value is the

name of the platform that was ready.

 url()

 getQueryParam(key) Gets query parameter.

There are three important EventEmitters in the Platform that are related to app

states. The EventEmitter pause emits events when the app is put into the

background. The EventEmitter resume emits events when the app is pulled out from

the background. These two EventEmitters are useful when dealing with app state

changes. The EventEmitter resize emits events when the browser window has

changed dimensions.

3.3 THEMING

Theme support is baked right into Ionic apps. Changing the theme is as easy as

updating the $colors map in your src/theme/variables.scss file:

$colors: (

 primary: #488aff,

 secondary: #32db64,

 danger: #f53d3d,

 light: #f4f4f4,

 dark: #222

);

The fastest way to change the theme of your Ionic app is to set a new value for

primary, since Ionic uses the primary color by default to style most components.

not be removed.

 226

Ionic provides different look and feels based on the current platform. The styles are

grouped as different modes. Each platform has a default mode that can also be

md for Material Design styles, ios for iOS styles. The platform ios uses the mode ios

by default, and other platforms use the mode md by default.

Ionic uses modes to customize the look of components. Each platform has a default

mode, but this can be overridden. For example, an app being viewed on an Android

platform will use the md (Material Design) mode. The <ion-app> will have

class="md" added to it by default and all of the components will use Material Design

styles.

Platform Mode Details

ios Ios Viewing on an iphone, ipad, or ipod will use the iOS styles.

android Md Viewing on any android device will use the Material Design

styles.

windows Wp Viewing on any windows device inside cordova or electron

uses the Windows styles.

core Md Any

use the Material Design styles.

Table-7 Platform and Mode

Overriding the Mode Styles

Each Ionic component has up to three stylesheets used to style it. For example, the

tabs component has a core stylesheet that consists of styles shared between all

modes, a Material Design stylesheet which contains the styles for the md mode, an

iOS stylesheet for the ios mode, and a Windows stylesheet for the wp mode. Not all

components are styled differently for each mode, so some of them will only have the

core stylesheet, or the core stylesheet and one of the mode stylesheets.

 227

You can use the class that is applied to the ion-app to override styles. For example,

if you wanted to override all buttons in Material Design (md) mode to have

capitalized text:

Once the mode is selected for the app, the html element will have the attribute mode

set to the mode name, for example, <html mode="ios">. The element <ion-app> will

have the mode name as a CSS class name, for example, <ion-app class="md"> for

the mode md. This class name can be used to override styles for different modes. In

the code below, we add extra styles only for the mode md.

.md {

font-size: 16px;

}

.md .button {

 text-transform: capitalize;

}

.button-md {

 text-transform: capitalize;

}

Ionic components have the property mode to set the mode. This mode overrides the

<ion-app>

<ion-header>

<ion-toolbar>

<ion-title>Range</ion-title>

</ion-toolbar>

</ion-header>

<ion-content padding>

<ion-list>

<ion-item>

 228

<ion-label slot="start">md</ion-label>

<ion-range mode="md" value="50">

<ion-icon mode="md" slot="start" name="angry">

</ion-icon>

<ion-icon mode="md" slot="end" name="smile">

</ion-icon>

</ion-range>

</ion-item>

<ion-item>

<ion-label slot="start">ios</ion-label>

<ion-range mode="ios" value="50">

<ion-icon mode="ios" slot="start" name="angry">

</ion-icon>

<ion-icon mode="ios" slot="end" name="smile">

</ion-icon>

</ion-range>

</ion-item>

</ion-list>

</ion-content>

</ion-app>

Ionic has different Sass variables to configure the styles. These variables can be

overridden in the file src/theme/variables.scss. For example, the variable $button-

md-font-size configures the button font size of mode md. The default value is 14px.

 $button-md-font-size: 16px;

 229

3.4 STORAGE

To storage data in app, and so the user can access all the data across different

different devices.

For this kind of data, we can store the data on the device. In this case, we can use

the key/value pairs storage provided by Ionic. The package @ionic/storage is

already installed as part of the starter template, so we can use it directly.

The storage stores key/value pairs. The value of each pair can be data of any type.

rialized to a JSON string before saving.

When the data is retrieved, the JSON string is deserialized back to a JavaScript

object. The Ionic storage package wraps the localForage library

(https://github.com/localForage/localForage). It provides a common API to access

different storage engines, including SQLite, IndexedDB, WebSQL, and localstorage.

The actual engine used in the runtime depends on the availability of the platform.

and Android platforms. We can install the plugin cordova-sqlite-storage to make

SQLite available on different platforms.

 $ cordova plugin add cordova-sqlite-storage --save

We use the class Storage from @ionic/storage to interact with the underlying

storage engine. The module created by IonicStorageModule. forRoot() should be

imported. The instance of class Storage can be injected into components. Storage

has the following methods.

 get(key) Gets the value by key.

 set(key, value) Sets the value of the given key.

 remove(key) Removes the given key and its value.

 clear() Clears the whole store.

 keys() Gets all the keys in the store.

 length() Gets the number of keys.

 230

 forEach(callback) Invokes the callback function for each key/value pair in

the store.

Most of the operations in Storage are asynchronous. The return values of methods

get(), set(), remove(), and clear() are all Promise objects that resolved when the

operations are completed. In below example, we use set() to set the value first, then

use get() to read the value and assign it to the property value.

import { Component, OnInit } from '@angular/core';

import { Storage } from '@ionic/storage';

@Component({

selector: 'app-page-home',

templateUrl: 'home.page.html',

styleUrls: ['home.page.scss'],

})

export class HomePage implements OnInit {

value: any;

constructor(private storage: Storage) { }

ngOnInit() {

const obj = {

name: 'Alex',

email: 'alex@example.org'

};

this.storage.set('value', obj)

.then(_ => this.storage.get('value')

.then(v => this.value = v));

}

}

 231

The method IonicStorageModule.forRoot() accepts an optional object to configure

the storage engine. This object has the following properties.

 name - Name of the storage.

 storeName - Name of the store.

 driverOrder - The array of driver names to test and use. The default value is

['sqlite', 'indexeddb', 'websql', 'localstorage'].

3.5 PUBLISH

 publish. An app needs to have proper icons

and splash screens. Ionic provides a way to generate these icons and splash

screens.

3.5.1 ICONS AND SPLASH SCREENS

Before the app can be published, we need to replace the default icons and splash

screens. Ionic can generate icons and splash screens from source images to create

images of various sizes for each platform. We only need to provide an image for the

icon and another image for the splash screen, then Ionic can generate all necessary

images. Source images can be .png file, .psd file from PhotoShop or .ai file from

Adobe Illustrator.

For icons, the source image should be file icon.png, icon.psd or icon.ai in the

directory resources of the Ionic project. The icon image should have a size of at

least 192 x 192 px without the round corners. For splash screens, the source image

should be file splash.png, splash.psd or splash.ai in the directory resources. The

splash screen should have a size of at least 2732 x 2732 px with the image centered

in the middle.

We use the command ionic resources to generate those resource files for icons and

splash screens.

 232

// Icons only

$ ionic resources icon

// Splash screens only

$ ionic resources splash

// Both icons and splash screens

$ ionic resources

Generated icons and splash screens are saved to the subdirectory ios and android

of the directory resources.

3.5.2 DEPLOY TO DEVICES

We can deploy the app to a device for testing. For iOS, open the generated project

in the directory platforms/ios with Xcode and use Xcode to deploy to the device. For

Android, open the generated project in the directory platforms/android with Android

Studio to deploy to the device.

Ionic CLI commands ionic run ios and ionic run android can also be used to deploy

apps to the device.

Ionic Deploy

release new versions to the users. Usually, these new versions need to go through

the same review process as the first version, which may take a long time to finish.

This can delay the delivery of new features and bug fixes. For Cordova apps, since

live updates without installing new versions. These static files can be replaced by the

wrapper to update to the new versions. Ionic Pro provides the deploy service to

perform live deployments.

Pro, we need to create a new app in the dashboard and link the app to Ionic Pro.

Because we already created the Ionic app, the following command is used to link it.

You can find the app_id in the dashboard.

 233

 $ ionic link --pro-id <app_id>

Ionic Pro uses a Git-based workflow to manage app updates. The command ionic

link will prompt to set up the Git repository. Just follow the instructions displayed

when running ionic link to finish the setup. Here we use Ionic Pro as the Git

repository. A new Git remote called ionic is added to the repository, and we can

push the current code to this remote. After the link, the file ionic.config.json is

updated to include the property pro_id.

In the Ionic Pro dashboard for the app, go to the tab Code and select Channels. Two

channels Master and Production have already been created. Master channel is for

binaries for development, while Production channel is for binaries for app stores.

Clicking the button Set up deploy next to a channel shows a dialog with instructions

on how to set up the deploy. There are three options of how updates are installed.

completely closed state. It will download the update in the background when

the user is using the app. The update is applied when the app is closed and

opened the next time.

closed state. It will wait on the splash screen until the update is downloaded

and applied. This mode forces users to always use the latest version.

update process is managed by you using the plugin API. This is not

recommended as it may break the app with broken updates. Using

e as the updates in these two

modes are done in the native layer.

We are going to use the background mode for the app. The dialog already shows

the command to run to install the plugin cordova-plugin- ionic.

$ cordova plugin add cordova-plugin-ionic --save \

--variable APP_ID="<app_id>" \

--variable CHANNEL_NAME="Master" \

--variable UPDATE_METHOD="background"

 234

After a commit is pushed to the Git repository, a new build will run. You can check

the builds in the tab Builds. For each build, it can be manually deployed to a

channel. A channel can also be configured to auto- deploy builds in a Git branch.

3.6 CHECK YOUR PROGRESS

1. .scss supports variable

A. True

B. False

2. Is it possible to use iOS styles on Android devices.

A. Yes

B. No

3. ______ mode is use for Android.

 A. md B. ios

 C. an D. wp

4. cordova-sqlite-storage makes _______ database available on iOS and

Android.

 A. Oracle B. MS-Access

 C. MongoDB D. SQLite

5. ___________ is used to clear the storage

 A. clear() B. removeAll()

 C. remove() D. deleteAll()

3.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. A 2. A 3. A

 4. D 5. A

 235

3.8 ACTIVITIES

 Create a app and assign Splash Screen and Icon for Specific Platform

 Create a app and use Primary and Secondary color for changing the Button

and App Background

 Try to create custom Theme variable and use it in app

 Try to go through Config.xml and then build the individual plarform

